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Tangle- and contact-free path
planning for a tethered mobile
robot using deep reinforcement
learning

Ryuki Shimada* and Genya Ishigami

Graduate School of Integrated Design Engineering, Faculty of Science and Technology, Keio
University, Yokohama, Japan

This paper presents a tangle- and contact-free path planning (TCFPP) for a
mobile robot attached to a base station with a finite-length cable. This type
of robot, called a tethered mobile robot, can endure long-time exploration
with a continuous power supply and stable communication via its cable.
However, the robot faces potential hazards that endanger its operation such
as cable snagging on and cable entanglement with obstacles and the robot.
To address these challenges, our approach incorporates homotopy-aware path
planning into deep reinforcement learning. The proposed reward design in the
learning problem penalizes the cable-obstacle and cable-robot contacts and
encourages the robot to follow the homotopy-aware path toward a goal. We
consider two distinct scenarios for the initial cable configuration: 1) the robot
pulls the cable sequentially from the base while heading for the goal, and 2) the
robot moves to the goal starting from a state where the cable has already been
partially deployed. The proposed method is compared with naive approaches in
terms of contact avoidance and path similarity. Simulation results revealed that
the robot can successfully find a contact-minimized path under the guidance of
the reference path in both scenarios.

KEYWORDS

tethered mobile robot, path planning, homotopy class, reinforcement learning, deep
Q-network

1 Introduction

A tethered mobile robot can perform exploration for a long duration with a continuous
power supply and stable communication through its cable. In addition, the robot can use the
cable as a lifeline on steep slopes or cliffs to prevent falling or to hook it onto fixed obstacles.
Their typical applications include the exploration of nuclear power plants (Nagatani et al.,
2013), underwater areas, subterranean spaces (Martz et al., 2020), and lunar/planetary
slopes and caves (Abad-Manterola et al., 2011; Schreiber et al., 2020). Untethered mobile
robots have indeed explored various environments, such as uneven terrains or cluttered
areas, but we believe that tethering mobile robots is such a powerful solution that will allow
for exploration into previously uncharted territories while ensuring power, communication,
and fall safety. However, difficulties arise when we try to deploy the tethered robot system.
This is because the path planning algorithms for conventional mobile robots cannot be
applied directly to tethered robots owing to constraints such as the cable length and the
cable’s interaction with the robot and obstacles.
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A major challenge in path planning for tethered mobile robots
has been computing the shortest path to the target point, considering
the cable length and cable-obstacle interaction. This issue has
been studied extensively in Xavier (1999), Brass et al. (2015),
Abad-Manterola et al. (2011), Kim et al. (2014), Kim and Likhachev
(2015), and Sahin and Bhattacharya (2023). The motivation stems
from the fact that the workspace of a tethered robot is theoretically
a circular shape, whose center is the anchor point of the cable
when there are no obstacles in the environment. However, this
is not the case when obstacles are present. In early research,
visibility graph-based approaches were proposed in Xavier (1999),
Brass et al. (2015), and Abad-Manterola et al. (2011). These studies
assumed that the cable automatically coiled to maintain its tension
at all times.

Research in this area has gained momentum only since
the work of homotopy-aware path planning, which was first
proposed by Igarashi and Stilman (2010) and mathematically
refined by Kim et al. (2014). The essence of this approach is
to topologically encode a path by its placement with respect
to the obstacles in the environment. The usefulness of this
method can be observed in its application to exploration
problems (Shapovalov and Pereira, 2020) and 3D environments
(Sahin and Bhattacharya, 2023).

Recent studies have focused on avoiding cable-robot and cable-
obstacle contacts. Path planning with cable-robot avoidance was
developed in Yang et al. (2023), whereas cable-obstacle contact is
admissible. Our previous study, Shimada and Ishigami (2023),
proposed a waypoint refinementmethod based on the distance from
the cable base, curvature, and proximity to obstacles, which was
formulated using an artificial potential field. However, this method
is only applicable when the cable is initially stored in a retractable
mechanism and cannot be used when the cable is initially deployed
in the environment.

Despite such intensive research effort, a comprehensive
approach that balances the three objectives—overcoming cable
length constraints, avoiding cable-robot contact, and avoiding cable-
obstacle contact—has not been developed yet. To this end, we must
consider the following two issues: 1) the global path generated by
conventional mobile robot methods cannot be used directly as a
path for a tethered robot, and 2) the robot has no knowledge of
the cable dynamics and cannot directly control the cable position,
because of the underactuated nature of the tethered robot system.

In this study, we aim to solve a path planning problem
that considers the cable length constraints and minimizes the
cable-obstacle and cable-robot contacts. Our approach, a tangle-
and contact-free path planning (TCFPP) algorithm uses deep
reinforcement learning (DRL) with a homotopy-aware reference
path guidance (Figure 1). The reward function in DRL has two
components: the first guides contact avoidance and the second
suppresses the deviations from the reference path. We built a
customized Gymnasium environment using a kinematics-based
robot model and a position-based cable model. A standard DRL
algorithm, Deep Q-Network (Mnih et al., 2015) can successfully
determine an effective path in a given environment. We evaluated
the proposedmethod through simulations from two aspects: contact
avoidance and similarity with the paths of naive approaches.

