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Distributed training of CosPlace
for large-scale visual place
recognition

Riccardo Zaccone*, Gabriele Berton and Carlo Masone

Visual And Multimodal Applied Learning Laboratory (VANDAL Lab), Dipartimento di Automatica e
Informatica (DAUIN), Politecnico di Torino, Turin, Italy

Visual place recognition (VPR) is a popular computer vision task aimed at
recognizing the geographic location of a visual query, usually within a tolerance
of a few meters. Modern approaches address VPR from an image retrieval
standpoint using a kNN on top of embeddings extracted by a deep neural
network from both the query and images in a database. Although most of
these approaches rely on contrastive learning, which limits their ability to be
trained on large-scale datasets (due to mining), the recently reported CosPlace
proposes an alternative training paradigm using a classification task as the
proxy. This has been shown to be effective in expanding the potential of VPR
models to learn from large-scale and fine-grained datasets. In this work, we
experimentally analyze CosPlace from a continual learning perspective and
show that its sequential training procedure leads to suboptimal results. As a
solution, we propose a different formulation that not only solves the pitfalls of
the original training strategy effectively but also enables faster andmore efficient
distributed training. Finally, we discuss the open challenges in further speeding
up large-scale image retrieval for VPR.

KEYWORDS

visual place recognition, visual geolocalization, distributed learning, image retrieval,
deep learning

1 Introduction

Visual place recognition (VPR) (Masone andCaputo, 2021) is a popular computer vision
task that aims to recognize the geographic location of a visual query and usually has an
accepted tolerance of a few meters. VPR tasks are commonly approached as image-retrieval
problems, in which a never-before-seen query image is matched to a database of geotagged
images; the most similar images in the database are then used to infer the coordinates
of the query.

The typical pipeline for VPR involves a neural network to extract embeddings from both
the query and each image in the database. These embeddings are then compared using a k-
nearest neighbor (kNN) algorithm to retrieve the most similar results from the database
and their corresponding geotags. For the kNN step to be effective, it is crucial that the
embedding space learned by the neural network be sufficiently discriminative for places;
this is commonly achieved by training the models with contrastive learning approaches
using a triplet loss (Arandjelović et al., 2018) or other similar losses and leveraging the
geotags of the database images as a form of weak supervision to mine negative and positive
examples (Arandjelović et al., 2018). However, the execution time required for the mining
operation scales linearly with the size of the database (Berton et al., 2022b), thus becoming
a bottleneck that impedes training on massive datasets. A naive mitigation strategy here
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would be to mine the positive/negative examples within a
subset of the data (Warburg et al., 2020), but this ultimately
hampers the ability to learn more discriminative and generalizable
representations.

To solve this problem at its root, Berton et al. (2022a) recently
proposed a paradigm shift in the training procedure for VPR.
Their solution called CosPlace is specifically designed for large-
scale and fine-grained VPR, and it adopts a classification task as
the proxy for training the model without mining. To enable this
classification proxy, CosPlace introduces a partitioning strategy
that divides the continuous label space of the training images
(GPS and compass annotations) into a finite set of disjoint groups
(CosPlace groups), each containing a number of classes. This
partition is intended to guarantee that images from different
classes (i.e., representative of different places) within the same
group have no visual overlap. Thereafter, CosPlace is trained
sequentially on a single group at a time to avoid ambiguities
caused by partition-induced visual aliasing (Figure 2, left). Although
CosPlace can be trained on a much larger number of images than
reported in previous works and has achieved new state-of-the-
art (SOTA) results, we hypothesize that the sequential training
protocol is suboptimal because it optimizes an approximation of
the intended minimization problem. This hypothesis stems from
approaching the CosPlace training protocol from an incremental
learning perspective. In fact, each CosPlace group may be regarded
as a separate learning task that uses a shared feature extractor
and a per-group classification head. During each epoch, the
model is trained for a given number of optimization steps
on a single group (task). However, there is no guarantee that
switching to a new task during the next epoch will not harm
the model performances for the older tasks. In this paper,
we experimentally validate this hypothesis by showing that
sequential training delays convergence and that there are eventually
diminishing returns as the number of groups increases beyond a
certain threshold.

