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Colonoscopy is a reliable diagnostic method to detect colorectal polyps
early on and prevent colorectal cancer. The current examination techniques
face a significant challenge of high missed rates, resulting in numerous
undetected polyps and irregularities. Automated and real-time segmentation
methods can help endoscopists to segment the shape and location of
polyps from colonoscopy images in order to facilitate clinician’s timely
diagnosis and interventions. Different parameters like shapes, small sizes
of polyps, and their close resemblance to surrounding tissues make this
task challenging. Furthermore, high-definition image quality and reliance on
the operator make real-time and accurate endoscopic image segmentation
more challenging. Deep learning models utilized for segmenting polyps,
designed to capture diverse patterns, are becoming progressively complex.
This complexity poses challenges for real-time medical operations. In clinical
settings, utilizing automated methods requires the development of accurate,
lightweight models with minimal latency, ensuring seamless integration with
endoscopic hardware devices. To address these challenges, in this study
a novel lightweight and more generalized Enhanced Nanonet model, an
improved version of Nanonet using NanonetB for real-time and precise
colonoscopy image segmentation, is proposed. The proposed model enhances
the performance of Nanonet using Nanonet B on the overall prediction scheme
by applying data augmentation, Conditional Random Field (CRF), and Test-Time
Augmentation (TTA). Six publicly available datasets are utilized to perform
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thorough evaluations, assess generalizability, and validate the improvements:
Kvasir-SEG, Endotect Challenge 2020, Kvasir-instrument, CVC-ClinicDB, CVC-
ColonDB, and CVC-300. Through extensive experimentation, using the Kvasir-
SEG dataset, our model achieves a mIoU score of 0.8188 and a Dice coefficient
of 0.8060 with only 132,049 parameters and employing minimal computational
resources. A thorough cross-dataset evaluation was performed to assess the
generalization capability of the proposed Enhanced Nanonet model across
various publicly available polyp datasets for potential real-world applications.
The result of this study shows that using CRF (Conditional Random Fields) and
TTA (Test-Time Augmentation) enhances performance within the same dataset
and also across diverse datasets with a model size of just 132,049 parameters.
Also, the proposed method indicates improved results in detecting smaller and
sessile polyps (flats) that are significant contributors to the high miss rates.

KEYWORDS

colonoscopy, conditional random field, test-time augmentation, lightweight deep
learning models, polyp segmentation, colorectal cancer

1 Introduction

Colorectal cancer (CRC) is the third most prevalent cancer
and is the second most common cause of death worldwide,
contributing to approximately 8% of all cancer-related deaths
globally (Jemal et al., 2010; Bray et al., 2018). Timely detection
and resection of premalignant polyps play a crucial role in
lowering the risk and mortality of colorectal cancer. Colorectal
Polyp is an abnormal growth on the inner lining of the colon
and rectum. Approximately 95% of colorectal cancer cases
originate from adenomatous polyps (Aarons et al., 2014). A
study reports a miss rate of 17.24% of colorectal polyps, with
98.4% of missed polyps being <10 mm in diameter, 98% being
sessile or flat in appearance, and 29.8% at the ascending colon
(Lee et al., 2017). Multiple invasive and non-invasive tests exist
for screening for CRC. Still, colonoscopy, an invasive technique
involving invasive examination of colonic mucosa and biopsies
of the lesion, is the gold standard (Uraoka et al., 2015) with a
specificity of 73.2% and sensitivity of 92.5% (Issa and NouredDine,
2017). Recent research indicates a 67% decrease in the risk
of death from colorectal cancer (CRC) (Doubeni et al., 2018)
associated with colonoscopy. Many polyps are missed during
colonoscopy due to the older age of patients, smaller adenoma
size, existence of concurrent protruding adenoma, inadequate colon
cleansing, insufficient experience of colonoscopists, structure of
the colon, and withdrawal time of <6 min (Xiang et al., 2014).
Only a tiny fraction of video frames contains polyps during
endoscopy, while the rest are not informative. Hence, there exists
a requirement for an automated computer-assisted diagnosis
system that detects and segments these overlooked polyps in
real time during colonoscopy screening with high accuracy
and precision.

A computer-aided diagnosis (CADx) system designed to
segment polyps can enhance monitoring and diagnostic proficiency
by elevating performance and minimizing manual intervention.
Furthermore, it can potentially mitigate segmentation errors
compared to subjective approaches. Integrating such systems not
only alleviates the workload of medical professionals but also

enhances the efficiency of clinical workflows. Developing a well-
generalized model represents a substantial advancement toward
clinical systems that meet acceptable standards. Cross-dataset
evaluation is vital for assessing themodel’s efficacy on unseen polyps
fromvarious sources, affirming its capability to generalize effectively.
Computer-aided systems are generally categorized into two
distinct groups: handcrafted and deep learning techniques. Earlier
studies focused on using handcrafted descriptors-based features to
obtain intrinsic features of polyps like shape, colour, edges, and
texture determined by researchers and passed to a classifier to
distinguish lesions from surrounding tissues (Karkanis et al., 2003;
Ameling et al., 2009). However, conventional Machine Learning
approaches, that rely on handcrafted descriptor features suffers from
low performance (Bernal et al., 2012). Deep learning has provided
new opportunities to address challenges like excessive or insufficient
lighting, bleeding, smoke, and reflections (Bodenstedt et al., 2018).
For the automated segmentation of medical images (Litjens et al.,
2017), Convolutional Neural Networks (CNNs) have exhibited
cutting-edge performance.

Some studies suggested that enhancing the performance
of existing models is possible by strategically applying post-
processing techniques (Jha et al., 2019; Ibtehaz and Rahman,
2020). A famous image segmentation architecture, U-Net was
proposed by (Ronneberger et al., 2015), comprising analysis and
synthesis path. Various variants of U-net architectures were
developed (Milletari et al., 2016; Alom et al., 2018; Zhou et al.,
2018; Huang et al., 2020; Qin et al., 2020) for biomedical image
segmentation to achieve better results. Later, DoubleU-Net
(Jha et al., 2020) was presented for segmenting polyps in
colonoscopy images. The DoubleU-Net architecture comprises
two UNETS that achieve exceptional performance, outperforming
current benchmarks. Similarly, ResUNet++ (Jha et al., 2019)
enhances the conventional U-Net framework performance
by incorporating several blocks, including the squeeze-and-
excite block (S&E block) (Hu et al., 2018), atrous spatial
pyramid pooling (ASPP), attention block (Li et al., 2018), and
residual block (He et al., 2016). Vanishing and exploding gradient
are among the problems that the residual block helps to mitigate,
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especially when the neural network’s depth grows. Meanwhile,
feature map calibration is done by the S&E block by using
convolution to account for channel importance.