The following are the key contributions of this study:

• We develop a method for selecting a reference path for a
tethered mobile robot from enumerated feasible paths in terms
of homotopy class.

• We propose TCFPP, a path planning method for a tethered
mobile robot that considers cable-obstacle and cable-robot
avoidance using DRL with homotopy-aware reference
path guidance.

• We show that the proposed method effectively balances path
shortness with maintaining the distance from obstacles.

The remainder of this paper is organized as follows. Section 2
introduces the concepts of homotopy class of path and h-signature,
and reinforcement learningwith a reference path. Section 3 provides
the problem statement, the two scenarios to be tested. Section 4
presents the tangle- and contact-free path planning method for
a tethered mobile robot. Section 5 describes the tethered mobile
robot model with a kinematics-based robot model and position-
based cable model for simulations. Section 6 shows the simulation
results and discusses the performance of our method. Section 7
concludes this work.

2 Preliminaries

The proposed method uses DRL with hommotopy-aware
reference path.This section introduces the notion of homotopy class
of path and the basics of reinforcement learing with a reference path.

2.1 Homotopy class of paths

The notion of homotopy class of paths plays an important role in
capturing their nature based on their topological relations to obstacles
in the environment, rather than their geometric properties, such as
length, curvature, or smoothness. Here we outline the concept of a
homotopyclassandintroduceh-signature,definedinKim et al. (2014),
which is a unique identifier of the class, and its operation.

Consider two paths that share the same start and end points.The
two paths belong to the same homotopy class if and only if they can
be deformed into each other without intersecting any obstacles. For
example, in Figure 2A, the paths γ1 and γ2 are in the same homotopy
class, whereas γ1 and γ3 are not. To identify the homotopy class
of the paths, a metric called the h-signature is used. This metric is
determined by considering the intersections of a path with parallel
arrows that extend from the center of the obstacles to the north of
the map (green arrows in Figure 2B). The sign of the h-signature
changes based on the direction in which these arrows are crossed:
a left-to-right passage assigns the obstacle’s identifier, and a right-
to-left passage appends a sign-reversed identifier. It should be noted
that the h-signature can be an empty list if the path does not cross
any arrows. The h-signature of the path is determined by checking
the intersection of the path and the arrows from the starting point
to the end point. Let h(γ) denote the h-signature of path γ. The h-
signatures of the two paths γ1 and γ2 in Figure 2B, i.e., h(γ1) and
h(γ2), are computed as [o2] and [−o2,−o1], respectively.

In addition, the h-signatures for the two paths can only
be concatenated when the end point of one coincides with the
start point of the other. In this operation, the same identifiers
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FIGURE 1
Flowchart of the proposed algorithm: Tangle- and Contact-free Path Planning (TCFPP) method. The algorithm aims to generate paths that minimize
cable-obstacle and cable-robot contact.

with reversed signs are removed from the list. For paths γ1 and
γ2 in Figure 2B, one can concatenate their list as [o2,−o2,−o1];
then, this can be simplified as [−o1]. In the following part, we
express the concatenation using a “♢” operator. This operation can
be written as h(γ1)♢h(γ2) = [o2,−o2,−o1] = [−o1]. Further details
regarding the definition and operation of the h-signature can
be found in Kim et al. (2014).

2.2 Reinforcement learning with reference
path

We consider the standard RL problem with reference path γref.
RL is formulated as a Markov decision process (MDP) with a four-
element tuple, (S ,A,T ,R), where S denotes the state space, A is

the action space, T is the state transition function, and R is the
reward signal. The reference path provides the agent with global
insights, thus enhancing its ability to find the optimal path faster and
improving local motion for effective contact avoidance. We convey
the reference path information to the agent via a reward function,
as presented in Ota et al. (2020). At time step t, the state and action
are represented by st in S and at in A, respectively. Then, the reward
function can be written as follows:

r(st,at,γref) = f (st,at) + g(st,at,γref) . (1)

The first term, f(st,at), represents the reward in pure RL. The
second term, g(st,at,γref), denotes the reward function related to
a reference path. This function imposes penalties for deviating
from the reference path while learning, and simultaneously provides
positive rewards for reaching each waypoint of the reference path.
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FIGURE 2
Homotopic relation between paths in an environment with two obstacles. (A) Three paths in an environment with two obstacles. Paths γ1 and γ2 belong
to the same homotopy class; paths γ1 and γ3 belong to different homotopy classes. (B) Concatenation of h-signatures. The h-signature of a path is
computed by checking its intersections with the green arrows starting from the center of the obstacles. Two h-signatures can be concatenated if the
end point of one path corresponds to the start point of the other.