In light of this observation, we redefine the CosPlace
training procedure so that the algorithm trains different
groups parallelly (Figure 1). Note that this is different from
applying a standard data parallel approach since this would
only split the same batch of data corresponding to the
same task among the available accelerators (Figure 2, right).
The proposed solution not only solves the previous issue
by implementing joint objective optimization over all the
selected groups but also allows efficient training parallelization.
Hence, we refer to this solution as distributed-CosPlace (D-
CosPlace). The main contributions of this work are summarized
as follows:

• We analyze CosPlace to unveil the pitfalls of the original
sequential formulation and investigate possible mitigation
strategies.
• We propose a new group-parallel training protocol

called D-CosPlace, which not only addresses extant
issues but also allows effective use of communication-
efficient SOTA distributed algorithms. This improves
the performance of the original CosPlace by a large
margin on several VPR datasets within the same
time budget.

• By further analyzing the training of the proposed
distributed version of CosPlace, we outline the
open challenges in speeding up training for large-
scale VPR.

2 Related works

2.1 Large-scale visual place recognition

Modern VPR approaches extract compact image embeddings
using a feature extractor backbone followed by a head
that implements aggregation or pooling (Kim et al., 2017;
Arandjelović et al., 2018; Ge et al., 2020; Ali-bey et al., 2023;
Berton et al., 2023; Zhu et al., 2023). These usually employ
contrastive learning, using the geotags of the training set as a type of
weak supervision to mine negative examples. However, this mining
operation is expensive and impractical for scaling to large datasets
(Berton et al., 2022b). Tomitigate this problem, Ali-bey et al. (2022)
proposed the use of a curated training-only dataset in which the
images are already split into predefined classes that are far apart from
each other, thereby enabling the composition of training batches
with images from the same place (positive examples) and from other
places (negative examples) very efficiently. The method proposed by
Leyva-Vallina et al. (2023) involves annotating the images with a
graded similarity, thus enabling training with contrastive losses and
full supervision while achieving improvements in terms of both
data efficiency and final model quality. Instead of mitigating the cost
of mining, Berton et al. (2022a) proposed an approach to remove
it entirely through their CosPlace method. The idea of CosPlace
is to first partition the training images into disjoint groups with
one-hot labels and to then train sequentially on these groups with
the CosFace loss (Wang et al., 2018) that was originally designed
for large-scale face recognition. Although CosPlace achieves SOTA
results on large-scale datasets and even in generalized scenarios,
we show here that its sequential training procedure is suboptimal
and hampers the convergence speed. In view of these findings, we
introduce a parallel-training version of CosPlace that improves
the convergence speed and produces new SOTA results on several
benchmarks.

2.2 Distributed training

The growth of deep-learning methods and training datasets
is driving research on distributed training solutions. Among
these, data parallelism constitutes a popular family of methods
(Lin et al., 2020) wherein different chunks of data are processed in
parallel before combining the model updates either synchronously
or asynchronously. In particular, to reduce the communication
overhead of data movement between the accelerators, local
optimization methods are commonly used to allow multiple
optimization steps on disjoint sets of data before merging the
updates (Stich, 2019; Yu et al., 2019; Wang et al., 2020). In this
work, we redefine CosPlace’s training procedure by introducing the
parallel training of groups and leveraging local methods to speed up
convergence.
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FIGURE 1
In the proposed D-CosPlace, each accelerator parallelly optimizes the model with respect to a different CosGroup for J steps before merging the
model and optimizers’ states (backbone only). This process is repeated until convergence.

FIGURE 2
Comparison of CosPlace (Berton et al., 2022a) with a naive data-parallel variant. Unlike both approaches, the model in the proposed solution is jointly
optimized with respect to all the training CosGroups (Figure 1). Best viewed in color.

3 Analysis of CosPlace

In this section, we analyze the CosPlace training algorithm and
highlight the drawbacks of its sequential protocol.