As the neural network’s depth grows, obtaining detailed
information becomes challenging due to reduced feature map size.
To overcome this challenge, ResUNet++ employs ASPP, which
aids in preserving detailed information and facilitating precise
predictions at the pixel level (Jha et al., 2021). enhanced ResUNet++
performancewith conditional randomfield (CRF)Alam et al., 2019)
and test-time augmentation (TTA) SOTA (Moshkov et al., 2020).
A probabilistic approach called CRF makes it easier to predict
pixel labels with accuracy, whereas TTA takes the average of the
anticipated values of enhanced images. For the Kvasir-SEG dataset,
the suggested model outperformed the current ResUNet++ by 4%,
with a Dice coefficient of 85% or above (Srivastava et al., 2021).
introduced another model named MSRF-Net, designed explicitly
for segmenting polyps of various sizes. MSRF-Net comprises an
encoder, a shape stream (Sun et al., 2020), an MSRF-sub network,
and a decoder. Two S&E blocks are combined by the encoder, which
also connects the output to theMSRF-subnetwork.Dual-scale dense
fusion blocks in several sizes make up theMSRF-sub network.These
blocks manage the encoder’s feature maps, transfer data between
scales, maintain low-level features, and enhance information flow
while maintaining resolution. Next, the shape stream block is
traversed by the feature map, which improves spatial accuracy.
The MSRF-sub network is connected to a triple attention block
in the decoder, and a residual connection is used in the previous
decoder output. Inside the decoder, the S&E block figures out each
channel scale. With superior segmentation performance, MSRF-
Net excels in shaping and classifying polyps of different sizes.
Nevertheless, it performs not as well in situations where the images
have low contrast.

So, deep learning has proven to be highly effective in
segmenting medical images, but it demands a significant amount
of representative data. In healthcare, datasets are complex to collect
due to privacy concerns, standardization challenges, high image
acquisition costs, lack of annotated and high-quality images for
training (Jha et al., 2019), and the considerable variation of images
among patients (Wang et al., 2018). Hence, obtaining a medical
dataset is a challenging task. Thus, to solve a semantic segmentation
task, a compelling and viable approach is to reuse ImageNet
pre-trained encoders (Chen et al., 2018). Also, deep learning-
based architectures tend to be complex and computationally
expensive, and their training requires high-end GPUs (Jha et al.,
2019; Jha et al., 2020; Jha et al., 2021). Furthermore, the real-time
lesion segmentation task needs to be addressed. Although there
has been some recent advancement in real-time colonoscopy
image segmentation, private datasets are primarily employed for
experimentation (Yamada et al., 2019; Lee et al., 2020; Bardhi et al.,
2021). It is difficult to evaluate new methods on proprietary datasets
and raise the benchmark. Thus, benchmarks on publicly available
datasets are needed to bridge the research gap and develop a
model suitable for clinical use. One should be very careful in the
developmental phase to integrate deep learning models into real-
time applications, such as the segmentation of polyps into specific
hardware devices (e.g., medical capsule robots).

An efficient model should have low hardware requirements,
be easy to train, and involve less trainable parameters. Our study

shows more work needs to be done in developing lightweight
models. Developing efficient semantic segmentation methods for
real-time applications requires a lightweight Convolutional Neural
Network (CNN) model. Usually, these models require less memory
and are computationally efficient, primarily deployed in mobile
applications (Kim et al., 2015). A lightweight model is essential for
efficient real-time predictions in resource-limited clinical settings.
In the literature, few studies focused on developing lightweight
CNN-based models for the segmentation of colonoscopy images
(Wang et al., 2019). proposed a lightweight LEDNet architecture that
uses a pre-trained encoder using Resnet50. An attention pyramid
network (APN) was applied in the decoder stage to reduce model
complexity further. SqueezeNet (Iandola et al., 2016) performs
excellently in multiplication accumulation and memory use with
reduced model size. A very efficient and lightweight encoder and
decoder architecture, Nanonet was proposed by (Jha et al., 2021),
using MobileNetV2 (Sandler et al., 2018) as a pre-trained encoder
that can be incorporated with any device because of fewer trainable
parameters. In Nanonet, three models were presented, Nanonet A,
B, and C, with trainable parameters (235,425, 132,049, and 36,561).
For our work, we have used NanonetB for experimentation.

More realtime, and generalized polyp segmentation models
are clearly needed, based on the results of previous research.
(Jha et al., 2021). utilized post-processing techniques to enhance
performance of ResUnet++ which does not use any pre-trained
weights. In our work, we used Nanonet as backbone architecture
which uses a pre-trained encoder MobileNetV2 and custom
decoder is built accordingly. Furthermore, impact of post-
processing techniques on lightweight models using a pre-trained
encoder has never been utilized in literature. Thus, we aim
to develop a more robust, generalized, and lightweight model
that requires less memory and computational resources and
can easily be integrated with colonoscopic hardware devices.
By applying a variety of techniques, such as data augmentation,
conditional random field (CRF), and test-time augmentation
(TTA), the proposed model significantly improves the accuracy
of Nanonet-B. The results obtained are promising and outperform
other state-of-the-art methods like Nanonet (Jha et al., 2021),
ResUnet (Hou et al., 2016), ResUnet++ (Jha et al., 2019), HarDNet-
MSEG’2021 (Huang et al., 2021), UNeXt ’2022) (Valanarasu and
Patel, 2022), and TransNetR’ (Jha et al., 2023). To increase the
training data, we have performed considerable data augmentation.
We conducted a thorough evaluation by incorporating additional
metrics and provided rationale for including conditional random
field (CRF) and test-time augmentation (TTA) in the proposed
model. Additionally, we stressed the significance of resolving issues
associated with the misidentification of sessile and flat polyps. The
proposed combined methodology demonstrated high efficiency in
detecting overlooked polyps, showcasing its potential importance in
clinical settings. Additionally, to achieve the goal of generalizability,
we tested and trained the model using images from other sources,
underscoring the importance of cross-dataset evaluation. In
summary, the main contribution of this paper is as follows:

a. Novel lightweight and real time Enhanced Nanonet models
(CRF, TTA and their combination) with few parameters
using NanonetB to segment colonoscopy images are proposed
for better performance and generalizability. Extensive data
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augmentation, post-processing techniques like conditional
random field (CRF), and test-time augmentation (TTA) are
applied to enhance colorectal polyp segmentation results.