3 Problem statement

This study addresses a path planning problem that considers
the constraints imposed by the cable length and minimizes the
cable-obstacle and cable-robot contacts. The goal was to avoid
entanglement and contact between the three entities: the robot,
cable, and obstacles. Although these interactions do not always
endanger the robot, they potentially impede its safe operation.

In a tethered mobile robot path planning, there are two primary
scenarios based on the initial state of the cable: Unreeling Cable and
Handling Deployed Cable. In the unreeling cable scenario, the cable
and robot follownearly identical paths, thereby focusing on avoiding
cable-obstacle contact. In contrast, the handling deployed cable
scenario treats the cable as an additional obstacle, thus requiring
paths that avoid both cable-obstacle and cable-robot contacts.

Figure 1 illustrates the flowchart of the proposed algorithm.
This algorithm inputs the robot’s current and target positions,
cable placement, and cable length, and aims to output paths that
minimize cable-related contact with the guidance of a homotopy-
aware reference path. For the computation of the reference path,
we first enumerate all paths with different homotopy classes that
connect the robot’s current and target points, and then select the
shortest and reachable path as the reference path, taking into account
cable length constraints.

A key assumption is that the decision-making entity in DRL,
which we call the agent, has no knowledge of the cable behavior,
and its interaction with the environment can be obtained only via
reward signals.

4 Proposed method: TCFPP

The proposed method comprises three main modules: 1)
enumeration of shortest pathswith distinct h-signatures, 2) selection
of a reference path from the paths enumerated in 1), considering
the constraints imposed by the cable length, and 3) training
of an agent using DRL with the homotopy-aware reference
path (Figure 1).

4.1 Step one—Enumerating h-signatures

The objective of this step is to enumerate all possible h-
signatures and to find the shortest path with each h-signature.
Algorithm 1 first enumerates paths in order of length—from shorter
to longer—using Yen’s k-shortest path routing algorithm (lines
2–7) and then determines the h-signature of each path and keeps
the shortest one among them (lines 8–19). We present below the
procedural details of Algorithm 1.

The algorithm initializes two lists A and B to store paths and
a dictionary D that takes the h-signatures as key and a shortest
path with the h-signature as value (lines 2–3). To find the possible
h-signature under given configurations of the robot and obstacles,
the proposed algorithm aims to enumerate paths using Yen’s k-
shortest path routing algorithm. The proposed algorithm runs Yen’s
algorithm twice—from start to goal (stored in list A) and from
goal to start (list B). This is a well-known technique to cover
all possible h-signatures (Werner and Feld, 2014) (lines 4–5). As
explained in Section 2.1, the positivity and negativity of h-signature
depends on whether the path progresses from left to right or right
to left. The algorithm thereby counts the number of paths in A
(assigned to NA), while concatenating two list A and B as P
(lines 6–7).

The next step is to determine the shortest path for each h-
signature. For all paths found by Yen’s algorithm, our algorithm
computes the h-signature in relation to the obstacles in the
environment (line 9). It should be noted again that the sign of h-
signature must be reversed if the path is from xgoal to xstart (lines
10–12). The algorithm will store the pair of the h-signature and
shortest path with it in a dictionary D. If the computed h-signature
of the new path γ (h(γ)) already exists in the dictionary, the path
corresponding to that key is retrieved as γtmp and compared with the
length of the newpath γ. If the newpath γ is shorter than the already-
stored path γtmp, the algorithm shorten the new path γ using line-of-
sight algorithm (Yang, 2011) and updates the value of the dictionary
with the new path (lines 13–20). If the computed h-signature h(γ)
does not exist in dictionary D, the algorithm shortens the path γ
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Algorithm 1. Enumeration of possible h-signatures.

and update the dictionary with the new key h(γ) and the value γ
(lines 22–23).

In the k-shortest path routing algorithm, the value of k is
typically determined empirically because the value depends on the
map size (resolution) and number of obstacles. Here, we set the value
of k to 120.

4.2 Step two—Computing reference path

Algorithm 1 allows us to find the possible kinds of h-signatures
in a given environment and the shortest paths with each h-signature.
Algorithm 2 then determines which of these h-signatures is the
best by considering the placement and length of the cable. The
path found by Algorithm 2 is used as a reference path in DRL to
improve the efficiency of the agent’s path search. Here we describe
the procedures for finding the best path as a reference path under
cable constraints.

Algorithm 2 first initializes a Boolean flag with false that checks
for the existence of a reachable path to the target position with
consideration of cable placement and length (line 1). When this flag
is returned as false, it means that the goal is too far away for the
length of the cable.This algorithm then enumerates the h-signatures
for two different configurations: paths from xstart to xgoal (stored in
dictionaryD1) and from xbase to xgoal (dictionaryD2) (lines 4–5). An
example of these two sets of paths is visualized in Figure 3.The paths
connecting xstart and xgoal are classified into three types of homotopy
classes. The visualized paths are the shortest in each of these classes.

