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Inferential decision-making algorithms typically assume that an underlying
probabilistic model of decision alternatives and outcomes may be learned a
priori or online. Furthermore, when applied to robots in real-world settings they
often perform unsatisfactorily or fail to accomplish the necessary tasks because
this assumption is violated and/or because they experience unanticipated
external pressures and constraints. Cognitive studies presented in this and
other papers show that humans cope with complex and unknown settings by
modulating between near-optimal and satisficing solutions, including heuristics,
by leveraging information value of available environmental cues that are
possibly redundant. Using the benchmark inferential decision problem known
as “treasure hunt”, this paper develops a general approach for investigating and
modeling active perception solutions under pressure. By simulating treasure
hunt problems in virtual worlds, our approach learns generalizable strategies
from high performers that, when applied to robots, allow them to modulate
between optimal and heuristic solutions on the basis of external pressures
and probabilistic models, if and when available. The result is a suite of active
perception algorithms for camera-equipped robots that outperform treasure-
hunt solutions obtained via cell decomposition, information roadmap, and
information potential algorithms, in both high-fidelity numerical simulations
and physical experiments. The effectiveness of the new active perception
strategies is demonstrated under a broad range of unanticipated conditions that
cause existing algorithms to fail to complete the search for treasures, such as
unmodelled time constraints, resource constraints, and adverse weather (fog).

KEYWORDS

satisficing, heuristics, active perception, human, studies, decision-making, treasure
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1 Introduction

Rational inferential decision-making theories obtained from human or robot studies
to date assume that a model me be used either off-line or on-line in order to compute
satisficing strategies that maximize appropriate utility functions and/or satisfy given
mathematical constraints (Simon, 1955; Herbert, 1979; Caplin and Glimcher, 2014;
Nicolaides, 1988; Simon, 2019). When a probabilistic world model is available, for
example, methods such as optimal control, cell decomposition, probabilistic roadmaps,
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and maximum utility theories, may be applied to inferential
decision-making problems such as robot active perception,
planning, and feedback control (Fishburn, 1981; Lebedev et al.,
2005; Scott, 2004; Todorov and Jordan, 2002; Ferrari andWettergren,
2021; Latombe, 2012; LaValle, 2006). In particular, active perception,
namely, the ability to plan and select behaviors that optimize
the information extracted from the sensor data in a particular
environment, has broad and extensible applications in robotics that
also highlights human abilities to make decisions when only partial
or imperfect information is available.

Many “model-free” reinforcement learning (RL) and
approximate dynamic programming (ADP) approaches have also
been developed on the basis of the assumption that a partial or
imperfect model is available in order to predict the next system state
and/or “cost-to-go”, and optimize the immediate and potential future
rewards, such as information value (Bertsekas, 2012; Si et al., 2004;
Powell, 2007; Ferrari and Cai, 2009; Sutton and Barto, 2018;Wiering
and Van Otterlo, 2012; Abdulsaheb and Kadhim, 2023). Given
the computational burden carried by learning-based methods,
various approximations have also been proposed. For instance,
approximate dynamic programming (ADP) methods have been
developed based on the assumption that a partial or imperfectmodel
is available to predict the next system state and/or “cost-to-go.”These
methods aim to optimize immediate and potential future rewards,
such as information value (Bertsekas, 2012; Si et al., 2004; Powell,
2007; Ferrari and Cai, 2009; Sutton and Barto, 2018; Wiering and
Van Otterlo, 2012), typically also exploiting world models available
a priori in order to predict the next world state.

Other machine learning (ML) and artificial intelligence (AI)
methods can be broadly categorized into two fundamental learning-
based approaches. The first approach is deep reinforcement learning
(DRL), where models incorporate classical Markov decision process
theories and use a human-crafted or data-extracted reward
function to train an agent to maximize the probability of
gaining the highest reward (Silver et al., 2014; Lillicrap et al., 2015;
Schulman et al., 2017). The second approach follows the learning
from demonstration paradigm, also known as imitation learning
(Chen et al., 2020; Ho and Ermon, 2016). Because of their need for
extensive and domain-specific data, data-driven methods are also
not typically applicable to situations that cannot be foreseen a priori.

Given the ability of natural organisms to cope with uncertainty
and adapt to unforeseen circumstances, a parallel thread of
development has focused on biologically inspired models, especially
for perception-based decision making. These methods are typically
computationally highly efficient and include motivational models,
which use psychological motivations as incentives for agent
behaviors (Lewis and Cañamero, 2016; O’Brien and Arkin, 2020;
Lones et al., 2014), cognitive models, which transfer human mental
and emotional functions into robots (Vallverdú et al., 2016; Martin-
Rico et al., 2020). The implementation of cognitive models are
usually in the form of heuristics, and their applications range from
energy level maintenance (Batta and Stephens, 2019) to domestic
environment navigation (Kirsch, 2016).

Humans have also been shown to use internal world models
for inferential decision-making whenever possible, a characteristic
first referred to as “substantial rationality” in (Simon, 1955; Herbert,
1979). As also shown by the human studies on passive and
active satisficing perception presented in this paper, given sufficient

data, time, and informational resources, a globally rational human
decision-maker uses an internal model of available alternatives,
probabilities, and decision consequences to optimize both decision
and information value in what is known as a “small-world”
paradigm (Savage, 1972). In contrast, in “large-world” scenarios,
decision-makers face environmental pressures that prevent them
from building an internal model or quantifying rewards, because
of pressures such as missing data, time and computational power
constraints, or sensory deprivation, yet still manage to complete
tasks by using “bounded rationality” (Simon, 1997). Under these
circumstances, optimization-based methods may not only be
infeasible, returning no solution, but also cause disasters resulting
from failing to take action (Gigerenzer and Gaissmaier, 2011).
Furthermore, Simon and other psychologists have shown that
humans can overcome these limitations in real life via “satisficing
decisions” that modulate between near-optimal strategies and the
use of heuristics to gather new information and arrive at fast and
“good-enough” solutions to complete relevant tasks.

To develop satisficing solutions for active robot perception,
herein, we consider here the class of sensing problems known
as treasure hunt (Ferrari and Cai, 2009; Cai and Ferrari, 2009;
Zhang et al., 2009; Zhang et al., 2011). The mathematical model
of the problem, comprised of geometric and Bayesian network
descriptions demonstrated in (Ferrari and Wettergren, 2021; Cai
and Ferrari, 2009), is used to develop a new experimental design
approach that ensures humans and robots experience the same
distribution of treasure hunts in any given class, including time,
cost, and environmental pressures inducing satisficing strategies.
This novel approach enables not only the readily comparison of the
human-robot performance but also the generalization of the learned
strategies to any treasure hunt problem and robotic platform.
Hence, satisficing strategies are modeled using human decision
data obtained from passive and active satisficing experiments,
ranging from desktop to virtual reality human studies sampled
from the treasure hunt model. Subsequently, the new strategies are
demonstrated through both simulated and physical experiments
involving robots under time and cost pressures, or subject to sensory
deprivation (fog).

The treasure hunt problem under pressure, formulated in
Section 2. and referred to as satisficing treasure hunt herein, is an
extension of the robot treasure hunt presented in Cai and Ferrari
(2009); Zhang et al. (2009), which introduces motion planning and
inference in the search for Spanish treasures originally used in Simon
and Kadane (1975) to investigate satisficing decisions in humans.
Whereas the search for Spanish treasures amounts to searching
a (static) decision tree with hidden variables, the robot treasure
hunt involves a sensor-equipped robot searching for targets in an
obstacle-populated workspace. As shown in Ferrari and Wettergren
(2021) and references therein, the robot treasure hunt paradigm is
useful in many mobile sensing applications involving multi-target
detection and classification. In particular, the problem highlights
the coupling of action decisions that change the physical state of
the robot (or decision-maker) with test decisions that allow the
robot to gather information from the targets via onboard sensors. In
this paper, the satisficing treasure hunt is introduced to investigate
and model human satisficing perception strategies under external
pressures in passive and active tasks, first via desktop simulations
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and then in the Duke immersive Virtual Environment (DiVE)
(Zielinski et al., 2013), as shown in Supplementary Figure S1.