3.1 Notation

The first step in CosPlace’s training protocol involves creating
a set of discrete labels from the continuous space of the Universal
Transverse Mercator (UTM) coordinates of the area of interest
(Berton et al., 2022a). Formally, we define the training distribution
D ≔ X × C, where X is the space of possible images and C is the
space of UTM coordinates (east, north, heading). We also define a
new distribution D̂ ≔ X ×Y , where Y is the label space induced by
partitioning C. Formally, a UTM point c ∈ C is discretized to a label
y = {⌊ east

M
⌋, ⌊ north

M
⌋, ⌊ heading

α
⌋}, where M and α describe the extent of

a region covered by any class in meters and degrees, respectively.
The set of such classes is then split into groups called CosGroups by

fixing the minimum spatial separation between two classes of the
same group in terms of both translation and orientation. Formally,
a CosPlace group is defined as the set of classes such that

Gu,v,w ≔

{y ∈Y : ⌊ east
M
⌋ modN = u, ⌊ north

M
⌋ modN = v, ⌊

heading
α
⌋ mod L = w},

(1)

where N and L are hyperparameters for the fixed minimum
spatial and angular separations between classes belonging to the
same CosGroup. We denote the set of such groups as G, i.e.,
G = {Gu,v,w} ∀u,v,w ∈ ℕ. Given multiple CosGroups
(defined by Eq. 1), it is possible to derive multiple training
distributions D̂i ≔ X ×Gi ⊂ D̂, where each distribution maps the
sample image to a one-hot label within the ith CosGroup. The
CosGroups partition is reflected in the model and is composed of
two components: a feature extractor B(⋅):X →ℝD parameterized
by weights θb and multiple classifiers Fi(⋅):ℝD→ [0,1]|Gi| that are
each associated with a different CosGroup parameterized by the
weights θi f .
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3.2 CosPlace objective function

Thegoal of CosPlace is to learn a feature extractor B(⋅) that maps
the original distribution X in an embedding space such that the
distances between the locations depicted in the images are reflected
well. Therefore, CosPlace aims to optimize the following problem:

θb∗ = argminθb

|G|

∑
i=1
𝔼(x,y)∼D̂i

[Llmcl (Fi◦B, (x,y))] . (2)

In practice, the training procedure should minimize the large
margin cosine loss (LMCL) (Wang et al., 2018) of the entire model
θ≔ {θb,∪iθi f} with respect to the label distribution(s) induced
by discretization of the GPS coordinates into classes and by the
grouping of these classes. The parameters θi f of the classifiers are
used only to train the feature extractor θb and discarded after
training. The final performances of B(⋅) are assessed using the kNN
algorithm as the proxy with respect to the original distribution D.

3.3 CosPlace training: a continual learning
perspective

AlthoughCosPlace aims to optimize Eq. 2, it is observed that the
sequential optimization of θb with respect to each CosGroup is just
an approximation of this objective function. Formally, it implements

θbGi

∗ = argminθb𝔼(x,y)∼D̂i
[Llmcl (Fi◦B, (x,y) ,θ

b ∗
Gi−1
)] ∀i ∈ [1, |Ḡ|]

θbG0

∗ = θb0 (initial model) , (3)

where Ḡ ⊆ G is a subset of all possible CosGroups selected a priori
for training. Eq. 3 practically means that at each iteration e, the
training procedure selects the ith CosGroupGi, with i≔ (emod |Ḡ|),
and jointly optimizes the parameters θb and θi

f for s optimization
steps starting from the optimal model obtained from the previous
CosGroup Gi−1.

By expressing the CosPlace learning problem in this form, we
can revisit it from a continual learning perspective. Accordingly,
each distribution associated with a CosGroup can be considered
as a task with a disjoint set of labels and dedicated parameters
θi

f . Therefore, when CosPlace training iterates to a new CosGroup,
it is akin to switching to a new task (Figure 2, left). This is
different from solving the original problem in Eq. 2 because there
is no guarantee that switching to the new task will not harm
the model performances for the older tasks. In practice, the new
model updates could be detrimental to the previous tasks, a
phenomenon known as catastrophic forgetting (Goodfellow et al.,
2014; Pfülb and Gepperth, 2019; Ramasesh et al., 2021). To verify
if this phenomenon actually manifests during CosPlace training, we
performed an experiment using its original implementation on the
SF-XL dataset provided by Berton et al. (2022a).We plot the training
loss for this experiment in Figure 3, fromwhich it can be clearly seen
that at each iteration, when switching to a new CosGroup, the loss
function exhibits a steep increase and requires many steps to recover
a loss value similar to the one before group change. This behavior is
especially notable in the first few iterations, after which it disappears
gradually as it is expected for the model to achieve convergence.