Algorithm 2. Computation of Reference Path.

Let γ1,γ2, and γ3 be the three shortest paths. The paths have their
lengths L1,L2, and L3, respectively, and they are assumed to satisfy
L1 < L2 < L3. For the paths connecting xbase and xgoal, four different
homotopy classes are found. Let γ4,γ5,γ6, and γ7 denote the four
paths in the figure and their lengths L4,L5,L6, and L7, respectively.
For simplicity of explanation, we assume that L4 < Lcable < L5 < L6 <
L7 (where Lcable is the cable length).

The next step is to find the shortest path in the dictionary D1
that is unrestricted by cable placement and length. The algorithm
first creates an empty listD1,new and calculates the path length for all
paths in D1 (lines 4–7) and then sorts the list D1,new by path length
from shorter to longer (line 8). This sorting allows us to check the
cable constraints from shorter paths inD1,new in the subsequent step.

After sorting the list D1,new the algorithm retrieves a set of
elements—a candidate path γstart2goal and its h-signature h(γstart2goal)
— from the list one by one (line 9). Here we denote the current cable
placement as ccur. By concatenating two h-signatures h(ccable) and
h(γstart2goal), the h-signature of a path connecting xbase and xgoal can
be obtained (line 10). The proposed algorithm then gets the shortest
path with its h-signature that connects xbase and xgoal by referring to
the dictionaryD2; this is expressed as γbase2goal (line 11). Now imagine
the following situation: when the robot tracks this path precisely, the
cable becomes taut; therefore, we can say that the path γbase2goal is
feasible if its length is less than the cable length Lcable (lines 12–15).

We explain the process in lines 9–15 using the visualized
example in Figure 3. In line 9, we first retrieve the elements
with shortest path from D1,new, which are with regard to path
γ1, because we assume L1 < L2 < L3. We can then obtain the h-
signature of the final cable placement when the robot tracks the
path γ1 by computing h(γbase2goal) = h(ccur)♢h(γ1) = [o1]♢[ ] = [o1]
(line 10). This h-signature corresponds to the one of path γ5; thus,
we can find the minimum cable length to achieve the goal by
tracking path γ1 (line 11). Given the aforementioned assumption
L4 < Lcable < L5 < L6 < L7, we can determine that this path γ1 cannot
lead the robot to the goal with this cable placement and length
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FIGURE 3
Example of paths stored in two dictionaries D1 and D2 in Algorithm 2. (A) Initial configuration of the tethered mobile robot and environment with two
obstacles. (B) Paths connecting xstart and xgoal in the environment. They are distinct in terms of homotopy class, shortest in each class, and stored into a
dictionary D1 in the algorithm. The three paths are denoted as γ1,γ2, and γ3 and their lengths are L1,L2, and L3, respectively. (C) Paths connecting xbase
and xgoal. In this case, there exists four different homotopy classes. They are expressed as γ4,γ5,γ6, and γ7 with lengths L4,L5,L6, and L7, respectively.

constraint (lines 12–15). We extract the next element from D1,new
— path L2. The h-signature of the final cable placement can
be computed as h(γbase2goal) = h(ccur)♢h(γ2) = [o1]♢[o2] = [o1,o2].
As shown in Figure 3, this h-signature is the same as the one for path
γ7. The length of this path exceeds the maximum cable length, and
we can say that the path γ2 is infeasible under the cable constraints.
Finally, we extract the elements with path γ3 from D1,new. The h-
signature of final cable placement can be calculated by h(γbase2goal) =
h(ccur)♢h(γ1) = [o1]♢[−o1] = [ ] = h(γ4). Considering L4 < Lcable, we
can conclude that the path γ3 is feasible.

If all paths in the list D1,new are turned out to be infeasible,
the assigned goal cannot be reachable from the current robot’s
configuration. In actual implementation, we recommend that this
algorithm displays a warning to the user: Please redefine your goal
because it is unreachable.

4.3 Step three—training agent

The reward function includes two terms: the pure RL
term, f(st,at), and the reference path term, g(st,at,γref),
as shown in Equation 1.

The reward function, f(st,at), which awards penalties for any
contact between the robot, cable, and obstacles, is expressed as

f (st,at) =

{{{{{{{{{{
{{{{{{{{{{
{

rgoal if the robot reaches the goal,
probot_obstacle if the robot collides with an obstacle
pcable_obstacle  (= pco) if Equation 8 holds,
pcable_robot  (= pcr) if Equation 9 holds,
protation when the robot rotates,
ptime at every time steps.

(2)

The reward rgoal is given for arriving at the goal. The penalties
probot_obstacle, pcable_obstacle, and pcable_robot are given at the time each
contact event occurs. The penalty protation suppresses the robot’s in
situ turn because remaining in a safe place is not the intended policy.
The penalty ptime is given at each time step to encourage the robot to
move toward the goal in fewer steps.

