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The performance of the robotic manipulator is negatively impacted by outside
disturbances and uncertain parameters. The system’s variables are also highly
coupled, complex, and nonlinear, indicating that it is a multi-input, multi-
output system. Therefore, it is necessary to develop a controller that can
control the variables in the system in order to handle these complications.
This work proposes six control structures based on neural networks (NNs)
with proportional integral derivative (PID) and fractional-order PID (FOPID)
controllers to operate a 2-link rigid robot manipulator (2-LRRM) for trajectory
tracking. These are named as set-point-weighted PID (W-PID), set-point
weighted FOPID (W-FOPID), recurrent neural network (RNN)-like PID (RNNPID),
RNN-like FOPID (RNN-FOPID), NN+PID, and NN+FOPID controllers. The zebra
optimization algorithm (ZOA) was used to adjust the parameters of the
proposed controllers while reducing the integral-time-square error (ITSE). A
new objective function was proposed for tuning to generate controllers with
minimal chattering in the control signal. After implementing the proposed
controller designs, a comparative robustness study was conducted among
these controllers by altering the initial conditions, disturbances, and model
uncertainties. The simulation results demonstrate that the NN+FOPID controller
has the best trajectory tracking performance with the minimum ITSE and
best robustness against changes in the initial states, external disturbances, and
parameter uncertainties compared to the other controllers.

KEYWORDS

neural network, recurrent neural network, set-point controller, proportional integral
derivative controller, fractional-order PID controller, 2-link rigid robot manipulator,
zebra optimization algorithm

1 Introduction

The field of robotics mainly focuses on problems related to visualization, modeling,
and control. Robots are used in many daily tasks and occupations in every aspect of
modern life. Robotic manipulators are increasingly required in factories and industries
as they play important roles in the operations instead of humans, especially when these
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operations involve risky, repetitive, and complex activities
(Oleiwi et al., 2021). The use of robots has also become necessary to
ensure efficient, quick, and accurate operations. Traditional robots
are large and bulky since they contain stiff linkages throughout their
construction; most industries need upgrades to the current classical
robots to lower the building costs, minimize energy consumption
brought on by the large actuators, and boost production (Alandoli
and Tian, 2020). Since robotic manipulators are well-suited for
many applications, particularly in the industrial field, they have
been widely used for many years. The trajectory tracking control
is an important issue from the viewpoint of automatic control
because various applications, such as welding, screwing, moving
cars or equipment parts, and painting, demand precise trajectory
tracking to accomplish their objectives (Azar and Fernando, 2019).
The complexity and non-linearity of a robotic manipulator make
it impossible for proportional integral derivative (PID) controllers
to provide effective trajectory tracking and constant force/twist
control simultaneously. The robotic manipulator also experiences a
number of uncertainties, external disturbances, payload variations,
and parameter variations during operation (Dachang et al., 2020;
Abdulameer and Mohamed, 2022). To design controllers that can
handle the dynamics of the manipulator robot for controlling and
trajectory tracking, many solutions have been proposed using
traditional control systems (Ajeil et al., 2020; Ibraheem et al., 2020;
Najm et al., 2020). Sharma et al. (2015) described the design and
analysis of a fractional-order PID (FOPID) controller with two
degrees of freedom (DOFs) based on the cuckoo search algorithm
for a two-link rigid robot manipulator (2-LRRM) with a payload;
their results indicated that the suggested strategy improves the
performance of the closed-loop system by resolving robustness
and disturbance rejection issues. Kumar (2017) proposed an
interval type-2 fuzzy proportional derivative plus integral controller
based on the genetic algorithm for a 5-DOF redundant robot
manipulator. Cao et al. (2021) introduced an invariant control
structure for manipulator robot trajectory tracking with input
saturation and uncertainty by combining reinforcement learning
and non-singular terminal sliding-mode control. Shuyang and
John (2021) applied a neural network (NN) as a multilayer
perceptron structure based on the iterative process of learning;
here, the desired robot joint was employed as the input, and the
desired robot motion was related to the output; the movement
of the robot with respect to the intended set of joint paths is
determined by the iterative learning control. Shojaei et al. (2020)
suggested a specific performance-based adaptive neural control
system for manipulator robots without considering the input
current, acceleration, or velocity; this scheme includes the actuator
dynamics under model uncertainty, and an acceleration velocity
observer was coupled with a neural adaptive second-order PID
controller. Nohooji (2020) addressed the unknown dynamics and
outside disturbances of a manipulator robot to design a control
approach utilizing NN-based radial basis activation functions
and self-tuning PID control. Zhou et al. (2020) and Kareem et al.
(2023) introduced fractional-order sliding-mode control using
a deep convolutional NN for controlling trajectory tracking in
manipulator robots; here, the controller switching gain decreased
drastically since the NN corrects the uncertainty of the system
without knowledge of the upper boundaries. Four distinguished
non-linear control structures were studied by Jenhani et al. (2022)

to address the problem of controlling and stabilizing robotic systems
to predefined positions. To control the position and velocity of
the 2-link robot, classical and adaptive sliding-mode controllers
were introduced by Al-Hadithy and Hammoudi (2020) as well as
Hameed and Hamoudi (2023). Hamoudi and Rasheed (2023) used
particle swarm optimization to study the effectiveness of adaptive
and classical backstepping control schemes for non-linear systems.