The reason why optimizing Eq. 3 still works remarkably well
is that the CosPlace training protocol relies on the fact that

each task will be revisited after some iterations. Therefore, the
algorithm eventually converges to a solution that is also good for
the joint objective function of Eq. 2. However, this is achieved at
the cost of increased training time and is hardly scalable with
respect to the number of trained groups |Ḡ|, as observed in
the original work (Berton et al., 2022a). Together, these problems
drastically limit the training time scalability of CosPlace, which is
its main purpose.

3.4 Mitigation strategies

Given that the most severe jumps in the training loss in Figure 3
occur in the first few iterations, i.e., when the classifiers θi

f associated
with each task have not yet been trained, one can consider some
engineering solutions to solve this problem. A first modification
would be to freeze the backbone model θb for a number of steps
sfreeze ≪ swhenever the task is changed.This prevents the weights θi f

from being uninitialized or too stale with respect to the backbone.
Additionally, considering the amount of training that the model
θb has undergone since the last time task i was selected, it would
also be beneficial to reset the optimizer state for model θi f as it
may be excessively biased. However, repeating the same experiment
as before with these modifications shows that the effectiveness
is limited (Figure 3, orange line). In particular, we observe that
resetting the optimizer step is only beneficial during the first few
iterations, which slightly speeds up convergence. However, we find
that this strategy worsens the final model quality in the long run
because maintaining the optimizer states is beneficial as the model
finally approaches convergence. A similar observation also holds for
freezing θb; it is initially useful, although a very large number of sfreeze
steps are needed for a noticeable reduction in the training loss. In the
long run, this becomes detrimental because these steps are wasted.

In conclusion, despite their simplicity, such simple mitigation
strategies require careful engineering to determine sfreeze as well
as decide when to use them, making them practically ineffective.
Moreover, since these issues arise after performing a significant
amount of training between two samplings of the same task i, these
simple strategies cannot be scaled when the number of training
CosGroups |Ḡ| increases.

4 Distributed CosPlace

The analysis presented in Section 3 reveals that the CosPlace
training procedure does not correctly implement the objective
function of Eq. 2. The problem here lies in the sequential protocol,
which optimizes the model with respect to each CosGroup
separately in a sequential manner. To recover the objective function
of Eq. 2, we should calculate the gradients for all CosGroups in
parallel, i.e., using the same model θb, before averaging them
to update the model according to the optimizer policy. These
gradients can be computed sequentially or in parallel to benefit
from the multiple accelerators. This joint optimization procedure
exactly recovers the original objective function of the vanilla
CosPlace aimed at optimization Eq. 2: indeed, at each optimization
step, the algorithm optimizes 𝔼(x,y)∼D̂i

[Llmcl(Fi◦B, (x,y))] jointly
with respect to all CosGroups Gi ∈ Ḡ. Accordingly, the proposed
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FIGURE 3
Training instabilities of CosPlace (left) and solution using D-CosPlace (right): changing classifiers (e.g., each s =10k steps) is followed by a spike in the
training loss. Simple mitigation strategies, e.g., freezing θb for a number of sfreeze steps to warmup the classifier and resetting the optimizers’ states, have
limited efficacy and do not work in the long run. The proposed D-CosPlace is unaffected by this problem by design since all the classifiers are
optimized jointly.

formulation effectively addresses the problem outlined in
Section 3.3 as shown in Figure 3 (right), in which the severe
jumps during the sequential learning of CosGroup are solved
completely.