The exact value of the positive/negative rewards was determined
through experiments. In this study, we set rgoal = 50, probot_obstacle =
− 1.0, pcable_obstacle = − 1.0, pcable_robot = − 0.5, protation = − 0.1, and
ptime = − 0.001. The reward rgoal is 50 times larger than pcable_obstacle
in absolute terms. The magnitude of rgoal could depend on the
map size and the density of obstacles of a target problem. In
this reward design, for a 25-s simulation with 250 timesteps,
up to 50 cable-obstacle contacts can be covered by the reward.
And in our evaluation, the number of contacts was kept below
that level on average (see Table 2); hence, this reward design
was appropriate to this map size and obstacle density. It should
be noted that the penalty ptime is quite small but necessary
for keeping the robot move toward the goal. The validity of
this reward design will be examined through sensitivity study
in Section 6.3.3.

The reward function g(st,at,γref) with respect to the reference
path imposes a penalty for deviating from the path and a
reward for progressing along the path. This is written as
Equation 3:

g(st,at,γref) =
{
{
{

rprogress forreachingeachwaypoint,

pdeviation forexceedingthreshold.
(3)

Let dnearest be the distance from the current robot position to
the nearest waypoint on the reference path and rrbt be the
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radius of the robot. Then, penalty pdeviation can be expressed as
Equation 4:

pdeviation =
{
{
{

dnearest − dth if dnearest > dth,

0 otherwise,
(4)

where dth is the threshold for determining the deviation from
the reference path, and we set dth = 2.5 ⋅ rrbt. In this study, we set
rprogress = rgoal/nγref to reach each waypoint, where nγref is the number
of nodes in γref. The ablation study of the reference path will be
examined in Section 6.3.4.

5 Simulation model

We present a tethered robot model that uses a kinematics-
based robot with a position-based cable. Although this model lacks
mechanical fidelity, it offers computational efficiency, which is useful
for iterative RL simulations.

5.1 Kinematics-based robot model

In this study, we used the velocity motion model (Thrun, 2002)
(Figure 4). The command velocity can be input directly into the
model. The robot state is defined as x = [ x, y, θ ]⊤, and the control
input to the robot as ut = [ vt,ωt ]

⊤, where vt is the translational
velocity and ωt is the angular velocity at discrete time t. The
kinematics of this robot is simply written as Equation 5:

[[[[

[

xt+1
yt+1
θt+1

]]]]

]

=
[[[[

[

xt
yt
θt

]]]]

]

+
[[[[

[

vt cosθt
vt sinθt

ωt

]]]]

]

Δt. (5)

5.2 Position-based cable model

A cable is modeled as a chain of nodes; when one cable node is
pulled, the rest of the nodes follow.Thismethod is called a geometry-
or position-based model and is often used in computer graphics.
We extended the model in Brown et al. (2004) for a tethered mobile
robot to update the cable nodes from two end nodes: 1) the
propagation of the robot motion to the cable, and 2) the application
of the fixed node constraint to the entire cable nodes. On the first
side, from the robot motion to the cable nodes, the node positions
are updated as follows:

xi, new = xi+1, new +
(xi, old − xi+1, new)
|xi, old − xi+1, new|

(i = N− 2,N− 3,…,0) . (6)

For the second side, the node positions are updated using

xi, new = xi−1, new +
(xi, old − xi−1, new)
|xi, old − xi−1, new|

(i = 1,2,…,N− 1) . (7)

Equation 7 updates in the opposite direction to Equation 6 and
propagates zero displacement because the endpoint x0 is fixed, to
the remaining cable nodes.

FIGURE 4
Tethered mobile robot model used in this study: kinematics-based
robot model and position-based cable model. The one end of the
cable x0 is attached to the ground (origin of the coordinates) and xN−1
is the rear side of the robot, where N is the number of nodes. The
position of xN−1 is updated in response to the robot’s straight and
rotational motion, and it propagates to the other cable nodes.

5.3 Contact detection

To detect cable-obstacle contact, we use the Liang-Barsky
algorithm (Liang and Barsky, 1984), which is a line clipping
algorithm. Although this algorithm originally identifies the overlaps
between a rectangle and a line segment, it can also be used
for contact detection. The line segment with the end points x0
and x1 is expressed in parametric form as x(t) = x0 + α(x1 − x0),
using a clipping parameter α. Here we determine the four clipping
parametersαwhere the line intersects the four edges of the rectangle.
We can determine themaximum, αmax, andminimum, αmin, of these
parameters.The line segment and rectangle are said to intersect if the
following Equation 8 holds:

0 ≤ αmin ≤ αmax ≤ 1. (8)

To detect cable-robot contact, we compute the distance between
the center of the robot, xrbt, and the cable nodes, xi, as Equation 9:

‖xrbt − xi‖ ≤ rrbt (i = 0,1,…,N− 2) , (9)

where rrbt denotes the robot’s radius (set to 0.5). It should be noted
that cable node xN−1 is excluded from the above equation because it
represents the robot-cable connection point.