It is well-known in intelligent control that the NN controller
can be used to solve various control issues, particularly when
the controlled plant displays non-linearity and/or uncertainties in
the model parameters. The advantage of the NN is that it has
solid capability for mapping. Conversely, the PID controller is
the most widely used controller in the industry because of its
robust performance under numerous operating conditions and
straightforward design. Therefore, in our proposed controllers,
we merge the advantages of NNs with those of the PID and
FOPID controllers to obtain hybrid controllers based on the zebra
optimization algorithm (ZOA) to control a 2-LRRM.

The following are the main contributions of this work:

1. Six control structures are proposed based on NNs with
PID/FOPID operations.

2. ZOA is used to adjust the gains of the proposed control
structures on the basis of reducing the integral-time-square
error (ITSE) performance index.

3. A comparative robustness study is conducted among the
proposed control structures by altering the initial conditions,
disturbances, and model uncertainties.

4. A new objective function is proposed for the tuning
process to obtain controllers with minimal chattering in the
control signals.

The remainder of this paper is structured as follows: the
2-LRRM’s mathematical model is described in Section 2. The
proposed controller structures are discussed in Section 3. The ZOA
is explained in Section 4. The simulation results are shown in
Section 5; the robustness tests are presented in Section 6, and the
conclusions are presented in Section 7.

2 Mathematical model of the 2-LRRM

The 2-LRRM structure is illustrated in Figure 1. It is composed
of two links with lengths lj1 and lj2 and two mass centers mj1
and mj2 that are at the distal ends of the links. Encoders determine
the angular positions of the links (θ1 and θ2) and velocities (θ̇1
and θ̇2), while the regulating torque is produced at points A and
B by DC motors (Mohan et al., 2018). In robotics, the fundamental
control equations are constructed using the dynamic equation of
robotmotion. In a robotic system, the actuator torque is employed to
produce the dynamic motion of the manipulator arm. The dynamic
modeling of a robotic system is characterized by the connections
between the temporal rates of change and input torques of the
robot arm component configurations. The primary goal here is
to determine how to calculate the robot’s motion equations given
the moments and forces exerted on it. Therefore, a part of the
robot manipulator’s dynamicmodeling describes the joint locations,
velocities, and accelerations in addition to the functionsmapping the
forces acting on the structures (Raafat and Raheem, 2017).
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FIGURE 1
Structure of the 2-LRRM.

The equations describing the x and y positions of  mj1 and  mj2,
the equation for the kinetic and potential energies, and the two
derived coupled non-linear differential equations based on
the Euler–Lagrange equation are presented in Lewis et al.
(2004) and Raafat and Raheem (2017).

The conventional form can be applied to the manipulator
dynamics as indicated in Eqs. (1-10)

M (θ)θ̈ +V(θ, θ̇) + g(θ) = T , (1)

where V(θ, θ̇) is the Coriolis/centripetal vector, M(θ) is the
inertia matrix that exhibits symmetry, and g(θ) is the gravity vector.

M = [

[

M11 M12

M21 M22
]

]
, (2)

M11 = (mj1 +mj2)l2j1 +mj2l
2
j2 + 2mj2lj1lj2 cos(θ2), (3)

M12 =mj2l
2
j2 +mj2lj1lj2 cos(θ2), (4)

M12 =M21 & M22 =mj2l
2
j2. (5)

The Coriolis/centrifugal vector denoted by V is of the form

V = [

[

V1

V2

]

]
, (6)

V1 = −mj2lj1, (7)

V2 =mj2lj1lj2θ̇
2
1 sin(θ2). (8)

The gravity vector g = [g12g21 ]
T is defined using

g12 = (mj1 +mj2)glj1 cos(θ1) +mj2glj2 cos (θ1 + θ2), (9)

g21 =mj2glj2 cos(θ1 + θ2). (10)

The 2-LRRM parameter specifications are as listed in
Table 1 (Mohamed et al., 2023).

TABLE 1 Specifications of the 2-LRRM.

Parameter Nominal value

mj1 0.1 kg

mj2 0.1 kg

lj1 0.8 m

lj2 0.4 m

g 9.81 m/s2

FIGURE 2
Set-point-weighted controller block diagram.

3 Structures of the proposed hybrid
controllers

This section provides the descriptions of the proposed
controllers below.

3.1 Set-point-weighted PID and FOPID
controllers

This section discusses set-point-weighted PID and FOPID
controllers. The block diagram of this feedback control system is
indicated in Figure 2.