b. The proposed approach shows promising results when
compared to other advanced complex deep learning
algorithms like U-Net, DoubleUnet, ResUnet, and ResUnet++,
Nanonet (A, B, and C), HarDNet-MSEG, UNeXt, and Transnet
on six different datasets Kvasir-SEG (Jha et al., 2019), Endotect
Challenge (Hicks et al., 2021), Kvasir-Instrument (Jha et al.,
2020), CVC-ClinicDB (Bernal et al., 2015), CVC-ColonDB
(Bernal et al., 2012), and CVC-300 (Sánchez et al., 2017).
The proposed model with few parameters outperforms
complex deep learning models regarding computation, speed,
parameter use (size), and performance metrics.

c. For sessile and smaller polyps that are mostly missed
during colonoscopy (Zimmermann-Fraedrich et al., 2019), the
proposed model achieves a promising segmentation result, a
vital strength of our work.

d. In medical clinical practice, models that demonstrate
generalizability are crucial for addressing diverse patient
populations. Our focus is on exploring generalizability,
a dimension that has received limited attention in the
community thus far. So, we trained the model on Kvasir-SEG,
testing and comparing the results across three distinct polyp
datasets that were previously unseen.

e. The proposed enhanced NanonetB model can be integrated
into any real-time environment, such as colonoscopy and
mobile devices, due to the improved accuracy of the proposed
model with considerably fewer parameters.

This paper is structured as follows: Section 2 outlines the
proposed methodology. Section 3 describes the material and
methods being utilized. In Section 4, we present experimental
findings along with a comparison with other models. In Section 5,
qualitative and quantitative results are discussed explicitly, along
with the conclusion.

2 Proposed methodology

Figure 1 depicts a comprehensive summary of the research.
Our proposed Enhanced Nanonet models uses Nanonet (Jha,
Tomar, et al., 2021) architecture as a backbone, an encoder-
decoder approach. Datasets are subjected to substantial data
augmentation to improve robustness and produce more adaptive
systems. By utilizing Conditional Random Field (CRF) and Test-
Time Augmentation (TTA), the proposed approach improves
NanonetB’s overall prediction performance. All the improvements
are validated and performed comprehensive evaluations using six
distinct datasets: Kvasir-SEG, Endotect Challenge 2020, Kvasir-
instrument, CVC-ClinicDB, CVC-ColonDB, and CVC-300.

2.1 Network architecture

Figure 2 illustrates the Nanonet architecture, based on an
encoder-decoder approach (Jha et al., 2021). This architecture
leverages a pre-trained encoder followed by three decoder blocks,

with a modified residual block acting as a bridge between the
encoder and decoder.

2.1.1 Encoder
Theencoder employs pre-trained ImageNetmodels (Deng et al.,

2010) using transfer learning, which accelerates model convergence
and enhances performance compared to models without
pre-training. Specifically, Nanonet uses MobileNetV2 with
ImageNet weights (Deng et al., 2010) in the encoder block.
MobileNetV2 is chosen for its fast convergence and reduced
computational cost. The encoder receives input images of size 256
× 256 and processes them using inverted residual blocks, which
include standard convolution with 3 × 3 kernels and 32 feature
channels, ReLU6 activation in the bottleneck layer, and batch
normalization. Feature maps are down-sampled progressively using
strided convolution, and feature channels are increased gradually.

2.1.2 Modified residual block
The modified residual block serves as a bridge between the

encoder and decoder. It takes the output from the encoder and
employs bilinear upsampling to restore the spatial dimensions of
the feature maps to their original size in the decoding pathway.
The feature maps are concatenated with upsampled feature maps
using skip connections from the pre-trained encoder. These skip
connections help preserve and propagate information between
layers, avoiding the vanishing gradient problem and enhancing
feature map quality (Drozdzal et al., 2016; Hou et al., 2016).

2.1.3 Decoder
The decoder consists of three blocks that process the

concatenated feature maps from the modified residual block. Each
decoder block follows the same process, gradually refining the
feature maps. Finally, a sigmoid activation function and a 1 ×
1 convolutional layer are applied in the network’s final block to
complete the segmentation task.

2.1.4 Architectural variants
Nanonet proposes three different architectural variants:

NanonetA, NanonetB, and NanonetC, each with distinct feature
channel configurations within its decoder blocks. NanonetA uses
32, 64, and 128 feature channels, while NanonetB andNanonetC use
progressively fewer feature channels, reducing from 32, 64, and 96
to 16, 24, and 32 (Jha et al., 2021).This reduction in feature channels
results in fewer trainable parameters, reducing model complexity
and yielding a lightweight model.

2.1.5 Integration of technologies
The novelty of this study lies in the integration of these

techniques into a single, cohesive framework specifically designed
for real-time polyp segmentation in colonoscopy images. Nanonet
integrates elements from various advanced architectures: ResUnet
(Hou et al., 2016) provides the backbone structure for our model.
Modified Residual Blocks are incorporated to enhance channel
interdependencies and allow deeper networks without degradation
whilemaintaining computational efficiency. Additionally, SE-Blocks
(Hu et al., 2018) are used to improve feature map quality by re-
calibrating channel-wise responses. The U-Net (Ronneberger et al.,
2015) contributes to the overall encoder-decoder structure, ensuring
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FIGURE 1
Overview of the proposed Enhanced Nanonet model.

FIGURE 2
Nanonet architecture (Jha et al., 2021).

robust segmentation performance. By leveraging the strengths of
each method and combining them in a lightweight architecture, we
achieve superior performancewith less computational resources and
more generalizability.

2.2 Squeeze and excite methodology

Squeeze and excitation, also known as SE-Block (Hu et al.,
2018), is one of the channel-wise attention mechanisms that re-
calibrate each channel to create a more robust representation
for CNNs by highlighting the essential features. By acquiring
channel weights based on global spatial information, the SE block
simultaneously suppresses feature maps that are not important
and increases the sensitivity of better feature maps. The feature
maps generated by the convolutional process can only record local
information; they cannot access the global information stored by
the local receptive field. Thus, comprehensive global information
of the feature map from each channel is acquired, and a squeeze
method is utilized using Global average pooling, resulting in a

feature map with a dimension of B × H × W × C instead
of B × 1 × 1 × C. Furthermore, using sigmoid activation, the
model can identify non-linear interactions between channels and
capture channel-specific dependencies. Excitation is performed to
get channel-wise dependencies and learn non-linear dependencies
between channels. The SE net exhibits remarkable generalization
capabilities across diverse datasets. The SE block and a modified
residual block are combined in Nanonet architecture to improve the
efficiency of generalization across multiple datasets, thus enhancing
the efficiency of the model.