6 Simulation results and discussion

This section evaluates the proposed method in the two distinct
scenarios explained in Section 3: unreeling the cable (Scenario 1)
and handling the deployed cable (Scenario 2). All simulations
were executed on an Intel(R) Core(TM) i7-12700 CPU clocked at
2.10 GHz, NVIDIA GeForce RTX 3070, Python 3.8, and PyTorch
1.13. A single learning with 300,000 total timesteps, as defined in
stable-baselines3 (Raffin et al., 2021), required approximately 8 min.
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TABLE 1 Hyperparameters in deep Q-Network.

Parameter Value

Optimizer Adam (Kingma and Ba, 2014)

Learning rate 0.001

Discount factor 0.9

Buffer size 10,000

Mini-batch size 32

Total episodes 300,000

Target update interval 30

Learning starts 5,000

Exploration fraction 0.6

Initial exploration rate 0.9

Final exploration rate 0.05

6.1 RL environment

We formulate the TCFPP as an MDP expressed by the
tuple: (S ,A,T,R), as explained in Section 2-B. To manage the
computational cost, the state space S , which is represented as x =
[ x,y,θ ]⊤ is discretized with specified intervals: 0.2 for (x,y) and
π/18 for θ. The action space, A, which is expressed as a pair of
linear and angular velocities, (v,ω), contains three minimal actions:
turn right (0.0,−2.0), go straight (1.0,0.0), turn left (0.0,2.0). The
state transition function T is deterministic. It should be noted here
that the proposed method examined in this study does not need to
consider the explicit expression of geometric or kinematic physical
quantities: the unit of length can be arbitrarily defined, while the unit
of time is seconds.

TheDeep Q-Network used in this study comprises themain and
target networks with a three-layer neural network structure. The
state of the robot is processed in the input layer, followed by two
middle layers of 256 units each with ReLU activation, and finally,
an output layer that maps to the robot’s actions. The termination
condition for an episode is two-fold: reaching the goal and colliding
with an obstacle. The agent receives a positive reward, rgoal, in the
first case and a negative reward, probotobstacle, in the second case. The
simulation parameters and hyperparameters used in our method
are listed in Table 1.

6.2 Experimental setup

We tested our algorithm in three environments: Dots, Two
bars, and Complex environments (Figure 6). These datasets were
inspired by Bhardwaj et al. (2017) and serve different purposes:

• The Dots maps represent cluttered environments in which an
agent must consider multiple path patterns in the sense of
homotopy classes.

• The Two bars maps represent simplified indoor environments
with two rooms separated by a narrow passage, in which the
agent can take multiple path patterns in the sense of geometry
(not homotopy).The focus is on how distant from the obstacles
the agent chooses a path.

• The Complex maps represent unstructured indoor
environments with various numbers and shapes of obstacles. In
these environments, the agent must consider both homotopy
and geometry, which makes the path-finding task complex.

In this study, we manually defined five environments for each
type and validated our proposed method in 20 cases by considering
the initial cable configuration.

The generation of initial cable placements presents unique
challenges for Scenario 2 because the obstacles must be considered.
In this study, we generated a reasonable initial cable configuration by
following a sequential process: 1) run a simulation in the unreeling
cable scenario (Scenario 1); 2) record the final robot and cable
placements; 3) retrieve the recorded placements and set them as the
initial setting in the handling deployed cable scenario (Scenario 2); 4)
assign the next goal position and start the next simulation; 5) repeat
ii) to 6) until the completion of the specified number of simulations.

To evaluate contact avoidance, we used the following metrics:
path length Lpath, number of cable-robot contacts Ncr, and number
of cable-obstacle contacts Nco. The path length is defined as the
sum of the distances between the adjacent waypoints. This metric
is considered because the contact avoidance actions can increase
the overall path length. The two contacts were counted at each
discrete simulation timestep (0.1 s) in the path tracking simulation
using the pure pursuit algorithm (Coulter, 1992) and normalized by
converting them into times per minute. This normalization allows
for a fair evaluation that considers the differences in the total
simulation time. A smaller value of these metrics indicates a better
performance of the algorithm.

6.3 Results

We compared our proposed method (TCFPP) with two classical
path planning methods augmented with h-signature information
as baselines. The two methods are Dijkstra’s algorithm (Dijkstra,
1959) and Voronoi roadmap (Lozano-Pérez andWesley, 1979); they
are referred to as Homotopic Dijkstra’s algorithm and Homotopic
Voronoi roadmap in this study. We used Dijkstra’s algorithm for
its path shortness and the Voronoi roadmap for its effectiveness in
maintaining the distance from obstacles.