The equation describing the set-point-weighted PID (W-PID)
controller is presented in Eq. (11):

T i(t)PID = Kp((1− β)θri(t) − θai(t)) +K i∫(θri(t) − θai(t))dt

+Kd
d
dt
((1− α)θri(t) − θai(t)), (11)

where eθi(t) = θri(t) − θai(t),0 < β < 1 , 0 < α < 1.
Here, eθi(t) is the error between the required and calculated

positions, θri(t) and θai(t), respectively, of the i th link; Kp,K i, and
Kd are the proportional, integral, and derivative gains of the PID
controller, respectively; T i(t) is the control signal (torque) of the i th
link; β and α are constants. The equation of the set-point-weighted
FOPID (W-FOPID) controller contains two additional parameters
(λ, μ) with fractional values, as shown in Eq. (12):

T i(t)FOPID = Kp((1− β)θri(t) − θai(t)) +K iD
−λ(θri(t) − θai(t))

+KdD
μ((1− α)θri(t) − θai(t)), (12)

where 0 < λ < 2 , 0 < μ < 2, and D represents the Laplace variable.
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FIGURE 3
Set-point-weighted controller structures: (A) W-PID and (B) W-FOPID.

In Eqs. (11, 12), α and β are used to adjust the set-point values
before comparing with the output to calculate the error signal for
each control action. Here, β is used to attenuate the set-point signal
before computing the corresponding error for the proportional
action and α is used similarly for the derivative action, while the set-
point signal attenuation is not used for the integral action. This PID
configuration is unconventional, famous, and used in many works.

The set-point-weighted PID and FOPID controller structures
are demonstrated in Figure 3.

3.2 Recurrent neural network (RNN)-like
PID and FOPID controllers

In these two controllers, RNN-like PID and FOPID are adopted.
The block diagram of the feedback control system for this type of
hybrid controller is shown in Figure 4. The common structure of
the RNN-PID and RNN-FOPID controllers is shown in Figure 5.
For the conventional PID controller, the order variables have
integer values λ = 1 and μ = 1. eθi(t) is the error between the
required and actual positions θri(t) and θai(t), respectively, of
the ith link.

In the RNN-PID controller, the input layer has a single neuron
eθi(t). The first hidden layer has three neurons P, I , and D that are
defined in Eqs (13–15):

P(t) = Kpeθi(t) or P(k) = Kpeθi(k), (13)

I(t) = K i∫eθi(t)dt or I(k) = K i

k

∑
j=0

ei(j), (14)

D(t) = Kd
d
dt

eθi(t) orD(k) = Kd (eθi(k) − eθi(k − 1) )/h, (15)

FIGURE 4
Recurrent-neural-network-like PID and FOPID controller block
diagrams (RNN-PID and RNN-FOPID).

where, the feedback and processing elements in the second hidden
layer are defined in Eqs. (16-17)

[[[[

[

N1
1(k)

N1
2(k)

N1
3(k)

]]]]

]

=
[[[[

[

v11 v12 v13

 v21 v22  v23

v31 v32 v33

]]]]

]

[[[[

[

P(k)

I(k)

D(k)

]]]]

]

(16)

and

[[[[

[

C1
1(k)

C1
2(k)

C1
3(k)

]]]]

]

=
[[[[

[

O1
1(k − 1)+p1 C

1
1(k − 1)

O1
2(k − 1)+p2 C

1
2(k − 1)

O1
3(k − 1)+p3C

1
3(k − 1)

]]]]

]

. (17)

The output of the second hidden layer is given by Eq. (18):

[

[

O1
1(k

O1
2(k)

O1
3(k)

]

]
= [

[

H(N 1
1(k))

H(N 1
2(k))

H(N1
3(k))

]

]
+[

[

vc11 vc12 vc13
 vc21 vc22  vc23
vc31 vc32 vc33

]

]

[

[

C1
1(k)

C1
2(k)

C1
3(k)

]

]
. (18)

The activation function used is a sigmoid function, as
shown in Eq. (19):

H = 2
(1+ e−net)

− 1, (19)

where, the feedback elements in the third hidden layer are
defined in Eq. (20)

[[[[

[

C2
1(k)

C2
2(k)

C2
3(k)

]]]]

]

=
[[[[

[

O2
1(k− 1)+pp1C

2
1(k− 1)

O2
2(k− 1)+pp2C

2
2(k− 1)

O2
3(k− 1)+pp3C

2
3(k− 1)

]]]]

]

. (20)

The output of the third hidden layer is expressed in Eq. (21):

[[[[

[

O2
1(k)

O2
2(k)

O2
3(k)

]]]]

]

=
[[[[

[

vv11 vv12 vv13

 vv21 vv22  vv23

vv31 vv32 vv33

]]]]

]

[[[[

[

O1
1(k

O1
2(k)

O1
3(k)

]]]]

]

+

[[[[

[

vvc11 vvc12 vvc13

 vvc21 vvc22  vvc23

vvc31 vvc32 vvc33

]]]]

]

[[[[

[

C2
1(k)

C2
2(k)

C2
3(k)

]]]]

]

. (21)

The output of the single neuron in the output layer is
given in Eq. (22):

T i(k) = w1O
2
1(k) +w2O

2
2(k) +w3O

2
3(k), (22)

where Kp,K i,Kd ,vij,vcij vvij,vvcij,wi,pi,andppi are all
parameters.
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FIGURE 5
Recurrent-neural-network-like PID and FOPID structures (RNN-PID and RNN-FOPID controllers).