To date, substantial research has been devoted to solving treasure
hunt problems for many robots/sensor types, in applications as
diverse as demining infrared sensors and underwater acoustics,
under the aforementioned “small-world” assumptions (Ferrari and
Wettergren, 2021). Optimal control and computational geometry
solution approaches, such as cell decomposition (Cai and Ferrari,
2009), disjunctive programming (Swingler and Ferrari, 2013), and
information roadmap methods (IRM) (Zhang et al., 2009), have
been developed for optimizing robot performance by minimizing
the cost of traveling through the workspace and processing
sensor measurements, while maximizing the sensor rewards such
as information gain. All these existing methods assume prior
knowledge of sensor performance and of the workspace, and are
applicable when the time and energy allotted to the robot are
adequate for completing the sensing task. Information-driven path
planning algorithm integrated with online mapping, developed in
Zhu et al. (2019); Liu et al. (2019); Ge et al. (2011), have extended
former treasure hunt solutions to problems in which a prior
model of the workspace is not available and must be obtained
online. Optimization-based algorithms have also been developed for
fixed end-time problems with partial knowledge of the workspace,
on the basis of the assumption that a probabilistic model of
the information states and unlimited sensor measurements are
available (Rossello et al., 2021). This paper builds on this previous
work to develop heuristic strategies applicable when uncertainties
cannot be learned or mathematically modeled in closed form, and
the presence of external pressures might prevent task completion,
e.g., adverse weather or insufficient time/energy.

Inspired by previous findings on human satisficing heuristic
strategies (Gigerenzer and Gaissmaier, 2011; Gigerenzer, 1991;
Gigerenzer and Goldstein, 1996; Gigerenzer, 2007; Oh et al., 2016),
this paper develops, implements, and compares the performance
between existing treasure hunt algorithms and human participants
engaged in the same sensing tasks and experimental conditions
by using a new design approach. Subsequently, human strategies
and heuristics outperforming existing state-of-the-art algorithms
are identified and modeled from data in a manner that can
be extended to any sensor-equipped autonomous robot. The
effectiveness of these strategies is then demonstrated with camera-
equipped robots via high-fidelity simulations as well as physical
laboratory experiments. In particular, humanheuristics aremodeled
by using the “three building blocks” structure for formalizing general
inferential heuristic strategies presented in Gigerenzer and Todd
(1999). The mathematical properties of heuristics characterized by
this approach are then compared with logic and statistics, according
to the rationale in Gigerenzer and Gaissmaier (2011).

Three main classes of human heuristics for inferential decisions
exist: recognition-based decision-making (Ratcliff and McKoon,
1989; Goldstein and Gigerenzer, 2002), one-reason decision-
making (Gigerenzer, 2007; Newell and Shanks, 2003), and trade-
off heuristics (Lichtman, 2008). Although categorized by respective
decision mechanisms, these classes of human heuristics have been
investigated in disparate satisficing settings, thus complicating the
determination of which strategies are best equipped to handle
different environmental pressures. Furthermore, existing human
studies are typically confined to desktop simulations and do not

account for action decisions pertaining to physical motion and path
planning in complex workspaces. Therefore, this paper presents a
new experimental design approach (Section 3) and tests in human
participants to analyze and model satisficing active perception
strategies (Section 7) that are generalizable and applicable to robot
applications, as shown in Section 8.

The paper also presents new analysis and modeling studies of
human satisficing strategies in both passive and active perception
and decision-making tasks (Section 3). For passive tasks, time
pressure on inference is introduced to examine subsequent
effects on human decision-making in terms of decision model
complexity and information gain. The resulting heuristic strategies
(Section 5) extracted from human data demonstrate adaptability to
varying time pressure, thus enabling inferential decision-making
to meet decision deadlines. These heuristics significantly reduce
the complexity of target feature search from an exhaustive search
O(2n) to O(nlog(n) + n), where n is the number of target features.
Additionally, they exhibit superior classification performance
when compared to optimizing strategies that utilize all target
features for inference (Section 6), demonstrating the less-can-be-
more effect (Gigerenzer and Gaissmaier, 2011).

For active tasks, when the sensing capabilities are significantly
hindered, such as in adverse weather conditions, human strategies
are found to amount to highly effective heuristics that can be
modeled as shown in Section 7, and generalized to robots as
shown in Section 8. The human strategies discovered from human
studies are implemented on autonomous robots equipped with
vision sensors and compared with existing planning methods
(Section 8) through simulations and physical experiments in
which optimizing strategies fail to complete the task or exhibit
very poor performance. Under information cost pressure, a
decision-making strategy developed using mixed integer nonlinear
program (MINLP) (Cai and Ferrari, 2009; Zhang et al., 2009)
was found to outperform existing solutions as well as human
strategies (Section 8). By complementing the aforementioned
heuristics, the MINLP optimizing strategies provide a toolbox for
active robot perception under pressures that is verified both in
experiments and simulations.

2 Treasure hunt problem formulation

This paper considers the active perception problem known as
treasure hunt, in which a mobile information-gathering agent, such
as a human or an autonomous robot, must find and localize all
important targets, referred to as treasures, in an unknownworkspace
W ⊂ ℝ3.Thenumber of possible treasures or targets, r, is unknown a
priori, and each target i may constitute a treasure or another object,
such as a clutter or false alarm, such that its classification may be
represented by a random and discrete hypothesis variable Yi with
finite rangeY = {yj | j ∈ J }, where yj represents the jth category ofYi.
WhileYi is hidden or non-observable, it may be inferred from pi ∈ ℤ
observed features among a set of n discrete random variables Xi =
{Xi,1,…,Xi,n}, and the lth (1 ≤ l ≤ n) feature has a finite range Xl =
{xl,j | j ∈N } [see (Ferrari and Cai, 2009; Zhang et al., 2011; Ferrari
and Vaghi, 2006) for more details]. At the onset of the search, Xi and
Yi are assumed unknown for all targets, as are the number of targets
and treasures present in W . Thus, the agent must first navigate the
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FIGURE 1
Human (A) and robot (B) state, configuration, and passive and active sensor FOVs.

workspace to find the targets and, then, observe their features to infer
their classification.

All r targets are fixed, at unknown positions x1,…,xr ∈W , and
must be detected, observed, and classified using onboard sensors
with bounded field-of-view (FOV) (Ferrari and Wettergren, 2021):

Definition 2.1: (Field-of-view (FOV)) For a sensor characterized
by a dynamic state, in a workspace W ⊂ ℝ3, the FOV is defined as a
closed and bounded subset S ⊂W such that a target featureXi,l may
be observed at any point xi ∈ S .

In order to obtain generalizable strategies for camera-equipped
robots, in both human and robot studies knowledge of the
targets is acquired, at a cost, through vision, and the sensing
process is modeled by a probabilistic Bayesian network learned
from data (Ferrari and Wettergren, 2021).