The reason we provide h-signature information to the baselines
is for fair comparison. Thus, the two classical and homotopic
methods searched for a path that had the same h-signature as
the path found by TCFPP. This Homotopic Dijkstra’s algorithm is
essentially the same as that of Kim et al. (2014), a state-of-the-art
(SOTA) in this field, although it does not deal with cable-obstacle
and cable-robot avoidance.

6.3.1 Qualitative evaluation on path similarity
Figure 5 shows snapshots of a typical path tracking simulation

and the path similarity with the baselines. Figures 5A–C show the
sequential movement of the robot that follows the path obtained
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FIGURE 5
Typical simulation result. (A–C) The snapshots of path tracking generated by our method are shown. The circular robot, whose line segment represents
its heading, is connected with the environment via a cable (gray line) at a point (green dot). The red line represents the path generated by our method,
which connects the start point (blue dot) and goal point (red flag). (D) The visual comparison of the generated path by TCFPP with two classical
planning methods is depicted.

FIGURE 6
Path comparison for all 20 configurations (5 maps × 2 environment types × 2 scenarios). The two types of environments for Scenario 1 are (A) and (B),
and for Scenario 2, they are (C) and (D). The three path planning algorithms shared the best homotopy class of the paths; however, they generated
different paths with respect to the path shape, path length, and proximity to the obstacles. The green lines represent the Homotopic Dijkstra’s
algorithm, the blue lines represent the Homotopic Voronoi roadmap, and the red lines represent the proposed method.
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TABLE 2 Quantitative results over five simulations in each case. The values are the averages of five simulations (best in bold). The metrics Lpath, Nco, and
Ncr denote the path length, the number of cable-obstacle contacts, and the number of cable-robot contacts, respectively. The latter two were counted
for each time step, 0.1 s, and normalized by the total simulation time as 1 min.

Scenario 1
(Dots)

Scenario 1
(Two bars)

Scenario 2
(Dots)

Scenario 2
(Complex)

Lpath Nco Ncr Lpath Nco Ncr Lpath Nco Ncr Lpath Nco Ncr

Homotopic
Dijkstra

7.93 8.37 0.00 12.0 15.1 0.00 13.2 21.1 28.4 11.1 12.4 40.6

Homotopic
Voronoi

10.64 1.13 38.5 16.8 0.00 0.00 18.7 0.00 40.8 14.8 1.52 62.7

TCFPP
(ours)

8.92 1.20 0.00 14.3 10.6 0.00 17.3 0.55 17.6 13.2 1.60 37.3

TABLE 3 Sensitivity study on the penalty value for cable-robot contact.
This penalty can adjust whether the agent can or cannot step over the
cable. When pcr = 0, the robot was deadlocked by the cable and could
not reach the goal in some cases.

pcr

Scenario 2 (Dots)

Success Rate Lpath Nco Ncr

1.0 3/5 15.6a 0.00a 6.22a

0.5 5/5 17.3 0.55 17.6

0.0 5/5 18.0 1.04 44.10

aAverage of three successful results.

by TCFPP. Figure 5D shows the paths of the three methods with
the same h-signature. All the simulations performed in this study
are depicted in Figure 6. From this figure, it can be seen that our
method shows greater expansion at waypoints with higher curvature
than Homotopic Dijkstra’s method, which reduces the excessive
movement for cable-obstacle avoidance seen in Homotopic Voronoi
roadmap, particularly when the robot unreels the cable (Figures 6A,
B). When the robot handles the deployed cable (Figures 6C, D), our
method becomes more conservative in balancing both cable-robot
and cable-obstacle contacts.

6.3.2 Quantitative evaluation on contact
avoidance

Table 2 presents a comparison of the quantitative results of the
three metrics: path length Lpath, number of cable-obstacle contacts
Nco, and number of cable-robot contacts Ncr. The results are the
averages of five simulations. Regarding the path length, for all cases,
the proposed method generated paths that were 20.4% longer than
those generated byHomotopic Dijkstra’s algorithm and 12.4% shorter
than those generated by the Homotopic Voronoi roadmap. In the two
cases of Scenario 1, no cable-robot contact was detected, except for
onesimulationofHomotopicVoronoiroadmap.Theexceptionalresult
was that the Voronoi path passed close to the cable base, where the
cable was located before it was pulled out.This is because we provided
the h-signature of the path to Homotopic Voronoi planner, but not
information about the cable placement. For cable-obstacle avoidance,
the proposed method outperformed Homotopic Dijkstra’s algorithm
but underperformed Homotopic Voronoi roadmap.

FIGURE 7
Sensitivity study on cable-robot penalty pcr = 0.0. The decrease in pcr

resulted in the planned paths having on average larger distances
between the obstacles and the robot. (A) Path comparison in an
example case of Figure 6 C2. (B) Path comparison in an
example case of Figure 6 C3.