This ideamay seem to be similar to standard data parallelization,
as implemented in most deep-learning frameworks. In fact, a
common implementation would entail dividing the original batch
of data into k smaller chunks, letting each accelerator compute
gradients with respect to the same model on a chunk, merging
these chunks, and updating the final model according to the
optimizer policy (Figure 2, right). However, this approach does
not address the problem arising from sequential training as
noted previously because it would still be applied separately to
each CosGroup. Instead, we need a data parallelization strategy
that is aware of the divisions in the CosGroups where each one
corresponds to a separate classifier and can jointly optimize
the model with respect to all CosGroups. Moreover, since
each CosGroup is a disjoint set of data by construction, it is
possible to assign one or more CosGroups to each accelerator
or compute node and train without the need of a distributed
sampling strategy or centralized storage. This effectively reduces
data movement related to the training samples because a
CosGroup can be previously stored locally on its assigned
compute node.

This group-parallel approach can be further improved using
local optimization methods (Stich, 2019; Lin et al., 2020). The core
idea here is to have a master send the current model θb to all
accelerators that parallelly optimize it for J (local) steps before
returning the updates to the master. The master then averages
the updates and applies them to the current model. This process
is repeated for a given number of iterations until convergence.
Intuitively, performing multiple local steps before averaging allows
training speedup by reducing the communication rate between the
accelerators. It is also important to note that pure local methods
allow the use of any optimizer during local training, while the
master always calculates the new model as an exact average
of the local models after training. A more general approach is
SlowMo (Wang et al., 2020) that further applies stochastic gradient
descent (SGD) with momentum on the master by using the exact

average of the trainers’ gradients as the pseudogradient. Trivially,
setting the momentum term β = 0 in SlowMo corresponds to
recovering the pure local method employed. By implementing
multiple local steps, using local methods on CosGroup allows i)
respecting the problem formulation in Eq. 2, ii) lowering the data
movement related to training samples, and iii) achieving high
communication efficiency during training. A scheme representing
the parallel training procedure across different CosGroups using
local methods is depicted in Figure 1, which we call as the
D-CosPlace system.

5 Experiments

5.1 Implementation details

5.1.1 Model and training datasets
For all the experiments, we used a backbone based on ResNet-

18, followed by GeM pooling and a fully connected layer with
output dimension D = 512, as in Berton et al. (2022a). As per the
training dataset, we used SF-XL, a large-scale dataset created from
Google StreetView imagery, and retained the best hyperparameters
of the original CosPlace (M = 10 m, α = 30°, N = 5, and L = 2).
Under this configuration, the total number of CosGroups is |G| = 50,
and training is performed through experiments with |Ḡ| ∈ {4,8,16},
thereby demonstrating that the proposed approach can be scaled
with increasing number of groups (and hence the dataset size).

5.1.2 Training hyperparameters
For the classic CosPlace sequential training, s = 10k iterations

for a given CosGroup before moving on to the next. As optimizers,
Adam and Local-Adam are used for the distributed version, with
learning rates of ηb = 10–5 and ηf = 10–2 for the backbone θb

and classifiers θi
f ∀i, respectively. Unless otherwise specified, all

the algorithms employ a batch size equal to 32 for each group
trained, mainly because of the hardware memory limitations. For
the distributed version, we additionally adopted a warm-up scheme
by doubling the learning rate for the first three iterations. We
searched the optimal number of local steps using J ∈ {1,10,100}
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TABLE 2 Convergence speed comparisons between CosPlace and D-CosPlace using Ḡ = {Gi}
8
i=1 (best results in boldface): D-CosPlace can achieve the

same accuracy as CosPlace for a fraction of the total wall-clock time. Alternatively, it surpasses the performance of the vanilla CosPlace within the
time budget.

Method
Wall-clock time (hh:mm) Best accuracy (SF-XL val)

Target R@1 Best R@1 R@1 R@5

CosPlace (Berton et al., 2022a) 57:30 57:30 90.9 95.5

D-CosPlace J = 1 42:00 49:50 91.4 96.2

D-CosPlace J = 10 25:50 59:25 92.2 96.6

D-CosPlace J = 100 26:02 54:26 91.6 96.5

and found J = 10 to be the best; similarly, the slow momentum
values β ∈ {0.1,0.3,0.5,0.7} were evaluated before choosing β = 0.3.
To provide meaningful comparisons, we considered a fixed wall-
clock time budget of 60 h per experiment with reference to using
NVIDIA GTX1080 GPUs.