Although the approach can be easily extended to other
sensor configurations, in this paper it is assumed that the
information-gathering agent is equipped with one passive sensor
for obstacle/target collision avoidance and localization, with FOV
denoted by SP, and one active sensor for target inference and
classification, with FOV denoted by SI (Figure 1B). In human
studies, the same passive/active configuration is implemented via
virtual reality (VR) wand/joystick and goggles, and by measuring
and constraining the human FOV, as shown in Figure 1A.
Furthermore, the workspace is populated with q known fixed, rigid,
and opaque objects B1,…,Bq ⊂W that constitute obstacles as well
as occlusions. Therefore, in order to observe the targets, the agent
must navigate in W avoiding both collisions and occluded views,
according to the following line of sight (LOS) visibility constraint:

Definition 2.2: (Line of sight) Given the sensor position s ∈W , a
target at x ∈W is occluded by an object B ⊂W if and only if,

L (s,x) ∩B ≠ ∅

where L(s,x) = {(1− γ)s+ γx |γ ∈ [0,1]}.
Let FW denote an inertial frame embedded in W , and I

denote the geometry of the agent body. The motion of the agent

relative to the workspace can then be described by the position and
orientation of a body frame FS , embedded in the agent, relative to
FW . Thus, the state of the information-gathering agent at tk can be
described by the vector qk = [s

T
k θk ξk ϕk]

T, where sk represents
the inertial position of the information-gathering agent in W , θk ∈
𝕊1 is the orientation of the agent, and ξk ∈ [ξl,ξu] and ϕk ∈ [ϕl,ϕu]
are preferred sensing directions of the “passive” and “active” FOVs,
respectively. In addition, ξl,ξu and ϕl,ϕu bound the preferred sensing
directions for SP and SI with respect to the information-gathering
agent body. By this approach it is possible to model FOVs able to
move with respect to the agent body, as required by the motion of
the human head or pan-tilt-zoom cameras (Figure 1).

Obstacle avoidance is accomplished by ensuring that the
agent configuration, defined as tk = [sTk θk]

T, remains in free
configuration space at all times. Let C represent all possible
agent configurations, and CBj = {t ∈ C|I(t) ∩Bj ≠ ∅} denote the C-
obstacle associatedwith objectBj [defined in Ferrari andWettergren
(2021) and references therein). Then, the free configuration space is
the space of configurations that avoid collisions with the obstacles
or, in other words, that are the complement of all C-obstacle regions
in C, i.e., Cfree = {C\⋃

q
j=1CBj}.

According to directional visibility theory (Gemerek et al., 2022),
the subset of the free space at which a target is visible by a sensor in
the presence of occlusions can defined as follows:

Definition 2.3: (Target Visibility Region) For a sensor with FOV
SP ⊂W , in the presence of q occlusionsBj(j = 1,…,q) a target at xi ∈
W is visible within the target visibility region that satisfies both FOV
and LOS conditions, i.e.,:

T V i = {t ∈ Cfree | xi ∈ SP,L(s,xi) ∩Bj = ∅,∀j}

It follows that multiple targets are visible to the
sensor in the intersection of multiple visibility regions
defined as Gemerek et al. (2022):

Definition 2.4: (Set Visibility Region) Given a set of r target-
visibility regions {T V i | i ∈ {1,2,…, r}}, let S ⊆ {1,2,…, r} represent
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the set of target indices of two or more intersecting regions, such
that the following holds ⋂i∈ST Vi ≠ ∅. Then, the set visibility region
of target i is defined as

VS = {⋂
i∈S

T Vi | S ⊆ {1,2,…, r}}

Similarly, after a target i is detected and localized, the agent
may observe the target features using the active sensor with FOV
SI provided xi ∈ SI(q) and L(s,xi) ∩Bj = ∅, 1 ≤ j ≤ q. In order to
explore the tradeoff of information value and information cost in
inferential decisions, use of the active sensor is associated with an
information cost J(tk) that may reflect the use of processing power,
data storage, and/or need for covertness. Then, the information-
gathering agent, must make a deliberate decision to observe one
or more target features prior to obtaining the corresponding
measurement, which may consist of an image or raw measurement
data from which feature Xi may be extracted. For simplicity,
measurement errors are assumed negligible but they may be easily
introduced following the approach in [10, Chapter 9]. Then, the
goal of the treasure hunt is to infer the hypothesis variable Yi
from Xi, i = 1,2,…, using a probabilistic measurement model
P(Yi,Xi,1,…,Xi,n) (Ferrari and Cai, 2009). The measurement model,
chosen here as a Bayesian network (BN) (Figure 2D), consists of a
probabilistic representation of the relationship between the observed
target features and the target classification that may be learned
from expert knowledge or prior training data as shown in [10,
Chapter 9]. Importantly, because the agent may not have the time
and/or resources to observe all target features, classification may be
performed from a sequence of partial observations.

Target features are observed through test decisions made by the
information-gathering agent, which result into soft or hard evidence
for the probabilistic model P(Yi,Xi,1,…,Xi,n) (Jensen and Nielsen,
2007). Let u(tk) ∈ Uk denote at time tk test decision chosen from the
set of all admissible tests Uk ⊂ U . The set U = {ϑc,ϑs,ϑun} consists
of all test decisions, where ϑc and ϑs represent the decisions to
continue or stop observing target features, and ϑun represents the
decision to not observe any feature. The test decision u(tk) generates
a measurement variable at time step tk+1,

z(tk+1) = xi,l, 1 ≤ i ≤ r, 1 ≤ l ≤ n, xi,l ∈ Xl

observed after paying the information cost J(tk) ∈ ℤ, which is
modeled as cumulative number of observed features up to tk. When
the measurement budget R is finite, it may not be exceeded by the
agent and, thus, the treasure hunt problem must be solved subject to
the hard constraint

J(tk) ≤ R.

Action decisions modify the state of the world and/or
information-gathering agent (Jensen and Nielsen, 2007). In the
treasure hunt problem, action decisions are control inputs that
decide the position and orientation of the agent and of the FOVs SP
and SI. Let a(tk) ∈Ak denote an action decision chosen at time tk
from set Ak of all admissible actions. The agent motion can then be
described by a causal model as the following difference equation,

qk+1 = f[qk,a(tk) , tk]

where f[⋅] is obtained by modeling the agent dynamics.
Then, an active perception strategy consists of a sequence

of action and test decisions that allow the agent to search the
workspace and obtain measurements from targets distributed
therein, as follows:

Definition 2.5: (Inferential Decision Strategy) An active inferential
decision strategy is a class of admissible policies that consists of a
sequence of functions,

σ = {π0,π1,…,πT}

where πkmaps all past information-gathering agent states, test
variables, action and test decisions into admissible action and test
decisions,

{a(tk) ,u(tk)} = πk [q0,a (t1) ,u (t1) ,z (t1) , J (t1) ,q1,

…,a(tk−1) ,u(tk−1) ,z(tk−1) , J(tk−1) ,qk−1]

such that πk[⋅] ∈ {Ak,Uk}, for all k = 1,2,…,T.
Based on all the aforementioned definitions, the problem is

formulated as follows:
Problem 1: (Satisficing Treasure Hunt)

Given an initial state q0 and the satisificing aspiration level of
total information value Δ, the satisficing treasure hunt problem
consists of finding an active inferential decision making strategy, σ,
over a known and finite time horizon (0,T], such that the cumulative
information value collected from all observed features is no less than
Δ,

r

∑
i=1
[1(∃k,xi ∈ SI (qk) ∧ L(sk,xi) ∩Bj,∀j) I(Yi;Xi)] ≥ Δ (1)

where

qk+1 = f[qk,a(tk) , tk] (2)

ŷi = arg maxy∈YP(Yi = y,Xi,1,…,Xi,n) (3)

I(Yi;Xi) =H(Yi) −H(Yi | Xi) (4)

J (tT) ≤ R (5)

i = 1,2,…, r, 1 ≤ k ≤ T (6)

j = 1,2,…,q (7)

An optimal search strategymakes use of the agentmotionmodel
(Equation 2), measurement model (Equation 3) and knowledge
of the workspace W to maximize the information value while
minimizing the distance traveled and the cumulative information
cost (Ferrari and Wettergren, 2021). A feasible search strategy may
use all or part of the availablemodels of the environment and targets,
or knowledge of prior states and decisions to produce a sequence of
action and test decisions that satisfy the objective (Equation 1) by
the desired end time tT.