6.3.3 Sensitivity study on penalty for cable-robot
contact

Theproposedrewarddesignwasnotbasedonphysicalparameters;
therefore, it was difficult to understand intuitively whether the values
and weights of the rewards were appropriate. Therefore, we evaluated
theimpactof thepenalties,pco andpcr,ontheperformancebychanging
the value of pcr in Equation 2, while keeping pco constant. We ran five
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FIGURE 8
Sensitivity study on cable-robot penalty pcr = 1.0. (A) The robot blocked by the cable. The cable was seen as an obstacle that could not be stepped over
because pco = pcr = 1.0 holds; thus, the robot was deadlocked by the cable. (B) Heatmap visualizing the distribution of agent visits to each cell in the
map over 300,000 training steps. In this case, the agent did not acquire the desired policy because it did not gain much experience in reaching the goal.

FIGURE 9
Effectiveness of reference path for learning efficiency. In (A, C), the robot could not traverse the gap without guidance of a reference path. The number
of times the agent visited each cell of the map during the training process is visualized as a heatmap. This heatmap shows the lack of experience of the
agent in reaching the goal. In (B, D), the robot successfully traversed the gap with guidance from the reference path (green line). The heatmap shows
the efficient search along the path.

additional simulations for Scenario 2, with pcr set to 0.0 and 1.0. The
results inTable 3 reveal variations in theagentbehavior.Withpcr = 0.0,
the agent only considers cable-obstacle avoidance, thereby resulting in
the generation of more distant paths from the obstacles in sufficiently
large areas to avoidmotion (Figure 7). FromTable 3, it canbeobserved
that the number of cable-robot contacts significantly increased; and
the number of cable-obstacle contacts was less variable than that in
the cases of pcr = 0.5.

For pcr = 1.0, the agent regards the cable as an obstacle that the
robot can step over because the equation pco = pcr holds true, which
potentially causes path-finding issues. In some cases (two out of five
simulations), the agent could not find a path to the goal because
of the deadlock imposed by the cable (Figure 8A). The heatmap in
Figure 8B shows the number of visits during the training process for
each discretized cell, which shows that the search area could not be
expanded sufficiently owing to blockage by the cable. From Table 3,
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both Ncr and Ncr reduced compared with the cases where pcr = 0.5;
however, the success rate also decreases. This analysis suggests that
a reward design with pcr = 0.5 is more effective at minimizing both
types of contacts as well as the deadlock.

6.3.4 Ablation study on reference path
The proposed reward design has two terms: a pure RL term and

a reference path term, as presented in Equation 1. We evaluated the
effectiveness of providing information about the reference path to the
agent.When we do not use the reference path information, we simply
eliminate the second termof the reward function g(st,at,γref). Figure 9
shows the difference of the exploration area with and without the
reference path in RL. A comparison of the two heatmaps reveals that
withoutthereferencepath,theagentcouldnotfindapaththattraversed
between gaps in 300,000 timesteps. However, with the reference path,
the agent efficiently explored the state space and successfully found
the optimal path, free from contacts.

6.3.5 Limitations and possible extensions
Although the proposed method demonstrated successful

improvements in cable-robot and cable-obstacle avoidance in a
specific environment, a versatile policy was not obtained. A possible
extension would be to use curriculum learning (Soviany et al.,
2022), where the learning environment gradually becomes more
difficult as the training progresses. The key challenge is expected
to be the formulation of navigational difficulties for a tethered
mobile robot. To this end, considering realistic parameters of specific
hardware and work environments would help. The parameters are,
for example, the wheel diameter of the robot and cable thickness,
which are crucial for accurately modeling cable overstepping;
additionally considering cable-obstacle and cable-ground friction
to more realistically simulate cable and obstacle interactions, e.g.,
displacement of lightweight obstacles by the cable.

7 Conclusion

This paper presented TCFPP, a tangle- and contact-free path
planning for a tethered mobile robot that minimizes the cable-
obstacle and cable-robot interactions with cable length constraints.
Path planning for a tethered mobile robot is a challenging task due
to the underactuated nature of the cable and due to the interactions
between the cable, the robot, and the obstacles that potentially
endanger the safe operation of the robot. We formulated this task
as a reinforcement learning problem and trained the agent in
simulation with Deep Q-Network. Our reward function consisted
of two main parts: the first was to give penalties against cable-
obstacle and cable-robot contacts, and the second was to give a
penalty against the deviation from the precomputed reference path
and to give a reward for the motion along the path. This reward

design enabled finding paths that minimize the cable-obstacle and
cable-robot contacts while efficiently searching in the vicinity of the
reference path. The proposed method was tested in the two distinct
scenarios—unreeling cable and handling deployed cable. Compared
with classical path planning algorithms, the proposed method
generated a path that balances its shortness with the avoidance of
cable-obstacle and cable-robot contacts.

Future work will focus on incorporating curriculum learning to
enhance the adaptability of the policy to various environments and
on integrating realistic parameters such as wheel diameter and cable
thickness. These factors can enable the robot to acquire a versatile
policy, and further enhance the safety of tethered robot deployment
in real-world scenarios.
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