In the RNN-FOPID controller, the input layer again has a single
neuron eθi(t). The first hidden layer has three neurons P, I, and
D, where the order variables 0 < λ < 2 and 0 < μ < 2 are fractions
instead of integers, and the P, I, and D neurons of this hidden
layer are shown in Eqs (23–25). All the remaining hidden layers and
output layer are the same as in the RNN-PID controller.

P(t) = Kp eθi(t), (23)

I(t) = K iD
−λ eθi(t), (24)

D(t) = KdDμ eθi(t). (25)

3.3 NN-based PID and FOPID controllers

In this type of controller, the NN and PID/FOPID controllers
both contribute to the production of the control signal. Figure 6
displays the feedback control system block diagram for this type of
controller.

The common structure for these two controllers is
indicated in Figure 7.

For the conventional PID controller, the order variables
have integer values λ = 1 and μ = 1. There are three neurons in
the input layer of the NN + PID controller structure, namely,
eθi(k),eθi(k − 1),andeθi(k − 2) or A, B, and C.

Thus, the first layer of hidden neurons is given by Eq. (26):

[[[[

[

N1
1(k)

N1
2(k)

N1
3(k)

]]]]

]

=
[[[[

[

v11 v12 v13

 v21 v22  v23

v31 v32 v33

]]]]

]

[[[[

[

eθi(k)

eθi(k − 1)

eθi(k − 2)

]]]]

]

+
[[[[

[

N1
1(k − 1)

N1
2(k − 1)

N1
3(k − 1)

]]]]

]

.

(26)

The output of the first hidden layer is given by Eq. (27):

[[[[

[

O1
1(k)

O1
2(k)

O1
3(k)

]]]]

]

=
[[[[

[

H(N1
1(k))

H(N1
2(k))

H(N1
3(k))

]]]]

]

, (27)

FIGURE 6
Block diagram of a neural network combined with PID and FOPID
controllers.

[[[[

[

N2
1(k)

N2
2(k)

N2
3(k)

]]]]

]

=
[[[[

[

vv11 vv12 vv13

 vv21 vv22  vv23

vv31 vv32 vv33

]]]]

]

[[[[

[

O1
1(k)

O1
2(k)

O1
3(k)

]]]]

]

+
[[[[

[

N2
1(k − 1)

N2
2(k − 1)

N2
3(k − 1)

]]]]

]

.

(28)

The input and output of the second hidden layer are
given by Eqs (28, 29), respectively.

[[[[

[

O2
1(k)

O2
2(k)

O2
3(k)

]]]]

]

=
[[[[

[

H(N2
1(k))

H(N2
2(k))

H(N2
3(k))

]]]]

]

. (29)

The activation function used is a sigmoid function, as
shown in Eq. (30):

H = 2
(1+ e−net)

− 1. (30)

The output of the third hidden layer is given by Eq. (31):

[[[[

[

O3
1(k)

O3
2(k)

O3
3(k)

]]]]

]

=
[[[[

[

N3
1(k)

N3
2(k)

N3
3(k)

]]]]

]

=
[[[[

[

w11 w12 w13

w21 w22  w23

w31 w32 w33

]]]]

]

[[[[

[

O2
1(k)

O2
2(k)

O2
3(k)

]]]]

]

. (31)

Equations (32–34) define the three control actions of the PID
controller, and each of these control actions is added to one of the
neuron outputs of the NN, as shown in Eqs. (35–37).
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FIGURE 7
Neural network combined with PID and FOPID controller structures (NN + PID and NN + FOPID).

P(t) = eθi(t) or P(k) = eθi(k), (32)

I(t) = ∫eθi(t)dt or I(k) = ∑
k
j=0

eθi(j), (33)

D(t) = d
dt

eθi(t) or D(k) = (eθi(k) − eθi(k − 1) )/h, (34)

u1(k) = Kp(O
3
1(k) + eθi(k)), (35)

u2(k) = K i(O
3
2(k) +∑

k
j=0

eθi(j)), (36)

u3(k) = Kd(O
3
3(k) + (eθi(k) − eθi(k − 1))/h). (37)

The equation of the control signal is expressed by Eq. (38):

T i(k) = u1 (k) + u2 (k) + u3 (k). (38)

The structure of the NN + FOPID controller is the same
as that of the NN + PID controller, with the difference being
fractional-order operations of the integral and derivative functions
given by 0 < λ < 2 and 0 < μ < 2, respectively, as illustrated in
Eqs. (39–44).