3 Human satisficing studies

Human strategies and heuristics for active perception are
modeled and investigated by considering two classes of satisficing
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FIGURE 2
First-person view in training phase without prior target feature revealed (A) and with feature revealed by a participant (B) in the Webots®workspace (C)
and target features encoded in a BN structure with ordering constraints (D).

treasure hunt problems, referred to as passive and active
experiments. Passive satisficing experiments focus on treasure
hunt problems in which information is presented to the decision
maker who passively observes features needed to make inferential
decisions. Active satisficing experiments allow the decisionmaker to
control the amount of information gathered in support of inferential
decisions. Additionally, treasure hunt problems with both static and
dynamic robots are considered in order to compare with and extend
previous satisficing studies, evolving human studies traditionally
conducted on a desktop (Oh et al., 2016; Toader et al., 2019; Oh-
Descher et al., 2017) to ambulatory human studies in virtual reality
that parallel mobile robots applications (Zielinski et al., 2013).

Previous cognitive psychology studies showed that the urgency
to respond (Cisek et al., 2009) and the need for fast decision-making
(Oh et al., 2016) significantly affect human decision evidence
accumulation, thus leading to the use of heuristics in solving
complex problems. Passive satisficing experiments focus on test
decisions, which determine the evidence accumulation of the agent
based on partial information under “urgency”. Inspired by satisficing
searches for Spanish treasures with feature ordering constraints
(Simon and Kadane, 1975), active satisficing includes both test and
action decisions, which change not only the agent’s knowledge and
information about the world but also its physical state. Because
information gathering by a physical agent such as a human or robot
is a causal process (Ferrari and Wettergren, 2021), feature ordering

constraints are necessary in order to describe the temporal nature of
information discovery.

Both passive and active satisficing human experiments comprise
a training phase and a test phase that are also similarly applied
in the robot experiments in Sections 6–8. During the training
phase, human participants learn the validity of target features in
determining the outcome of the hypothesis variable. They receive
feedback on their inferential decisions to aid in their learning
process. During the test phase, pressures are introduced, and action
decisions are added for active tasks. Importantly, during the test
phase, no performance feedback or ground truth is provided to
human participants (or robots).

3.1 Passive satisficing task

The passive satisficing experiments presented in this
paper adopted the passive treasure hunt problem, shown
in Supplementary Figure S2 and related to the well-known
weather prediction task (Gluck et al., 2002; Lagnado et al., 2006;
Speekenbrink et al., 2010). The problem was first proposed in
Oh et al. (2016) to investigate the cognitive processes involved in
human test decisions under pressure. In view of its passive nature,
the experimental platform of choice consisted of a desktop computer
used to emulate the high-paced decision scenarios, and to encourage
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the human participants to focus on cue(feature) combination rather
than memorization (Oh et al., 2016; Lamberts, 1995).

The stimuli presented on a screen were precisely controlled,
ensuring consistency across participants and minimizing
distractions from irrelevant objects or external factors (Garlan et al.,
2002; Lavie, 2010). In each task, participants were presented with
two different stimuli from which to select the “treasure” before the
total time, tT, at one’s disposal has elapsed (time pressure). The
treasures are hidden but correlated with the visual appearance of
the stimulus, and the underlying probabilities must be learned
by trial and error during the training phase. Each stimulus is
characterized by four binary cues or “features”, namely, color (X1),
shape (X2), contour (X3), and line orientation (X4), illustrated
in the table in Supplementary Figure S2. The goal of this passive
satisficing task is to find all treasures among stimuli that are
presented on the screen or, in other words, to infer a binary
hypothesis variable Y, with rangeY = {y1,y2}, where y1 = “treasure”
and y2 = “not treasure”. The task is passive by design because the
participant cannot control the information displayed in order to aid
his/her decisions.

During the training phase, each (human) participant performed
240 trials in order to learn the relationship between features, X =
{X1,X2,X3,X4}, and the hypothesis variable Y. After the training
phase, participants were divided into two groups. The first group
underwent a moderate time pressure (TP) experiment and was
tested against two datasets, each consisting of 120 trials. Participants
were required to make decisions within a response time tT =
750 ms, which allowed ample time to ponder on the features
presented and how they related to the treasure. The second group
underwent an intense TP experiment, with a response time of
only tT = 500 ms. Participants in this group also encountered two
datasets, each containing 120 trials. A more detailed description of
the experiment, including redundant features, and human subject
procedures that informed, among other parameters, the number of
trials can be found in Oh et al. (2016). Subsequently, the task was
modified to develop a number of active satisficing treasure hunts
in which information about the treasures had to be obtained by
navigating a complex environment, as explained in the next section.

As shown in Table 1, the relevant statistics for passivesatisficing
experiments are summarized in the upper part. Similarly, the
statistics for active satisficing experiments are presented in the lower
part, where the human participants are allowed to move in an
environment and choose the interaction order with the targets. The
statistics correspond to three conditions: “No Pressure”, “Info Cost
Pressure”, and “Sensory Deprivation”. These pressure conditions will
be introduced in detail in Section 3.2.

3.2 Active satisficing treasure hunt task

The satisficing treasure hunt task is an ambulatory study in
which participants must navigate a complex environment populated
with a number of obstacles and objects in order to first find
a set of targets (stimuli) and, then, determine which are the
treasures. Additionally, once the targets are inside the participant’s
FOV, features are displayed sequentially to him/her only after
paying cost for the information requested. The ordering constraints
(illustrated in Figure 2D) allow for the study of information cost and

its role in the decision making process by which the task is to be
performed not only under time pressure but also a fixed budget.
Thus, the satisficing treasure hunt allows not only to investigate
how information about a hidden variable (treasure) is leveraged,
but also how humans mediate between multiple objectives such as
obstacle avoidance, limited sensing resources, and time constraints.
Participants must, therefore, search and locate the treasures without
any prior information on initial target features, target positions, or
workspace and obstacle layout.

In order to utilize a controlled environment that can be easily
changed to study all combinations of features, target/obstacle
distributions, and underlying probabilities, the active satisficing
treasure hunt task was developed and conducted in a virtual reality
environment known as the DiVE (Zielinski et al., 2013). By this
approach different experiments were designed and easily modified
so as to investigate different difficulty levels and provide the human
participants repeatable, well-controlled, and immersive experience
of acquiring and processing information to generate behavior
(Van Veen et al., 1998; Pan and Hamilton, 2018; Servotte et al.,
2020). The DiVE consists of a 3 m × 3 m × 3 m stereoscopic rear
projected room with head and hand tracking, allowing participants
to interact with a virtual environment in real-time (Zielinski et al.,
2013). By developing a new interface between the DiVE and
the robotic software WebotsⓇ, this research was able to readily
introduce humans within the same environments designed for
humans, and vice versa, according to the BN model of the desired
treasure hunt task.The structure of the BNused for the human/robot
treasure hunt perception task is plotted in Figure 2D. The BN
parameters, not shown for brevity, were varied across trials to
obtain a representative dataset from the human study from which
mathematical models of human decision strategies could be learned
and validated.