2.3 Modified residual block

Training a deeper neural network by simply expanding the
CNN layers can hinder the training process due to the vanishing
gradient problem during backpropagation (Tan and Lim, 2019). In
the first convolution, the original residual block comprises two 3 ×
3 standard convolutions alongside batch normalization and ReLu
activation.The identitymapping and batch normalization output are
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added element-wise in the second convolution, followed by another
activation function, ReLU. An identity mapping involves applying
1 × 1 standard convolution and batch normalization to the original
input. The working principle of ResUnet is illustrated in Eq. 1.

yn = F (xn,Wn) + xn (1)

The input is xn, and the residual function is F (xn, Wn),
followed by a sequence of convolution layers, batch normalization,
and ReLu activation. In this work, the residual block undergoes
some modifications involving 1 × 1 convolution, followed by 3 × 3
convolution. The number of filters in both convolutions is reduced
to ¼, and batch normalization and the ReLU activation function
are applied. Afterward, a 3 × 3 convolution operation is used along
with batch normalization. Finally, identity mapping is incorporated
by performing element-wise addition. In the end, ReLU activation
followed by squeeze and excitation block (SE) is applied, improving
the features representation by highlighting the important ones.

2.4 MobileNetV2

The MobileNetV2 architecture builds upon the MobileNetV1
architecture, incorporating depth-wise separable convolutions as
its primary building blocks. MobilenetV2 (Sandler et al., 2018)
attains outstanding results across different datasets with fewer
parameters. For mobile and embedded devices, MobileNetV2 is
specially designed, thus contributing to a more efficient use of
computational resources. The proposed Nanonet architecture uses
MobileNetV2 ImageNet weights (Deng et al., 2010) as the pre-
trained encoder. In contrast to the traditional residual deep neural
network, MobileNetV2 uses thin bottleneck layers as input and
output of residual blocks. The MobileNetV2 architecture is built on
the concept of inverted residual blocks (or structures) with a linear
bottleneck. The inverted residual block, inspired by the bottleneck
residual block, comprises three consecutive convolutions (1 × 1,
3 × 3, and 1 × 1), each succeeded by a Rectified Linear Unit
(ReLU) activation. Unlike the bottleneck block, feature channels
are expanded by the first 1 × 1 convolution, while the last 1 × 1
convolution reduces them. The block concludes with an element-
wise addition involving identity mapping, distinguishing it as an
inverted residual block. MobileNetV2 will learn and filter the image
characteristics fed to a network using compact depth-to-depth
convolution. Thus, inverted residual blocks will allow the model
to converge faster with fewer parameters than a non-pertained
network. In the linear bottleneck, linear activation is applied before
performing element-wise addition with identity mapping in the last
1 × 1 standard convolution layer.

2.5 Conditional random field

In scenarios when the class labels of various inputs exhibit
dependencies (e.g., image segmentation tasks), a conditional
random field (CRF) emerges as a notable discriminative modelling
approach. CRF (see Figure 3A) with CNN leads to improved
performance by modelling the spatial contextual dependencies
between the regions. Conditional random fields are employed to

obtain effective geometric attributes like region, shape connectivity,
and contextual information between the regions (Alam et al., 2019).
Thus, incorporating conditional random field (CRF) can enhance
the overall segmentation outcomes by contributing more towards
capturing the contextual information of the polyps. In this work,
dense conditional random forest (CRF) is being utilized to enhance
the overall segmentation accuracy on the test dataset.

2.6 Test-time augmentation

Data augmentation is an approach utilized to generate new
samples from existing ones, mainly applied during model training.
During the validation stage, new augmented images are produced
from the test dataset using test-time augmentation (TTA) to
improve overall prediction performance. TTA (see Figure 3B) has
the final output by averaging the model predictions from different
augmented images of test input. TTA enhances model performance,
requires minimal computational resources using a pre-trained
model, eliminates the need for hyperparameter tuning, and allows
for parallelized predictions on multiple augmented images. Inspired
by the most recent SOTA (Moshkov et al., 2020), this paper uses the
vertical and horizontal flip for TTA.

3 Materials and methods

Six different datasets for training, testing, and validation of
models are used to evaluate enhanced Nanonet architecture.
Furthermore, evaluation metrics, hardware implementation details,
and data augmentation techniques being employed will be discussed
in this section.

3.1 Datasets

Our experiments used six different datasets comprising
segmented polyps and corresponding ground truth masks. They
exhibit variations, such as differences in the number of images,
resolution of images, and the devices employed. Kvasir-SEG
(Jha et al., 2019) is one of the three datasets used in Enhanced-
Nanonet. It comprises 1,000 polyp images acquired with a high-
resolution electromagnetic imaging system and their corresponding
annotated ground truth masks segmented by skilled endoscopists.
The source of this dataset is from a clinical examination at Bærum
Hospital by expert gastroenterologists in Norway, with a resolution
varying from 332 × 487 to 1920 × 1,072 pixels. Images of Polyp
accompanied by their corresponding ground truth masks are
displayed in Figure 4A. “Endotect challenge” is the second dataset
which uses Kvasir-SEG as training (Hicks et al., 2021). In the
Endotect challenge, they released 200 images to test the participant
approaches. Figure 4B displays polyp images from the “Endotect
challenge” dataset together with corresponding ground truthmasks.
The final dataset, Kvasir-Instrument (Jha et al., 2020), consists of
590 photos collected by endoscopists along with the corresponding
ground truth labels. Pixel sizes of the images in the dataset range
from 720 × 576 to 1,280 × 1,024. The “Kvasir-Instrument” dataset’s
polyp images and ground truth masks are shown in Figure 4C.
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FIGURE 3
(A) Conditional random field structure (B) test-time augmentation.

Three distinct datasets, CVC-ClinicDB (Bernal et al., 2015), CVC-
ColonDB (Bernal et al., 2012), and CVC-300 (Sánchez et al.,
2017), were also utilized for cross-dataset evaluation utilizing the
Kvasir-SEG dataset.

3.2 Evaluation method

Standard computer vision metrics including Dice Coefficient
(DSC), mean Intersection over Union (mIoU), Precision, Recall,
Accuracy, Specificity, and Frames-per-second (FPS) are utilized to
access the model performance for the polyp segmentation task. The
dice coefficient (DSC) and mean intersection over union (mIoU)
are the two metrics that are most frequently utilized. The DSC
coefficient is used to assess how closely the segmentation results
that are generated match the original ground truth. Similarly, the
IoU is used to assess the overlap between the output mask and the
original ground truth mask of the polyp. In each image, the mIoU
calculates the IoU for each class, and the average is acquired across
all classes. Although there is a relationship between mIoU and DSC,

both metrics are computed to thoroughly examine the outcomes,
contributing to a deeper understanding of the results.