P(k) = eθi(k), (39)

I(k) = D−λ eθi(k), (40)

D(k) = Dμ eθi(k), (41)

u1(k) = Kp(O
3
1(k) + eθi(k)), (42)

u2(k) = K i (O
3
2(k) +D

−λ eθi(k)), (43)

u3(k) = Kd(O
3
3(k) +D

μ eθi(k)). (44)

The equation of the control signal is given by Eq. (45):

T i(k) = u1 (k) + u2 (k) + u3 (k). (45)

4 Zebra optimization algorithm

The ZOA is a nature-inspired metaheuristic algorithm and is
presented mathematically in this section (Trojovská et al., 2022).
The actions of zebras in the wild serve as the primary source of
inspiration for the ZOA, where the foraging behaviors and defense
mechanisms against predator attacks are simulated. The description
is provided first, followed by themathematical modeling of the ZOA
steps. Effective real-world optimization issues can be resolved by the
ZOA by achieving an appropriate balance between exploration and
exploitation.

• Initialization

The population of zebras that provide a solution to the problem
can be numerically modeled using a matrix, in addition to the
plain where the zebras are located inside the search space. Within
the search area, the zebras are positioned randomly at their
starting positions. Equation (46) provides the structure of the ZOA
population matrix.

X =
[[[[

[

X1

Xi

XN

]]]]

]N×m

=
[[[[

[

x1,1 x1,j x1,m
xi,1 xi,j xi,m
xN ,1 xN ,j xN ,m

]]]]

]N×m

, (46)

where X is the population, N is the total number of initial solutions
in the population, andm is the number of variables in each solution;
Xi is the ith solution, and x(i, j) is the value of the jth problem
variable proposed by the ith solution. The values produced in the
form of a vector for the objective function are specified by Eq. (47).

F =
[[[[

[

F1

Fi

FN

]]]]

]N×1

=
[[[[

[

F(X1)

F(Xi)

F(XN)

]]]]

]N×1

, (47)

where F represents the vector of objective function values and Fi
denotes the value of the objective function for the ith solution. Each
iteration involves two updates for the ZOA population members.

Phase 1: Foraging behavior
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FIGURE 8
Flowchart of the ZOA.

FIGURE 9
Block schematic diagram for tuning of a PID controller.

Zebra behavior models through forage seeking are employed to
update the population members during the first phase (Pastor et al.,
2006). Equations (48, 49) can be used in the mathematical
model to update the positions of the zebras during the foraging
phase.

TABLE 2 ITSE values of the suggested controllers for a nominal plant
when using two initial positions [0.1745, 0.1745] and [−0.1745, –0.1745].

Controller ITSE Controller ITSE

W-PID 9.4864 × 10−5 W-FOPID 8.1697 × 10−5

RNN-PID 9.0165 × 10−5 RNN-FOPID 8.6837 × 10−5

NN + PID 9.0259 × 10−5 NN + FOPID 7.9676 × 10−5

xnew,P1i,j = xi,j + r · (PZj − I · xi,j), (48)

Xi =
{
{
{

Xnew,P1
i , Fnew,p1

i ;

Xi, else,
(49)

where Fnew,P1
i is the objective function value; xnew,P1i,j is ith zebra’s

new status based on the first phase; r is a random number in the
interval [0,1]. The best member is PZ, the pioneer zebra; its jth
dimension is PZj ; I = round(1+rand) is provided; and rand is a
random value within the interval [0,1]. Thus, I ∈ {1, 2}, and the
population movement changes more noticeably if I = 2.
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FIGURE 10
(A) Desired and calculated θ1, (B) desired and calculated θ2, (C) torque T1 , (D) torque T2 , and (E) end-effector trajectories of the 2-LRRM.

Phase 2: Predator defense strategies
The initial strategy for defense involves lions attacking

the zebras, but the zebras move away from their current
locations to escape (Pastor et al., 2006). Therefore, the mode
S1 in Eq. (50) can be used to mathematically represent this
strategy. In the second technique, when other predators
attack one of the zebras, the other zebras in the herd move
toward the attacked zebra in an attempt to confuse and
intimidate the predator by forming a protective structure
(Caro et al., 2014). Mode S2 in Eq. (50) is used to formally
represent the zebra behaviors. When a zebra is updated, its
new location is accepted if its objective function has a better

value (Kennedy and Kennedy, 2013). This update scenario is
represented using Eq. (51).

xnew,P2i,j =
{{
{{
{

S1:xi,j +R · (2r − 1) · (1−
t
T
) · xi,j, Ps ≤ 0.5;

S2:xi,j + r · (AZj − I .xi,j), else,
(50)

Xi =
{
{
{

Xnew,P2
i Fnew,P2

i < Fi;

Xi, else,
(51)

where Ps is the probability of choosing one of two randomly
generated strategies in the interval [0, 1], AZ is the status of
the attacked zebra and AZj is its jth dimension value, Fnew,P2i
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FIGURE 11
(A)Desired and calculated θ1, (B)desired and calculated θ2, and (C)2-LRRM end effector trajectories when the starting point is [0.15, 0.15].