Six human participants were trained and given access to the
DiVE for a total of fifty-four trials with the objective tomodel aspects
of human intelligence that outperform existing robot strategies.
The number of trials and participants is adequate to the scope of
the study which was not to learn from a representative sample of
the human population, but to extract inferential decision making
strategies generalizable to treasure hunt robot problems. Besides
manageable in view of the high costs and logistical challenges
associated with running DiVE experiments, the size of the resulting
dataset was also found to be adequate to varying all of the workspace
and target characteristics across experiments, similarly to the studies
in Ziebart et al. (2008); Levine et al. (2011). Moreover, through the
VR googles and environment, it was possible to have precise and
controllable ground truth not only about the workspace, but also
about the human FOV, SP, within which the human could observe
critical information such as targets, features, and obstacles.

A mental model of the relationship between target features and
classification was first learned by the human participants during
100 stationary training sessions (Figures 2A, B) in which the target
features (visual cues), comprised of shape (X1), color (X2), and
texture (X3), followed by the target classification Y, where Y =
{y1,y2}, were displayed on a computer screen, through the desktop
WebotsⓇ simulation shown in Figure 2. Participants were then
instructed to search for treasures inside an unknown 10 m × 10 m
WebotsⓇ workspace with r = 30 targets (Figure 2C), by paying
information cost J(tk) to see the features,Xi = {Xi,1,Xi,2,Xi,3}, of every
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TABLE 1 Experiment conditions and trials.

Experiment type Pressure condition Number of participants Number of training
targets for each

participant

Number of test trials
for each participant

Passive Satisficing

NP 48 240 120

Moderate TP 48 240 120

Intense TP 48 240 120

Active Satisficing

No Pressure 6 100 3

Info Cost Pressure 6 100 3

Sensory Deprivation 6 100 3

target (labeled by i) inside their FOV sequentially over time (test
phase). Based on the features observed, which may have included
one or more features in the set X, participants were asked to decide
which targets were treasures (Y = y1) or not (Y = y2). No feedback
about their decisions was provided and, as explained in Section 2,
the task had to be performed within a limited budget R and time
period tT.

Mobility and ordering feature constraints are both critical to
autonomous sensors and robots, because they are intrinsic to how
these cyber-physical systems gather information and interact with
the world around them. Thanks to the simulation environments
and human experiment design presented in this section, we were
able to engage participants in a series of classification tasks
in which target features were revealed only after paying both
a monetary and time cost, similarly to artificial sensors that
require both computing and time resources to process visual
data. Participants were able to build a mental model built for
decision making with the inclusion of temporal constraints during
the training phase, according to the BN conditional probabilities
(parameters) of each study. By sampling theWebotsⓇ environments
from each BN model, selected by the experiment designer to
encompass the full range of inference problem difficulty, and
by transferring them automatically into VR (Figure 3) the data
collected was guaranteed ideally suited for the modeling and
generalization of human strategies to robots (Section 7). As
explained in the next section, the test phase was conducted
under three conditions: no pressure, money pressure, and sensory
deprivation (fog).

4 External pressures inducing
satisficing

Previous work on human satisficing strategies and heuristics
illustrated that most humans resort to these approaches for two
main reasons, one is computational feasibility and the other is
the “less-can-be-more” effect (Gigerenzer and Gaissmaier, 2011).
When the search for information and computation costs become
impractical for making a truly “rational” decision, satisficing
strategies adaptively drop information sources or partially explore

decision tree branches, thus accommodating the limitations of
computational capacity. In situations in which models have
significant deviations from the ground truth, external uncertainties
are substantial, or closed-form mathematical descriptions are
lacking, optimization on potentially inaccurate models can be risky.
As a result, satisficing strategies and heuristics often outperform
classical models by utilizing less information. This effect can be
explained in two ways. Firstly, the success of heuristics is often
dependent on the environment. For example, empirical evidence
suggests that strategies such as “take-the-best,” which rely on
a single good reason, perform better than classical approaches
under high uncertainty (Hogarth and Karelaia, 2007). Secondly,
decision-making systems should consider trade-offs between bias
and variance, which is determined by model complexity (Bishop
and Nasrabadi, 2006). Simple heuristics with fewer free parameters
have smaller variance than complex statistical models, thus avoiding
overfitting to noisy or unrepresentative data, and generalizable
across a wider range of datasets (Bishop and Nasrabadi, 2006;
Brighton et al., 2008; Gigerenzer and Brighton, 2009).

Motivated by the situations where robots’ mission goals can be
severely hindered or completely compromised due to inaccurate
environment or sensing models caused by pressures, the paper
seeks to emulate aspects of human intelligence under the pressures
and study their influence on decisions. The environment pressures
include, for example, time pressure (Payne et al., 1988), information
cost (Dieckmann and Rieskamp, 2007; Bröder, 2003), cue(feature)
redundancy (Dieckmann and Rieskamp, 2007; Rieskamp and
Otto, 2006), sensory deprivation, and high risks (Slovic et al.,
2005; Porcelli and Delgado, 2017). Cue(feature) redundancy and
high risk have been investigated extensively in statistics and
economics, particularly in the context of inferential decisions
(Kruschke, 2010; Mullainathan and Thaler, 2000). In the treasure
hunt problem, sensory deprivation and information cost directly
and indirectly influence action decisions, which brings insight
how these pressures impact agents’ motion. However, the effects
of sensory deprivation on human decisions have not been
thoroughly investigated compared to other pressures. Time pressure
is ubiquitous in the real world, yet heuristic strategies derived
from human behavior are still lacking. Thus, this paper aims to
fill this research gap by examining the time pressure, information
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FIGURE 3
Test phase in active satisficing experiment in DiVE from side view (A),
and from rear view (B).

cost pressure, and sensory deprivation and their effects on
decision outcomes.

4.1 Time pressure

Assume that a fixed time interval tc is needed to integrate one
additional feature into the inference decision-making process. In
the meantime, each decision must be made within tT, and pi is
the number of observed features for the ith target. The satisficing
strategies must adaptively select a subset of the features such that a
decision is made within the time constraint

pitc < tT, i = 1,2,…, r

According to the human studies in Oh et al. (2016), the response
time of participants in the passive satisficing tasks was measured
during the pilot work. The average response time in these tasks was
found to be approximately 700 ms. Based on this finding, three time
windows were designed to represent different time pressure levels: a
2-s timewindowwas consideredwithout any time pressure; a 750 ms

time window was considered moderate time pressure; and a 500 ms
time window was considered intense time pressure.

4.2 Information cost

The cost of acquiring new information intrinsically makes an
agent use fewer features to reach a decision. In Section 2, new
information for the ith target is collected through a sequence of pi
observed target features. Thus, for all r targets, the information cost
is mathematically described as the total number of observed features
not exceeding a preset budget R

r

∑
i=1

pi ≤ R

In Section 3.2, the human studies introduce information cost
pressure using the parameter R = 30. In the context of the treasure
hunt problem, R represents the measurement budget, which limits
the number of features that a participant can observe from targets. In
this experiment, for example, a total of r = 30 targets was used, and
an information budget of R = 30 was chosen such that the human
participants were able to observe, on average, one feature per target.
Other experiments were similarly performed by considering a range
of parameters that spanned task difficulty levels across participants
and treasure hunt types.

4.3 Sensory deprivation

As explained in Section 2, information-gathering agents were
not provided a map of the workspace W a priori, and, instead, were
required to obtain information about target and obstacle positions
and geometries by means of a passive on-board sensor (e.g., camera
or LIDAR) with FOV SP as shown in Figure 4A. From the definition
of set visibility region (Definition 2.4), for a subset S ⊆ {1,2,…, r} of
target indices, the set visibility regionVS ⊆ Cfree contains all targets in
S visible to passive sensor with FOV SP. A globally optimal solution
to treasure hunt problem (Equations 1–7) with respect to a subset of
targets S is feasible if and only if VS ≠ ∅.