5.1.3 Testing procedure
To assess the performances of the algorithms, we selected the

model that performed best on the SF-XL validation set and used
it to measure the Recall@1 (R@1) and Recall@5 (R@5) values.
Following standard procedures (Zaffar et al., 2021; Schubert et al.,
2023), Recall@N is defined as the number of queries for which
at least one of the first N predictions is correct, divided by the
total number of queries. A prediction is deemed correct if its
distance from the query is less than 25 m (Arandjelović et al., 2018).
In reporting the final performance, we tested the chosen model
on the Pitts250k (Torii et al., 2015), Pitts30k (Gronát et al., 2013),
Tokyo 24/7 (Torii et al., 2018), Mapillary Street Level Sequences
(MSLS) (Warburg et al., 2020), SF-XL (Berton et al., 2022a), St.
Lucia (Milford and Wyeth, 2008), SVOX (Berton et al., 2021),
and Nordland (Sünderhauf et al., 2013) datasets.

5.2 D-CosPlace vs CosPlace

In this section, we compare the results obtained by D-CosPlace
with those from the original CosPlace algorithm in terms of both
convergence speed (cf. Table 2) and final model quality given the
time budget (cf. Table 1).

5.2.1 Convergence speed
We compared the convergence speed of D-CosPlace to that

of the vanilla CosPlace. For both algorithms, we report the wall-
clock training times under the same conditions using a single
GPU and 4 GPUs separately. The results in Table 2 show that D-
CosPlace achieves the same final accuracy as that of CosPlace while
requiring less than half of the time budget. This is because the
proposed parallel training procedure avoids training instabilities
due to changing the CosGroup, thus leveraging the potential of the
classification proxy task in a more efficient manner.

5.2.2 Final model quality
In addition to being significantly faster, D-CosPlace also

achieves a better final model quality within the time budget. Table 1
shows that the distributed version consistently outperforms the
vanilla baseline on all the tested datasets. The reason behind this
rather prominent gap is that our formulation effectively implements
the objective function in Eq. 2 while CosPlace implements Eq. 2.

5.2.3 Scalability on the number of CosGroups
To further corroborate the claim that our formulation of

CosPlace training is effective for exploiting larger datasets, we
present the results for various numbers of training groups. It is
noted that the original CosPlace treats Ḡ as a hyperparameter
and determined that Ḡ = {Gi}

8
i=1 worked best, whereas adding more

groups would be detrimental. The results in Table 1 confirm this
limitation of CosPlace and show that D-CosPlace can effectively
utilize more CosGroups, owing to the formulation of the objective
function of Eq. 2.

5.2.4 Fair comparison with larger batch size
Since the distributed version trains Nt groups in parallel using

the same original batch size for all groups (e.g., respective classifiers),
the actual batch size with respect to θb is Nt times larger than
that used for the vanilla CosPlace. For fair comparison, we also
implemented CosPlace with the same batch size to investigate if a
larger batch size would be needed to achieve faster convergence.
The results presented in Figure 4 show that there is no advantage in
increasing the batch size for the convergence speed or final model
quality, further corroborating that CosPlace’s problem lies in the
sequential training procedure.

5.3 Ablation study: effect of local steps

Local steps ensure that the distributed training is more efficient
from a communication perspective by lowering the synchronization
frequency. However, even when a large number of local steps is
desirable, too many steps could slow the convergence when the
training distributions are different, like in our case. For this reason, J
is treated as a hyperparameter. Table 2 shows the impact of the local
steps on the convergence speed and final model quality, where the
former is expressed in terms of wall-clock time to reach the accuracy
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FIGURE 4
Noisy loss during training of a CosGroup in CosPlace: the training loss is plotted for the first 2.5k steps, which correspond to an iteration with batch size
128 and two iterations with batch size 256. It can be observed that the stepwise behavior remains even after enlarging the batch size, suggesting that
other factors may be involved. The abrupt jumps observed for the orange, green, and red lines are attributed to the changes in the trained CosGroups
(and hence the final classification head), which occur in fewer steps with respect to the blue line, owing to the increase in batch size.

of the vanilla CosPlace and the latter is expressed as R@1/R@5. It can
be seen that J = 10 produces the optimal balance between training
time, convergence speed, and final model quality.