TABLE 3 ITSE values of the proposed controllers for an initial position of
[0.15, 0.15].

Controller ITSE Controller ITSE

W-PID 3.6563 × 10−5 W-FOPID 2.5491 × 10−5

RNN-PID 2.5536 × 10−5 RNN-FOPID 2.6496 × 10−5

NN + PID 3.1708 × 10−5 NN + FOPID 2.3871 × 10−5

TABLE 4 ITSE values of the proposed controllers when adding 5% to the
masses of both links and setting the starting position to [0.0, 0.0].

Controller ITSE Controller ITSE

W-PID 1.0759 × 10−5 W-FOPID 0.4012 × 10−5

RNN-PID 0.1418 × 10−5 RNN-FOPID 0.3324 × 10−5

NN + PID 0.7397 × 10−5 NN + FOPID 0.3139 × 10−5

is its objective function value, and Xnew,P2
i is the new status

of the ith zebra based on the second phase. The iteration
contour is denoted by t, maximum number of iterations is
given by T , and constant number R is set to 0.01. The value
of its jth dimension is Xnew,P2

i . The population members are
updated depending on the first and second phases in each

ZOA iteration. Until the time the algorithm is completely
implemented, the population is updated based on Eqs. (48–51).
During subsequent iterations, the best candidate solution is
updated and preserved. When the ZOA is fully operational, the
best potential answer is made available as the ideal response, as
shown in the pseudocode and flowchart representations of the
ZOA phases in Figure 8.

4.1 Pseudocode of the proposed ZOA

Begin ZOA.
Input: Information regarding the optimization issue.
Calculate the population size (N) and total number of

iterations (T).
Evaluate the objective function based on the initial solution.
For t = 1: T , update PZ.
For i = 1: N
Phase 1: Foraging behavior
Use Eq. (48) to determine the new ith solution.
Use Eq. (49) to update the ith solution.
Phase 2: Predator defense strategies
Ps = rand if Ps < 0.5.
Strategy one: Lion-fighting phase
Use mode S1 in Eq. (50) to determine the new ith solution.
Else
Strategy two: Exploratory phase against other predators
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FIGURE 12
Desired and calculated trajectories for (A) θ1, (B) θ2, and (C) 5% added masses to both links for a starting position of [0, 0].

TABLE 5 ITSE values of the suggested controllers with added disturbance
of sin(50t) to both links and a starting position of [0.15, 0.15].

Controller ITSE Controller ITSE

W-PID 4.7128 × 10−5 W_FOPID 3.7435 × 10−5

RNN-PID 4.2479 × 10−5 RNN-FOPID 4.9497 × 10−5

NN + PID 4.0179 × 10−5 NN + FOPID 3.4328 × 10−5

Determine the ith zebra as a new status using mode
S2 in Eq. (50).

End if
Use Eq. (51) to update the ith solution.
Ending for i = 1: N
Save the best possible candidate solution.
Ending for t = 1: T
Display the optimal ZOA solution as the output for the given

optimization problem.
Stop ZOA.
The five key components for tuning a PID controller are the

fitness function, ZOAoptimizationmethod, PID controller, process,
and sensor (feedback). Any controller type can be built using various
optimum control parameters (Wilson et al., 2018). For the objective
function (fitness function) to be minimized, some parameters
must be calculated (Oleiwi, 2014). The optimization problem

can be expressed using the following concepts that minimize
the objective function and applied to the following constraints:
Kpmin < Kp < Kpmax, K imin < K i < K imax, Kdmin < Kd <
Kdmax (Baruh et al., 2002). The ZOA is used to modify the
parameters of each proposed controller to minimize tracking errors
between the actual and projected 2-LRRM trajectories. Figure 9
shows a block diagram of a tuned PID controller.

5 Simulation and results

The performances of the 2-LRRMwith the proposed controllers
for trajectory tracking are examined and discussed in this section.
The six proposed controllers, namely W-PID, W-FOPID, RNN-
PID, RNN-FOPID, NN + PID, and NN + FOPID controllers, are
compared against each other to minimize the performance index
when the nominal model is used. Two starting points are used for
θ1 (Theta-1: 0.1745, 0.1745) and θ2 (Theta-2: −0.1745, –0.1745) to
increase the learning of the controllers. The ZOA is used to find the
optimal controller’s parameters that minimize the ITSE between the
calculated and reference trajectories of the 2-LRRM. The settings
for the ZOA are population size = 100 and maximum number
of iterations = 1000. The optimal solution obtained from the last
iteration is regarded as the final solution.The step size for simulation
is taken as h = 0.001 s, and the simulation time is taken as 4 s.
There are several ways to represent the fractional differentiation
and integration components mathematically. The approximation of
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FIGURE 13
Desired and calculated trajectories for (A) θ1, (B) θ2, and (C) end effector for an added disturbance of [sin(50t), sin(50t)] and starting point of [0.15, 0.15].