In parallel to the human studies in Section 3.2, robot sensory
deprivation was introduced by simulating/producing fog in the
workspace, thereby reducing the FOV radius to approximately
1 m, in a 20 m × 20 m robot workspace. A fog environment is
simulated inside the Webots® environment as shown in Figure 4,
thereby reducing the camera’s ability (Figure 4B) to view targets
inside the sensor SP. As a result, VS = ∅ even when there are
|S| = 2 targets, indicating that a globally optimal solution is
infeasible. Consequently, optimal strategies typically fail under
sensory deprivation due to lack of target information. Using
the methods presented in the next section, human strategies for
modulating between satisficing and optimizing strategies are first
learned from data and, then, generalized to autonomous robots,
as shown in Section 8. Satisficing strategies are aimed at overcoming
this difficulty, and use local information to explore the environment
and visit targets.
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FIGURE 4
Top view visibility conditions of the unknown workspace (A) and
first-person view of poor visibility condition (B) due to fog.

5 Mathematical modeling of human
passive satisficing strategies

Previous work by the authors showed that human participants
drop less informative features to meet pressing time deadlines
that do not allow them to complete the tasks optimally (Oh et al.,
2016). The analysis of data obtained from the moderate TP
experiment (Figure 5A) and intense TP experiment (Figure 5B)
reveals similar interesting findings regarding human decision-
making under different time pressure conditions. Under the no
TP condition, the most probable decision model selected by
human participants (indicated by the yellow contour for D15 in
Figures 5A, B) utilizes all four features and aims at maximizing
information value. However, under moderate TP, the most probable
decision model selected by human participants (indicated by a
red box in Figure 5A) uses only three features and has lower
information value than the no TP condition. As time pressure
becomes the most stringent in the intense TP, the most probable
decision model selected by human participants (indicated by a dark
blue box in Figure 5B) uses only two features and exhibits even
lower information value than observed in the previous two time
pressure conditions. Figure 5C shows all possible decision models
(i.e. features combinations) that a participant can use to make an

inferential decision. These results demonstrate the trade-offs made
by human participants among time pressure, model complexity, and
information value. As time pressure increases, individuals adaptively
opt for simpler decision models with fewer features, and sacrificed
information value to meet the decision deadline, thus reflecting
the cognitive adaptation of human participants in response to time
constraints.

5.1 Passive satisficing decision heuristic
propositions

Inspired by humanparticipants’ satisficing behavior indicated by
the data analysis above, this paper develops three heuristic decision
models, which accommodate varying levels of time pressure and
adaptively select a subset of information-significant features to solve
the inferential decision making problems. For simplicity and based
on experimental evidence, it was assumed that observed features
were error free.

5.1.1 Discounted cumulative probability gain
(ProbGain)

Theheuristic is designed to incorporate two aspects of behaviors
observed from human data. First, the heuristic encourages the
use of features that provide high information value for decision-
making. By summing up the information value of each feature,
the heuristic prioritizes the features that contribute the most to
evidence accumulation. Second, the heuristic also considers the cost
of using multiple features in terms of processing time. By applying
a higher discount to models with more features, the heuristic
discourages excessive cost on time that might lead to violation of
time constraints.

For an inferential decision-making problem with sorted p
observed features {xj}

p
j=1 according to the information value

vProbGain(xj) in descending order, where vProbGain(xj) representing
the increase in information value with respect to the maximum
a-posterior rule

vProbGain (xj) =maxy∈Yp(Y = y | xj) −maxy∈Yp (Y = y)

Let {x1,x2,…,xi} represent a subset of observed features that
contains the first (i) most informative features with respect to
vProbGain(xj), where tT is the allowable time to make a classification
decision, and the discount factor γ ∈ (0,1) is defined to be a function
of tT in order to represent the penalty induced by time pressure.
Then, the heuristic strategy can be modeled as follows,

HProbGain (tT, {xj}
p
j=1
) = arg maxi{γ(tT)

i
i

∑
j=1

vProbGain (xj)}

where,

γ (tT) = exp(−
λ
tT
)

and, thus, λ may be used to represent the extent to which the
discount γ is applied to the cue information value.
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FIGURE 5
Human data analysis results for the moderate TP experiment (A) and the intense TP experiment (B) with the enumeration of decision models (C).

5.1.2 Discounted log-odds ratio (LogOdds)
Log odds ratio plays a central role in classical algorithms like

logistic regression (Bishop and Nasrabadi, 2006), and represents the
“confidence” ofmaking a inferential decision.Theupdate of log odds
ratio with respect to a “new feature” is through direct summation,
thus taking advantage of the feature independence and arriving at
fast evidence accumulation. Furthermore, the use of log odds ratio in
the context of time pressure is slightly modified such that a discount
is applied with inclusion of an additional feature to penalize the
feature usage because of time pressure. By combining the benefits of
direct summation for fast evidence accumulation and the discount
for time pressure as inspired from human behavior, the heuristic
based on log odds ratio can make efficient decisions by considering
the most relevant features under time constraints.

For an inferential decision-making problem with sorted p
observed features {xj}

p
j=1 according to the information value

| vProbGain(xj) | in descending order, where | vProbGain(xj) |
represents the log odds ratio of observed features xj. Then, the
heuristic strategy can be modeled as follows,

HLogOdds (tT, {xj}
p
j=1
) = arg maxi{γ(tT)

i | v0 +
i

∑
j=1

vProbGain (xj) | }

where

vI (xj) = log(p(xj | y1)) − log(p(xj | y2))

v0 = log(p(Y = y1)) − log(p(Y = y2))

5.1.3 Information free feature number
discounting (InfoFree)

The previous two feature selection heuristics are both based
on comparison: multiple candidate sets of features are evaluated
and compared, and the heuristics select the one with the best
trade-off between information value and processing time cost. A
simpler heuristic is proposed to avoid comparisons and reduces the
computation burden, while still showing the behavior that dropping
less informative features due to time pressure observed from human
participants.

Sort the p features according to the information value vI(xj) in
descending order as x1,x2,…,xp, and a subset of the first i most
informative features refers to as {x1,x2,…,xi}. The heuristic strategy
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FIGURE 6
Mean and standard deviation of the number of used features of three
heuristic strategies and the human strategy under three time
pressure levels.

is as follows

HInfoFree (tT) = ⌈p exp(− λ
tT
)⌉

The outputs of the three heuristics are the numbers of
features to be fed into the model P(Yi,Xi,1,…,Xi,n) to make an
inference decision. Somemathematical properties (e.g., convergence
and monotonicity) of the three proposed heuristic strategies are
presented in Supplementary Appendix SA1.

5.2 Model fit test against human data

The model fit tests against human data of the three proposed
time-adaptive heuristics are under three time pressure levels, with
the time constraints scaled to ensure comparability between human
experiments and heuristic tests. The results, as shown in Figure 6,
indicate two major observations. First, as time pressure increases,
all three strategies utilize fewer features, thus demonstrating their
adaptability to time constraints andmirroring the behavior observed
in human participants. Second, among the three strategies,HLogOdds
exhibits the closest average number of features and standard
deviation to the human data across all time pressure conditions.
Consequently,HLogOdds is the heuristic strategy that bestmatches the
human data among the three proposed strategies.

6 Autonomous robot applications of
passive satisficing strategies

The effectiveness of the human passive satisficing strategies
modeled in the previous section, namely, the three heuristics
denoted by HProbGain, HLogOdds, and HInfoFree, was tested on an
autonomous robot making inferential decisions on the well-
established database known as car evaluation dataset (Dua andGraff,

FIGURE 7
Processing time (unit: sec) of three time-adaptive heuristics and the
“Bayes optimal” strategy.