Formula of IOU is as follows:

IOU =
Areao fOverlap
Areao fUnion

(2)

Eq. 2 illustrates that the area of overlap represents the shared
region between two predicted masks, while the Area of Union
encompasses the entirety of the areas covered by both masks.

Below is the formula for the Dice Coefficient:

DSC =
2× |X∩Y |
|X∪Y |

(3)

Eq. 3 computes the ratio between the shared and the combined
area of the two masks, denoted by X and Y.

In polyp segmentation, precision measures the accuracy
of identifying pixels as polyp or non-polyp. In contrast, recall
measures the percentage of the test image’s total pixels that
have been segmented correctly. Precision and recall help assess
over-segmentation and under-segmentation levels in polyps
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FIGURE 4
(A) Kvasir-SEG dataset, images of polyps and associated ground truth masks (B) Endotect Challenge dataset (C) Kvasir-Instrument dataset.
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image segmentation. A more detailed explanation can be found
in (Shamir et al., 2018; Powers and Ailab, 2020). For binary
classification systems, another important metric is receiver
operating characteristic (ROC) curve analysis to measure
performance. Therefore, we calculate metrics like mIoU, DSC,
precision, recall, F2, accuracy and ROC to evaluate proposed
segmentation models.

3.3 Data augmentation

Data augmentation is essential for reducing overfitting
and resolving data insufficiency issues, which enhances model
performance. The dataset is increased by applying extensive
data augmentation techniques on all three different datasets to
improve the diversity and generalization of our model. All polyp
datasets are divided into 80:10:10 ratio of training, validation, and
testing employing random distribution. After splitting, various
data augmentation techniques are applied like RandomRotate90,
Crop, Vertical Flip, Elastic Transform, Grid Distortion, Optical
Distortion, Horizontal Flip, Grayscale, RGBShift, ChannelShuffle,
CoarseDropout, GaussNoise. These data augmentation techniques
are limited to the use of training data. We resized the validation
and testing sets to 256 × 256 for our experiments to reduce
computational complexity. While evaluating the Enhanced Nanonet
model using TTA, test data was augmented with a horizontal and
vertical flip.

3.4 Implementation and hardware details

The Enhanced Nanonet model uses Keras (Joseph et al., 2021)
and TensorFlow (Abadi et al., 2016) frameworks as the backend. All
the tests were performed on Apple M1 MacBook Air with 8 GB
of RAM and eight cores. We used the same dataset to perform
various experiments with different hyperparameter configurations.
This was done to identify the optimal set of hyperparameters for
the proposed model. The dataset’s images have been resized to 256
× 256 pixels to optimize RAM usage and minimize training time.
This resizing is done to expedite training and better utilization of
RAM, and a batch size of 16 is employed because of the model’s
limited trainable parameters. The learning rate was first reduced by
a factor of 0.1 from its initial value of 1e-4 when the validation loss
did not improve for ten consecutive epochs. This adjustment was
made to optimize the model’s performance and update parameters
slowly. A key element in training a model is the loss function, which
measures the difference between predicted and observed values.
In segmentation problems, the loss function is categorized into
distribution-based, region-based, and boundary-based functions.
For binary segmentation problems, a loss function, Dice loss, is used
to evaluate how similar two masks are. Computing the F1-score
for the original and predicted masks balances precision and recall
for the prediction mask. The optimizer is a critical hyperparameter
that affects the model’s performance during training by looking for
parameters thatminimize the loss function.The formula for dice loss
is given below:

DiceLoss = 1−
(2yŷ+ 1)
(y+ ŷ+ 1)

(4)

The predicted mask is indicated by ŷ in the Dice loss
function (Eq. 4), whereas y represents the actual mask. Only 37
epochs are used to train the Enhanced Nanonet model for the
Kvasir-SEG and Endotect datasets with optimizer Nadam and Dice
loss as loss function. Additionally, to prevent overfitting, early
stopping is used. For the Kvasir-Instrument dataset, the model
is trained with nine epochs to reduce the computational time
and complexity. Similarly, we evaluated the models’ generalizability
by training models on Kvasir-SEG and performed cross-dataset
evaluation using three distinct datasets: CVC-ClinicDB, CVC-
ColonDB, and CVC-300.

4 Experimental results

In this work, Nanonet performance is enhanced usingNanonetB
by utilizing hyperparameter optimization, CRF, and TTA. Using six
publicly accessible datasets: Kvasir-SEG, Endotect Challenge 2020,
and Kvasir-instrument, CVC-ClinicDB, CVC-ColonDB, and CVC-
300, several experiments were performed out to demonstrate the
impact of the proposed Enhanced-Nanonet models. Furthermore,
Enhanced-Nanonet (with CRF, TTA and their combination)
performance was compared with recent complex deep learning
models like ResUnet, ResUnet++, Nanonet (A, B, and C), HarDNet-
MSEG, UNeXt, and TransNetR. Results of the proposed model,
along with CRF, TTA, and their combined applications, were
showcased and compared in this section on the same and cross-
dataset scenarios. Although various testing techniques used by
different authors make comparisons with methods from the
literature difficult, our goal is to evaluate the results of recent studies.
The ROC curve assesses the performance of a classification model at
a specific threshold. In this case, we have established a probability
threshold of 0.5. Tables 1–3 show improved quantitative Enhanced-
Nanonet models results along with a comparison with other SOTA
computer vision methods. The proposed lightweight Enhanced-
Nanonet model generates a good segmentation map on polyps
compared to complex deep learning models that are smaller/flat
in size or nonpedunculated polyps, which is very important when
aiming to develop real-time polyp segmentation system. Table 4
represents cross-dataset generalization results of the proposed
Enhanced Nanonet model, with CRF, TTA and their combination
on the Kvasir-SEG dataset as training data.

Figures 5A, B shows the training and validation curves for
Kvasir-SEG and Kvasir-instrument dataset.

4.1 Results on Kvasir-SEG dataset

Figure 6 and Table 1 depict Qualitative and quantitative
comparisons of the Kvasir-SEG dataset results. As demonstrated by
the qualitative results (Figure 6) and quantitative results (Table 1),
the proposed Enhanced-Nanonet model outperforms almost all
recent SOTA methods and achieves the highest mIoU, Recall,
Precision, F2, and Accuracy for the Kvasir-SEG dataset. The
proposed model’s ROC curve for the Kvasir-SEG dataset is shown
in Figure 7. Table 1 shows that the combination of the proposed
Enhanced Nanonet with CRF achieves mIoU 0.8188, which is
18.25% higher than SOTA (Jha et al., 2019), 9.06% better than
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TABLE 1 Performance evaluation and comparison on Kvasir-SEG.