TABLE 6 ITSE between the desired and calculated paths when using a
starting point of [0.15, 0.15] with added disturbances of [sin(50t), sin(50t)]
and added masses of 5% to both links.

Controller ITSE Controller ITSE

W-PID 4.9523 × 10−5 W-FOPID 3.7390 × 10−5

RNN-PID 4.8589 × 10−5 RNN-FOPID 5.1111 × 10−5

NN + PID 4.2179 × 10−5 NN + FOPID 3.5742 × 10−5

a fractional operator used in the design of the FOPID controller
is Oustaloup’s approximation of the fifth order (N = 5) with a
frequency range of [0.001, 1000] rad/s. Each link’s trajectory tracking
is determined previously to allow following by the manipulator. The
controller with the lowest ITSE value is considered as the best one,
and the ITSE is calculated using Eq. (52).

ITSE = ∫(t × e21(t) + t × e
2
2(t))dt (52)

where e1(t) and e2(t) are the differences between the reference
trajectories for link1 θri and calculated trajectories for link2 θi.

One of the important advantages of a NN is its flexibility
to capturing complex underlying data structures. In the design
of NN controllers, this allows production of the most complex
control signals with high frequencies (i.e., chattering). In fact, a
chattering signal cannot be applied practically, and the optimal
solution obtained is not a feasible solution. Therefore, the objective

function is modified as demonstrated in Eq. (53)

ObjectiveFunctionValueor FitnessValue = ITSE + ρ× Sn,
(53)

where Sn is the number of times that the control signal’s slope
changes signs, and ρ is a small constant number chosen as 10−8

in this work.
This modified objective function excludes any solutions that

contain high chattering control signals from among the candidate
solutions. The desired trajectories θr1 and θr2 for link1 and link2 are
given in Eqs (54, 55), respectively:

θr1 =
{
{
{

0.75× t2 − 0.25× t3 , 0 < t < 2

−1.5+ 3× t − 1.125× t2 + 0.125× t3,2 < t < 4

}
}
}
, (54)

θr2 =
{
{
{

1.5× t2 − 0.5× t3, 0 < t < 2

12− 12× t + 4.5× t2 − 0.5× t3,2 < t < 4

}
}
}
. (55)

Now that all details about the simulation and nominal model are
available and known, we start applying the ZOA optimizer to adjust
the gains of all the suggested controllers based on the nominalmodel
to minimize the ITSE. Since the ZOA is a stochastic algorithm, each
controller is simulated 10 times to derive the best results. Table 2
shows the ITSE values for all proposed control structures when
applied to a nominal plant and executed with two initial positions.

Overall, the findings show that in terms of the ITSE, the
suggested controllers with fractional-order integral and derivative
actions perform better than those with corresponding integer-order
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FIGURE 14
Desired and calculated trajectories for (A) θ1, (B) θ2, and (C) end effector when using a starting point of [0.15, 0.15], adding a disturbance of sin(50t) to
the torques of both links, and adding 5% to the masses of both links.

actions. This is attributed to the fact that the tuning parameters of
the controller are increased by the FOPID, which in turn increases
the number of DOFs, controller capabilities, and robustness. Despite
the results being very close to each other, as seen from Table 2, the
findings indicate that the hybrid NN + FOPID structure has the
highest ITSE of 7.9676 × 10−5 while the W-PID controller has the
lowest ITSE of 9.4864 × 10−5. Figure 10 shows the trajectory tracking
performances of θ1, θ2 (the paths followed by the 2-LRRM’s end
effectors), and the suggested controllers’ torques 𝑇1 and 𝑻2.

Based on the results, it is concluded that the NN + FOPID
controller performs better than all the other suggested controllers
and that it is the best controller among them.

6 Robustness tests

This section presents the results of the proposed controllers that
are subjected to robustness tests. To show the capabilities of each
controller, the following experiments are implemented in MATLAB
without adjusting the gains or retuning the gains of the proposed
controllers.

6.1 Initial condition changes

In this test, another set of initial conditions [0.15, 0.15] was
considered for [θ1, θ2] to evaluate each controller’s robustness

and test its ability to follow the required trajectory of the 2-
LRRM. Table 3 presents the ITSE values for each of the suggested
controllers. Figure 11 depicts the trajectory tracking of θ1 and θ2 and
the end-effector of the 2-LRRM by changing the initial location for
all suggested controllers.