FIGURE 8
Classification performance and efficiency of three time-adaptive
heuristics under three time pressure conditions.

2017). This dataset, containing 1,728 samples, is chosen over other
benchmark problems because its size is comparable to the database
used for modeling human heuristics and is characterized by six
possibly redundant features, which allows for the ability to adaptively
select a subset of features to infer the target class. The performance
of the three heuristics is compared against that of a naïve Bayes
classifier, referred to as “Bayes optimal” herein, which utilizes all
available features for decision-making.

The car evaluation dataset records the cars’ acceptability, on the
basis of six features and originally four classes. The four classes are
merged into two. A training set of 1,228 samples is used to learn
the conditional probability tables (CPTs), ensuring equal priors for
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FIGURE 9
(A) The information value attempt index, IIG, and (B) information-cost
parsimony index IIC are shown for high-performance human
participants under two pressure conditions.

FIGURE 10
The intra-slice DBN that models human decision behavior.

both classes. After learning the CPTs, 500 samples are used to test
the classification performance of the heuristics and the naïve Bayes
classifier. The tests are conducted under three conditions: no TP,
moderate TP, and intense TP.

The experiments are performed on a digital computer using
MATLAB R2019b on an AMD Ryzen 9 3900X processor. The
processing times of the strategies are depicted in Figure 7. If a
heuristic’s processing time falls within the time pressure envelope
(blue area), the time constraints are considered satisfied. The no
TP condition provides sufficient time for all heuristics to utilize all
features for decision-making. The moderate TP condition allows
for 75% of the time available in the no TP condition, whereas the
intense TP condition allows for 50% of the time available in the no
TP condition. All three heuristics are observed to satisfy the time
constraints across all time pressure conditions.

The classification performance and efficiency of the three time-
adaptive strategies is plotted in Figure 8. HLogOdds outperforms
the other three strategies on this dataset, and its performance

FIGURE 11
The human behavior patterns in a fog environment, which
demonstrate wall following (A), area coverage (B), strategy switching
(C), and random walk (D) behaviors.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1384609
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Chen et al. 10.3389/frobt.2024.1384609

FIGURE 12
Averaged model log likelihood of AdaptiveSwitch and ForwardExplore
in six human studies.

deteriorates as time pressure increases. Under moderate TP, the
three time-adaptive strategies use fewer features but achieve
better classification performance than Bayes optimal. This
finding exemplifies the less-can-be-more effect (Gigerenzer and
Gaissmaier, 2011). The classification efficiency measures the average
contribution of each feature to the classification performance. Bayes
optimal displays the lowest efficiency, because it utilizes all features
for all time pressure conditions, whereas HLogOdds exhibits the
highest efficiency among the three heuristics across all time pressure
conditions.

7 Mathematical modeling of human
active satisficing strategies

In the active satisficing experiments, human participants face
pressures due to (unmodelled) information cost (money) and
sensory deprivation (fog pressure). These pressures prevent the
participants from performing the test and action decisions optimally.
The data analysis results for the information cost pressure, as
described in Section 7.1, reveal that the test decisions and action
decisions are coupled. The pressure on test decisions affect the
action decisions made by the participants. The data analysis of the
sensory deprivation (fog pressure) does not incorporate existing
decision-making models, such as Ziebart et al. (2008); Levine et al.
(2011); Ghahramani (2006); Puterman (1990), because the human
participants perceive very limited information, thus violating the
assumptions underlying these models. Instead, a set of decision
rules are extracted in the form of heuristics from the human
participants data from inspection. These heuristics capture the
decision-making strategies used by the participants under sensory
deprivation (fog pressure).

7.1 Information cost (money) pressure

Previous studies showed that, when information cost was
present, humans used a single good reason strategy (e.g., take-
the-best) in larger proportion than compensatory strategies, which

integrated all available features, to make decisions (Dieckmann
and Rieskamp, 2007); and information cost induced humans
to optimize decision criteria and shift strategies to save cost
on inferior features (Bröder, 2003). This section analyzes the
characteristics of human decision behavior under information cost
pressure compared with no pressure condition.

Based on the classic “treasure hunt” problem formulation for
active perception (Ferrari and Wettergren, 2021), the goals of action
and test decisions are expressed through three objectives, namely,
information value or benefit (B), information cost (J), and distance
travelled (D). Hence, optimal strategies are typically assumed to
maximize a weighted sum of the three objectives, i.e.,

V =
T

∑
k=0

ωBB(tk) −ωDD(tk) −ωJJ(tk) (8)

where, the weights ωB, ωD, and ωJ represent the relative importance
of the corresponding objectives.

Upon entering the study, human participants are instructed
to solve the treasure hunt problem by maximizing the number
of treasures found using minimum time (distance) and money.
Therefore, it can be assumed that human participants also seek
to maximize the objective function in (23), using their personal
criteria for relative importance and decision strategy. Since the
mathematical form of the chosen objectives is unknown, upon trial
completion the averaged weights utilized by human participants
are estimated using the Maximum Entropy Inverse Reinforcement
Learning algorithm, adopted from Ziebart et al. (2008). The learned
weights can then be used to understand the effects of money
pressure on human decision behaviors, as follows. The two
indices, IIG = ωB/ωD and IIC = ωB/ωJ, are obtained from the ratios
of the three averaged weights and, thus, reflect the priorities
underlying human decisions and behaviors. The first index, IIG,
referred to as information-value attempt index, measures the
willingness of human participants to trade travel distance in favor
of increased information value. The second index, IIC, referred
to as information-cost parsimony index, measures the willingness
of human participants to spend “money” in favor of increased
information value.

The analysis of human experiment data, shown in Figure 9,
indicates that, under information cost (money) pressure, human
participants are willing to travel longer distances to acquire
information of high value (↑IIG). However, they are less willing
to incur costs (↓IIC) for information value, thus suggesting a
tendency to be more conservative in spending resources for
information acquisition. Furthermore, assuming no other utility
(goal) is associated with human states or actions, the causal
relationships underlying human decisions may be modeled using
dynamic Bayesian networks (DBNs) learned from the human trials.
The DBN intra-slice structure, shown in Figure 10, uses nodes to
represent the human participants’ states qk, action decision a(tk),
test decision u(tk), the set of visible targets o(tk) at time tk, and
the “money”(information cost) already spent J(tk). The intra-slice
variables capture the relevant information for decision-making
at a specific time slice, learning both arcs and parameters from
human data.

Once the DBN description of human decisions is obtained,
the inter-slice structure may be used to understand how
observations influence subsequent action and test decisions. The
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FIGURE 13
Four workspace in MATLAB® simulations and AdaptiveSwitch trajectories for case studies (a) − (d): with 7 targets plus 9 obstacles (A), 11 targets plus 9
obstacles (B), 7 targets plus 12 obstacles (C), and 11 targets plus 12 obstacles (D).

key question is: in how many time slices does an observation
o(tk) influence decision-making? To determine the appropriate
inter-slice structure, this paper conducts a series of hypothesis
tests to assess the conformity of various models against the
human decision data. Supplementary Figure S3 presents the results
of these hypothesis tests. Each data point represents a p-value
that evaluates the null hypothesis: “model i+ 1 does not fit the
human data significantly better than model i”. The models are
defined according to the number of time slices in which an
observation influences decisions. If the p-value is smaller than
the significance level α, the null hypothesis is rejected, thus
indicating that the subsequent model fits the data better than the
previous one.