Methods Parameters DSC mIoU Recall Precision F2 FPS Accuracy

ResUNet (GRSL’18) 8,227,393 0.7203 0.6106 0.7602 0.7624 0.7327 - 0.9251

ResUNet++ (ISM’19) 4,070,385 0.7310 0.6363 0.7925 0.7932 0.7478 - 0.9223

Nanonet-A 235,425 0.8227 0.7282 0.8588 0.8367 0.8354 - 0.9456

Nanonet-B 132,049 0.7860 0.6799 0.8392 0.8004 0.8067 - 0.9365

Nanonet-C 36,561 0.7494 0.6360 0.8081 0.7738 0.7719 - 0.9290

HarDNet-MSEG 33.34M 0.8260 0.7459 0.8485 0.8652 0.8358 - -

UNeXt 1.47M 0.7318 0.6284 0.7840 0.7656 0.7507 - -

TransNetR′ 2023 27.27M 0.8706 0.8016 0.8843 0.9073 0.8744 - -

Nanonet-Enhanced (Ours) 132,049 0.8008 0.8142 0.8588 0.8130 0.8215 16.768 0.9402

Nanonet-Enhanced with CRF (Ours) 132,049 0.8060 0.8188 0.8591 0.8213 0.8244 7.1884 0.9415

Nanonet-Enhanced with TTA (Ours) 132,049 0.7981 0.8144 0.8519 0.8219 0.8151 4.4873 0.9397

Nanonet-Enhanced with CRF and TTA
(Ours)

132,049 0.8005 0.8168 0.8530 0.8263 0.8168 3.2622 0.9404

Bold indicate the best scores of one of our proposed models as compared to other state-of-the-art models: Enhanced Nanonet, Enhanced Nanonet with CRF, Enhanced Nanonet with TTA, and
Enhanced Nanonet with CRF and TTA.

TABLE 2 Performance evaluation and comparison on Endotect 2020 Dataset.

Methods Parameters DSC mIoU Recall Precision F2 FPS Accuracy

ResUNet (GRSL’18) 8,227,393 0.6640 0.5408 0.7510 0.6841 0.6943 - 0.9075

ResUNet++ (ISM’19) 4,070,385 0.6940 0.5838 0.8797 0.6951 0.7597 - 0.8841

Nanonet-A 235,425 0.7508 0.6466 0.8238 0.7744 0.7773 - 0.9255

Nanonet-B 132,049 0.7362 0.6238 0.8109 0.7532 0.7646 - 0.9252

Nanonet-C 36,561 0.7001 0.5792 0.8000 0.7159 0.7380 - 0.9091

Nanonet-Enhance d (Ours) 132,049 0.6858 0.7153 0.8866 0.6290 0.7654 17.384 0.8873

Nanonet-Enhanced with CRF (Ours) 132,049 0.6962 0.7236 0.8878 0.6437 0.7719 7.2187 0.8906

Nanonet-Enhanced with TTA (Ours) 132,049 0.7089 0.7338 0.8969 0.6595 0.7830 4.4763 0.8944

Nanonet-Enhanced with CRF and TTA (Ours) 132,049 0.7164 0.7402 0.8978 0.6706 0.7876 3.2771 0.8969

Bold indicate the best scores of one of our proposed models as compared to other state-of-the-art models: Enhanced Nanonet, Enhanced Nanonet with CRF, Enhanced Nanonet with TTA, and
Enhanced Nanonet with CRF and TTA.

SOTA (Jha et al., 2021) and 20.82% better than SOTA (Hou et al.,
2016). Similarly, other evaluation metrics (Recall, Precision, F2,
and Accuracy) surpass other advanced methods regarding results
mentioned in Table 1.TheDSC scores of all three proposed plans on
the Kvasir-SEG dataset are good. The Enhanced-Nanonet model
has demonstrated a significant improvement over all baseline
architectures on the Kvasir-SEG dataset, as measured by all
performance evaluation metrics. The enhanced results show the
significance of using the right data augmentation strategies, TTF,
CRF, and their combination.

4.2 Results on endotect 2020 dataset

Figure 8 and Table 2 depict qualitative and quantitative
comparisons of results on the Endotect 2020 dataset. Additional
experiments were performed for in-depth analysis of automatic
colorectal cancer segmentation. Figure 9 shows the ROC curve
for the proposed model on the Endotect Challenge 2020 dataset.
Table 2 shows that the combination of the proposed Enhanced
Nanonet with CRF and TTA achieves mIoU 0.7402, which is
19.94% higher than SOTA (Hou et al., 2016), 15.64% better than
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TABLE 3 Performance evaluation and comparison on Kvasir-Instrument.

Methods Parameters DSC mIoU Recall Precision F2 FPS Accuracy

UNet (Baseline) - 0.9158 0.8578 0.9487 0.8998 0.9320 - 0.9864

DoubleUnet (Baseline) - 0.9038 0.8430 0.9275 0.8966 0.9147 - 0.9838

ResUNet++ (ISM’19) 4,070,385 0.9140 0.8635 0.9103 0.9348 0.9140 - 0.9866

Nanonet-A 235,425 0.9251 0.8768 0.9142 0.9540 0.9251 - 0.9887

Nanonet-B 132,049 0.9284 0.8790 0.9205 0.9482 0.9284 - 0.9875

Nanonet-C 36,561 0.9139 0.8600 0.9037 0.9452 0.9139 - 0.9863

Nanonet-Enhanced (Ours) 132,049 0.8715 0.8910 0.8867 0.8750 0.8775 17.021 0.9792

Nanonet-Enhanced with CRF (Ours) 132,049 0.8715 0.8944 0.8852 0.8848 0.8782 7.1580 0.9800

Nanonet-Enhanced with TTA (Ours) 132,049 0.8610 0.8847 0.8666 0.8717 0.8619 4.4631 0.9782

Nanonet-Enhanced with CRF and TTA (Ours) 132,049 0.8636 0.8874 0.8638 0.8798 0.8614 3.2752 0.9788

Bold indicate the best scores of one of our proposed models as compared to other state-of-the-art models: Enhanced Nanonet, Enhanced Nanonet with CRF, Enhanced Nanonet with TTA, and
Enhanced Nanonet with CRF and TTA.

TABLE 4 Cross-dataset performance evaluation and comparison on Kvasir-SEG as training data.