Despite altering the starting position, the NN + FOPID
controller performs better than the other suggested controllers,
where the ITSE = 2.3871 × 10−5 of the NN + FOPID controller is
the optimal among them. Furthermore, in the trajectory response,
NN + FOPID has the least amount of overshoot and fastest settling
time for  θ1 as well as a good overshoot and good settling time for
θ2.TheW-PIDhas theworst ITSE of 3.6563 × 10−5, and its responses
are poor owing to its large overshoot and lengthy settling times for
the θ1 and θ2 responses. Furthermore, the trajectory of the 2-LRRM
end effector for the NN + FOPID controller still follows the most
similar path as the desired trajectory.

6.2 Parameter variations

In this test, the parameter variations of the 2-LRRM model are
investigated for the suggested control structures by incrementing
the mass of each link by 5%. Table 4 shows the ITSE value of each
controller.The RNN-PID controller has the best performance index
of ITSE = 0.1418 × 10−5, and the tracked trajectories for θ1 and θ2
are closest to the required trajectories of  θr1 and θr2 than the other
suggested control structures. Consequently, when using the RNN-
PID controller, the trajectory followed by the 2-LRRM end effector
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with parameter variations is very close to the desired trajectory.
The second-best controller is the NN + FOPID, with a performance
index of ITSE = 0.3139 × 10−5 and good trajectory tracking for θ1
and θ2; the worst controller is the W-PID with ITSE = 1.0759 ×
10−5, and its trajectory tracking has large overshoots and lengthy
settling times. Figure 12 shows the trajectories tracked for θ1 and θ2
as well as the 2-LRRMend effector when the linkmasses are changed
for each controller.

6.3 Disturbance addition

Another test was conducted to determine the robustness of the
proposed control structures by increasing the disturbance terms
[sin (50t), sin (50t)] in the control actions [T1, T2] and setting
the initial positions as [0.15,0.15] for [θ1, θ2]. Table 5 shows the
obtained ITSE values of the proposed controllers. The trajectories
tracked for θ1 and θ2 as well as the end effector of the 2-LRRM by
increasing the disturbance term by sin(50t) N∙m in both links are
demonstrated in Figure 13. From the results, it is concluded that the
NN + FOPID controller performs the best in terms of disturbance
rejection when compared to the other controllers.TheNN + FOPID
controller is also the best in terms of the ITSE and has the smallest
overshoot during trajectory tracking.

6.4 All tests conducted simultaneously

This combined test is crucial when evaluating robustness since
it determines which of the proposed controllers can be used
as the best controller. All suggested controllers are subjected to
the combined impacts of added disturbance of sin(50t) to the
control signals [T1 , T2], increasing the masses of the two links
by 5%, as well as altering the starting points to [0.15, 0.15].
Table 6 displays the ITSE value of each controller based on the
results attained. Among all the suggested controllers, the lowest
ITSE is observed for the NN + FOPID controller. Figure 14
shows the trajectories tracked for θ1 and θ2 as well as the
end effector of the 2-LRRM for disturbance additions, parameter
variations, and initial position changes for all proposed controllers.
The NN + FOPID controller still shows optimal results and
performs better than all the other proposed controllers because the
trajectory followed by the 2-LRRM end effector and tracked the
trajectories of θ1 and θ2 for the NN + FOPID controller are all close
to the required trajectories.

7 Conclusion

In this study, six PID- and FOPID-based control structures are
proposed for a 2-LRRM for trajectory tracking; these are named
W-PID, W-FOPID, RNN-PID, RNN-FOPID, NN + PID, and NN
+ FOPID controllers. To optimize the controller parameters, the
ZOA was used offline to minimize the performance index ITSE.
The MATLAB simulation results show that all proposed controllers
have the ability to quickly reduce the errors between the real and
desired paths before tracking the required path. By altering the
initial state values, adding disturbances to the control signals, and

increasing the masses of the two links, the robustness of each
suggested controller was examined. According to the results of the
nominal system tuning test and all robustness tests, theNN+FOPID
has the best control structure among the suggested controllers.
The combination of NN with fractional-order integration and
differentiation affords high performance and efficient responses,
which are reflected in the results. In addition, the modified objective
or fitness function allowed ZOA-based tuning of the controller
parameters to determine stable responses with fewer fluctuations
in the control signals. The trajectory tracking responses for Theta-
1 and Theta-2 have the smallest overshoots, shortest settling times,
and lowest ITSE values. Moreover, the NN + FOPID controller
outperformed all the other controllers in the robustness tests. This
work also highlights the capacity of the ZOA for fine-tuning the
controller parameters. Finally, as a future work, this study can
be extended using other optimization techniques instead of the
ZOA, such as the firebug swarm optimization algorithm, chimp
optimization algorithm, mayfly optimization algorithm, and gazelle
optimization algorithm to adjust the controller gains. In addition,
a real robot manipulator equipped with all required hardware may
be employed to practically implement and verify the suggested
controllers.
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