5.4 Comparisons with other methods

5.4.1 Baselines
Herein, we compare D-CosPlace with a number of SOTA

VPR methods, namely, the evergreen NetVLAD Arandjelović et al.
(2018), SFRS Ge et al. (2020) that improves on NetVLAD with
an ingenious augmentation technique, Conv-AP Ali-bey et al.
(2022) that uses a multisimilarity loss Wang et al. (2019), CosPlace
Berton et al. (2022a), and MixVPR Ali-bey et al. (2023) that uses a
powerful and efficient MLP-mixer as the aggregator. For NetVLAD
and SFRS, we use the authors’ best-performing backbone, which
is the VGG16 (Simonyan and Zisserman, 2015), whereas for all
the other methods, we use their respective implementations with a
ResNet-50 backbone and output dimensionality of 512.

5.4.2 Results
As seen from the results in Table 3, D-CosPlace not only

improves upon the vanilla CosPlace by a large margin of +11.5% on
averageR@1but also achieves new results as a SOTAVPRalgorithm,
surpassing CONV-AP by +1.6% on average R@1. These results
show that the improved formulation of the classification proxy task
originally introduced in CosPlace effectively learns better features
for image retrieval.

5.5 Open challenges

Our analysis in Section 3.3 reveals that CosPlace’s training
procedure experiences severe jumps in the loss function due to the

optimization procedure not implementing the objective function
in Eq. 2 correctly. Indeed, the sharp jumps in loss occur only in
the vanilla CosPlace because of the training process that optimizes
different CosGroups (and their related classification heads) one
at a time. This does not occur in D-CosPlace since all classifiers
associated with the CosGroup are jointly optimized (Figure 3). A
second challenge that we experienced with CosPlace is the noisy
optimization of a single CosGroup, as shown by the loss in Figure 4.
It is noted that the training loss is particularly unstable and remains
high for many steps before dropping abruptly, with a seemingly
periodic cycle every ≈1k steps. We initially associated this behavior
with the batch size, especially if it is a low value when compared
to the output dimensionality of the final layer. Each CosGroup
is in fact associated with ≈35k classes on average, which makes
the problem hard to learn. Additionally, the LMCL loss seeks a
hard margin boundary, which can be difficult to achieve in high-
dimensional problems. To validate this hypothesis, we increased
the batch size to fill the memory of an NVIDIA-V100-32 GB GPU.
The results in Figure 4 show that the problem persists even after
increasing to 1,024 samples. Considering the validation results,
the initial value of 32 still gives the best validation performance,
substantiating the conclusion that increasing the batch size is not
a practical solution. This difficulty of learning a single CosGroup is
still present in D-CosPlace since the optimization with respect to a
CosGroup is the same as that for CosPlace. We believe this to be an
intrinsic limitation of the classification approach of CosPlace that
will be an interesting direction for future works.

6 Conclusion

In this work, we analyzed the training procedure of CosPlace, a
recent SOTA large-scale VPRmethod, by showing that its sequential
protocol does not correctly implement the intended objective.
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By leveraging an incremental perspective on the problem, we
modified the training procedure such that it correctly optimizes the
learning objective function. This new formulation enables efficient
distributed training since it allows disjoint sets of the dataset to
be preallocated to the assigned compute nodes and benefits from
the multiple local training steps. In particular, we show that i)
D-CosPlace converges faster than CosPlace and that ii) within a
fixed time budget, D-CosPlace outperforms CosPlace by a large
margin. We also outline some open challenges in further speeding
up the training of CosPlace, highlighting the instabilities during
the training of the CosGroups. We believe that these insights are
valuable for the research community in not only the field of VPR
but also other large-scale image retrieval tasks.
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