Test set Methods DSC mIoU Recall Precision F2 Accuracy

CVC-ClinicDB

Enhanced Nanonet 0.6838 0.7518 0.6680 0.8580 0.6653 0.9371

Enhanced Nanonet with CRF 0.6850 0.7535 0.6659 0.8617 0.6648 0.9372

Enhanced Nanonet with TTA 0.7002 0.7647 0.6695 0.8927 0.6742 0.9392

Enhanced Nanonet with CRF and TTA 0.7005 0.7654 0.6671 0.8985 0.6732 0.9391

CVC-ColonDB

Enhanced Nanonet 0.5956 0.7321 0.5792 0.7910 0.5818 0.9705

Enhanced Nanonet with CRF 0.5962 0.7328 0.5773 0.8226 0.5808 0.9707

Enhanced Nanonet with TTA 0.5683 0.7218 0.5598 0.8063 0.5589 0.9697

Enhanced Nanonet with CRF and TTA 0.5675 0.7221 0.5585 0.8684 0.5578 0.9698

CVC-300

Enhanced Nanonet 0.5514 0.7153 0.5370 0.8395 0.5352 0.9782

Enhanced Nanonet with CRF 0.5422 0.7149 0.5311 0.8839 0.5302 0.9785

Enhanced Nanonet with TTA 0.5514 0.7201 0.5308 0.8654 0.5344 0.9791

Enhanced Nanonet with CRF and TTA 0.5421 0.7178 0.5243 0.8893 0.5273 0.9791

Bold indicate the best scores of one of our proposed models as compared to other state-of-the-art models: Enhanced Nanonet, Enhanced Nanonet with CRF, Enhanced Nanonet with TTA, and
Enhanced Nanonet with CRF and TTA.

SOTA (Jha et al., 2019) and 9.36% better than SOTA (Jha et al.,
2021). Similarly, other evaluation metrics (Recall and F2) produce
superior outcomes than other cutting-edge techniquesmentioned in
Table 2.TheDSC score, precision and accuracy of all three proposed
methods on the Endotect 2020 dataset are pretty good. As shown in
quantitative (Table 2) and qualitative results (Figure 8), the proposed
Enhanced-Nanonet model achieves remarkable results regarding
mIoU, Recall, and F2 scores compared with recent deep learning
models for the Endotect dataset. Therefore, Table 2 and Figure 8

show the advantage of using TTA and its combination with CRF on
the Endotect 2020 dataset.

4.3 Results on Kvasir-instrument dataset

Figure 10 and Table 3 depict qualitative and quantitative
comparisons of results on the Kvasir-Instrument dataset. The
enhanced Nanonet model is trained with the Kvasir-Instrument
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FIGURE 5
(A) Losses evaluated on the Kvasir-SEG dataset (B) Losses evaluated on the Kvasir-Instrument dataset.

dataset for just nine epochs to reduce training time and achieve
better results. Figure 11 shows the ROC curve for the proposed
model on the Kvasir-Instrument dataset. Table 3 demonstrates
that the proposed model combination with CRF achieves mIoU
0.8944, which is 3.66% higher than SOTA (Ronneberger et al.,
2015), 5.14% better than SOTA (Jha et al., 2020), 3.09% better than
SOTA (Jha et al., 2019) and 1.76% better than SOTA (Jha et al.,
2021). Similarly, other evaluation metrics achieve competitive

results mentioned in Table 3. It can be observed that in just nine
epochs, the model achieves promising results in comparison with
recent SOTA computer vision methods. The enhanced-Nanonet
model trained on the Kvasir-Instrument dataset has outperformed
all baseline architecture in terms of mIoU, as shown in Table 3,
which plays a crucial role in colorectal cancer detection. With
hyperparameter tuning, data augmentation, and applying CRF and
TTA, results have significantly improved.
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FIGURE 6
Qualitative results of Enhanced Nanonet on Kvasir-SEG dataset.

FIGURE 7
Proposed model ROC curves on the Kvasir-SEG dataset.
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FIGURE 8
Qualitative results of Enhanced Nanonet on Endotect dataset.

FIGURE 9
Proposed model ROC curves on the Endotect 2020 Challenge dataset.
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FIGURE 10
Qualitative results of Enhanced Nanonet on Kvasir-Instrument dataset.

4.4 Evaluation of cross-dataset results on
Kvasir-SEG dataset

The model was trained using the Kvasir-SEG dataset, and
its cross-dataset performance was assessed using three additional
distinctive, independent datasets. The proposed model’s cross-
dataset generalizability outcomes are shown in Table 4, both when
used independently and in conjunction with CRF and TTA
approaches. On various polyp image datasets, the proposed models
yield an average best Dice Similarity Coefficient (DSC) and mean
Intersection over Union (mIoU) of 0.6070 and 0.7343 trained
on Kvasir-SEG. Results indicate that the suggested combination
approaches exhibit competitive performance. The combined use
of Enhanced Nanonet with TTA demonstrates better performance
among the various datasets. The model consistently performs
well on datasets from clinical centers that have never been
seen before, based on data from three datasets. This shows a
better generalization ability than the latest methods. Our model
was trained using 1,000 polyp images and a limited number
of parameters and still achieved better generalization results on
unseen datasets.

5 Discussion

Enhanced Nanonet model is developed based on NanonetB,
which significantly improves upon the original Nanonet
architecture. The proposed model uses MobileNetV2, pre-trained
on ImageNet, as the encoder, followed by three custom decoder
blocks. MobileNetV2 includes inverted residuals and linear
bottlenecks, which reduce the number of parameters while
maintaining high performance. This architecture choice ensures

that the model is both lightweight and capable of extracting
rich feature representations from the input images. A modified
residual block between the encoder and decoder enhances
feature extraction and overall performance. The encoder leverages
MobileNetV2’s efficiency to capture rich features, while themodified
residual block effectively integrates these features, preserving
essential information.

The decoder, composed of three blocks built with modified
residual blocks, reconstructs the image with high accuracy. The
custom decoder in Enhanced Nanonet is specifically designed
to work with the MobileNetV2 encoder. The decoder includes
optimized layers that focus on preserving spatial resolution
and enhancing feature refinement without adding unnecessary
complexity or parameters. This careful design ensures that the
segmentation accuracy is high while keeping the model lightweight.
This flow ensures that the model captures, processes, and utilizes
contextual information effectively, resulting in precise segmentation
outputs. It incorporates extensive data augmentation, CRF for
refined boundary prediction, and TTA for robust inference. This
combination has not been previously explored (as per the literature
review) in the context of lightweight, real-time segmentation
models, making the proposed approach unique. One of the key
contributions of this study is the focus on creating a more
generalized and lightweight model that can be easily integrated into
clinical practice. Unlike many existing deep learning models that
are computationally intensive and require substantial resources, the
proposed Enhanced Nanonet model achieves high accuracy with
minimal computational overhead. This is particularly important
for real-time applications in resource-limited settings. To ensure
the robustness and generalizability of the proposed model, we
conducted thorough evaluations on six publicly available datasets.
Our extensive cross-dataset evaluation demonstrates that the
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FIGURE 11
Proposed model ROC curves on the Kvasir-Instrument.

proposed model performs consistently well across diverse datasets,
which is a critical aspect of developingmodels suitable for real-world
clinical applications.

Thequalitative and quantitative results suggest that the proposed
Enhanced Nanonet model with CRF and TTA, along with their
combination, outperforms and, in some cases performs very near
to other sophisticated deep learning networks in terms of mIoU,
DSC, and additional evaluation metrics on the same and cross-
dataset. The qualitative results are shown in Figures 6, 8, 10. Starting
from the left in figures, the first, second, third, fourth, fifth, and
sixth columns show the image, ground truth, Enhanced Nanonet
model, Enhanced Nanonet with CRF, with TTA, and lastly, CRF
and TTA combined. Four sample images from each dataset are
presented. One of the significant strengths of our work is the
effective utilization of parameters. Table 1 clearly shows that the
proposed EnhancedNanonetmodels with CRF andTTA, alongwith
their combination, use 62 times fewer parameters than ResUNet
(GRSL’18) and 207 times lesser than TransNetR′ 2023, also achieve
better and competitive results in terms of mIoU, DSC and other
evaluation metrics on Kvasir-SEG dataset. While acknowledging
existing studies and module designs, the study includes a thorough
comparative analysis, showcasing the superior performance of the
Enhanced Nanonet model against existing state-of-the-art methods.
The reportedDice score of 0.8060 andmean Intersection overUnion

(IoU) of 0.8188 Kvasir-SEG dataset with just 132,049 parameters
underscore the effectiveness of the proposed method.

The qualitative results across various medical datasets suggest
the proposed model can generate accurate segmentation maps
for diverse lesion (polyps) classes with minimal parameters. Also,
it demonstrates a notable proficiency in effectively segmenting
smaller, flat, or sessile polyps. Results also depict that our model
produces good segmentation results on small, medium, and large-
size polyps (see Figures 6, 8, 10), often overlooked during the
endoscopic examination, thus making it well-suited for developing
an optimal CADx polyp detection system. Specifically, the proposed
NanonetB deep learning architecture is extended by applying data
augmentation and integrating CRF, TTA, and their combination.
This enhancement has led tomarked improvements in segmentation
performance across multiple datasets, including those specifically
containing sessile and flat polyps. Enhanced Nanonet with CRF
and TTA produces excellent segmentation maps for all types of
polyps in comparison with other techniques mentioned in the
results section. This is a prominent strength in our work, making
it suitable for clinical testing. The cross-data test is valuable for
assessing a model’s generalization capabilities. This study represents
an effort to improve segmentation techniques generalizability.
Achieving generalizability entails training the model on one dataset,
testing it on several additional public datasets from various
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centers, and using different scope manufacturers. Tackling this
issue requires using multicenter data that is not part of the sample
to evaluate the effectiveness of the techniques that have been
created. This study is a step in highlighting concerns related to
method interpretability and prompts inquiries about the domain
adaptability and generalizability of supervised methods in the
broader setting. Additionally, an in-depth examination of the cross-
dataset generalizability involved training on Kvasir-SEG, followed
by testing on three distinct datasets, affirming the adaptability of
the proposed model with CRF, TTA, and their combination method
in cross-dataset evaluations. Thus, employing post-processing
techniques like CRF and TTA enhances the colonoscopy image
segmentation results, by utilizing lightweight models with a pre-
trained encoder.

Several challenges associated with our work are the quality
of bowel preparation during colonoscopy, varying morphology,
and the angle of cameras impacting the deep learning model’s
overall performance. There is also some variation of decisions
between endoscopists for some images. Despite facing challenges
in generating satisfactory segmentation maps for these images, the
proposed Enhanced Nanonet model with CRF and TTA performs
significantly better than the original Nanonet model with fewer
parameters and surpasses other state-of-the-art algorithms. It has
been noticed that batch size, the number of filters, optimizers, and
loss functions significantly impact results. One of the limitations of
our work is that to reduce complexity, a 256 × 256 resizing is applied
to the training images, which leads to information loss and impacts
the overall effectiveness of themodel.We have extensively optimized
the code to the best of our knowledge and experience. Moreover,
further optimizations may exist, which could also impact the results
of the architectures. However, the Enhanced Nanonet model with
CRF and TTA provides robust solutions for real-time applications.
Compared to other SOTA approaches, it yields outstanding results
with fewer parameters.

6 Conclusion

This work proposes novel lightweight Enhanced Nanonet models
(with CRF, TTA, and their combination) for efficient and precise
segmentation of polyps found in colonoscopy examination. Data
augmentation and post-processing techniques (CRF and TTA) have
beenappliedonNanonetB to improve results.TheproposedEnhanced
Nanonet models are trained and validated with and without CRF
and TTA techniques on six different datasets, achieving higher
performance and generalizability. The results show improved results
as compared to other state-of-the-art (SOTA) algorithms, producing
accurate semantic predictions. The proposed model’s cross-data
generalizability aims to address and advance the development of
semantic segmentation models with broad applicability in automatic
polyp segmentation. It involves training on the Kvasir-SEG dataset,
followed by testing on three independent datasets, affirming the
robustness of the proposed model with CRF and their combination
in cross-dataset evaluations. The main architecture of Nanonet in
the proposed model uses pre-trained MobileNetV2 and modified
residual blocks. The depth-wise separable convolution allows the
model to achieve higher performance with less trainable parameters.
The proposed method’s strength lies in effectively detecting smaller

and flat polyps, that are normally overlooked during colonoscopy
examinations. Additionally, the proposed model can identify polyps
that might pose challenges for endoscopists to detect without
thorough investigations. Hence, the NanonetB architecture, coupled
with the CRF and TTA and their combination, effectively addresses
overlooked polyps. The proposed deep learning enhanced Nanonet
model in clinical systems can integrate with real-time endoscopic
hardware devices because of fewer parameters, more generalizability,
competitive accuracy, and low latency. The proposed Enhanced
Nanonet technique may also offer a firm baseline in developing
clinically applicable methods for further investigations. In the future,
we aim to improve the speed in terms of frames-per-second (FPS) and
the model trails, utilization in actual clinical settings.
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