According to the results plotted in Supplementary Figure S3,
under the no pressure condition, an observation o(tk) influences
one subsequent decision. However, under the information

cost(money) pressure, an observation o(tk) influences nine
subsequent decisions. This finding suggests that the influence
of observations extends over a longer time horizon under
information cost(money) pressure than in the no pressure
condition.

7.2 Sensory deprivation (fog pressure)

The introduction of sensory deprivation (fog pressure) in the
environment poses two main difficulties for human participants
during navigation. First, fog limits the visibility range, thus
hindering human participants’ capability of locating targets and
being aware of obstacles. Second, fog impairs spatial awareness, thus
hindering human participants’ ability to accurately perceive their
own position within the workspace.
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FIGURE 14
(A)Number classified targets and travel distance (B)information gain
for two heuristic strategies and two existing robot strategies in four
case studies.

In situations in which target and obstacle information is
scarcely accessible and uncertainties are difficult to model,
human participants were found to use local information to
navigate the workspace, observe features, and classify all targets
in their FOVs (Gigerenzer and Gaissmaier, 2011; Dieckmann
and Rieskamp, 2007). By analyzing the human decision data
collected through the active satisficing experiments described
in Section 3, significant behavioral patterns shared by the top
human performers can be summarized by the following six
behavioral patterns exemplified by the sample studies plotted in
Figure 11:

1. Whenparticipants enter an area andno targets are immediately
visible, they follow the walls or obstacles detected in the
workspace (Figure 11A).

2. When participants detect multiple targets, they pursue
targets one by one, prioritizing them by proximity
(Figure 11B).

3. While following a wall or obstacle, if participants detect a
target, they will deviate from their original path and pursue
the target, andmay then return to their previous “wall/obstacle
follow” path after performing classification (Figure 11A).

4. Upon entering an enclosed area (e.g., room), participants
may engage in a strategy of covering the entire room
(Figure 11B).

5. After walking along a wall or obstacle for some time without
encountering any targets, participants are likely to switch to a
different exploratory strategy (Figure 11C).

6. In the absence of any visible targets, participants may exhibit
random walking behavior (Figure 11D).

Detailed analysis of the above behavioral patterns (omitted for
brevity) showed that the following three underlying incentives drive
human participants in the presence of fog pressure:

• Frugal: Human participants exhibit tendencies to avoid
repeated visitations. Navigating along walls or obstacles helps
participants localize themselves by using walls or obstacles as
reference points.
• Greedy: Human participants demonstrate a strong motivation

to find targets and engage with them. After a target is detected,
participants pursue it and interact with it immediately.
• Adaptive: Human participants display adaptability by using

multiple strategies for exploring the workspace. These
strategies include “wall/obstacle following,” “area coverage,”
and “random walk.” Participants can switch among these
strategies according to the effectiveness of their current
approach in finding targets.

Based on these findings, a new algorithm referred to as
AdaptiveSwitch (Algorithm 1) was developed to emulate humans’
ability to transition between the three heuristics when sensory
deprivation prevents the implementation of optimizing strategies.
The three exploratory heuristics consist of wall/obstacle following
(π1), area coverage (π2), and random walk (π3). The probability of
executing each heuristic is referred to as Π = [b1,b2,b3]T, where bi
represents the probability of executing πi. The index g indicates the
exploratory policy being executed, and k represents the number of
steps taken while executing a policy. The maximum number of steps
before updating the distribution Π is K. The policy for interacting
with targets is πI(u(tk) | qk,o(tk)), and the policy for pursuing a
target is πP(a(tk) | qk,o(tk)).

As shown inAlgorithm 1, the greediness of the heuristic strategy
(lines 4–9) captures the behaviors inwhich participants interact with
targets if possible (line 4) and pursue a target if it is visible (line
7). If no targets are visible and the maximum exploratory step K
is not exceeded, the current exploratory heuristic continues to be
executed (lines 11–13). The adaptiveness of the three exploratory
heuristics is shown in lines 15–22. If the current exploratory
heuristic is executed for more than K steps, its probability of
execution is discounted (line 16). The probability of executing the
“wall/obstacle following” heuristic increases β > 1.0 if the participant
is close to a wall/obstacle; otherwise this heuristic is disabled
(lines 19–21).

After learning the parameters from the human data, the
AdaptiveSwitch algorithm was compared to another hypothesized
switching logic referred to as ForwardExplore in which participants
predominantly move forward with a high probability and turn
with a small probability or when encountering an obstacle.
In order to determine which switching logic best captured
human behaviors, the log likelihood of AdaptiveSwitch and
ForwardExplore was computed using the human data from the
active satisficing experiment involving six participants. The results
plotted in Figure 12 show that the log likelihood of AdaptiveSwitch
is greater than that of ForwardExplore across all human experiment
trials. This finding suggests that AdaptiveSwitch aligns more closely
with the observed human strategies than ForwardExplore and,
therefore, was implemented in the robot studies described in the
next section.
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TABLE 2 Performance comparison of AdaptiveSwitch and Standalone heuristics in Webots® : Workspace A.

Performance metrics Heuristic strategies

AdaptiveSwitch RandomWalk AreaCoverage

Travel distance, D(τ) [m] 86.19 164.87 224.18

Number of classified targets, Nv 7/7 7/7 3/7

Target visitation efficiency, ηv [m
−1] 0.0812 0.0425 0.0134

Travel distance, D(τ) [m] 148.98 291.69 246.38

Number of classified targets, Nv 13/13 11/13 6/13

Target visitation efficiency, ηv [m
−1] 0.0873 0.0377 0.0244

Travel distance, D(τ) [m] 159.97 236.86 205.78

Number of classified targets, Nv 15/15 11/15 8/15

Target visitation efficiency, ηv [m
−1] 0.0938 0.0464 0.0389

TABLE 3 Performance comparison of AdaptiveSwitch and Standalone heuristics in Webots® : Workspace B.

Performance metrics Heuristic strategies

AdaptiveSwitch RandomWalk AreaCoverage

Travel distance, D(τ) [m] 122.86 218.72 265.49

Number of classified targets, Nv 7/7 5/7 5/7

Target visitation efficiency, ηv [m
−1] 0.0570 0.0229 0.0188

Travel distance, D(τ) [m] 122.57 219.49 234.70

Number of classified targets, Nv 13/13 10/13 7/13

Target visitation efficiency, ηv [m
−1] 0.0873 0.0456 0.0298

Travel distance: D(τ) [m] 129.19 226.57 216.25

Number of classified targets, Nv 15/15 12/15 8/15

Target visitation efficiency, ηv [m
−1] 0.1161 0.0530 0.0370

8 Autonomous robot applications of
active satisficing strategies

Two key contributions of this paper are the applications of the
modeled human strategies on a robot, and the comparison of optimal
strategies and the modeled human strategies in pressure conditions,
under which optimization is infeasible. For simplicity, the preferred
sensing directions of SP and SI are assumed to be fixed with respect
to the robot platform. Therefore, the state vector for a robot reduces
to q = [x y θ]T, where the orientation of the robot platform θ also
represents the preferred sensing directions. Both sensor FOVs are
modeled by sectorswith angle-of-view ζ1,ζ2 ∈ [0,2π) and radii r1, r2 >
0.The twoFOVs share the same apex and their bisectors coincidewith
each other.

8.1 Information cost (money) pressure

The introduction of information cost increases the complexity
of planning test decisions. In the absence of information cost, a
greedy policy that observes all available features for any target
is considered “optimal”, because it collects all information value
without any cost. However, when information cost is taken into
account, a longer planning horizon for test decisions becomes
crucial to effectively allocate the budget for observing features of
all targets. This paper implements two existing robot planners,
PRM and cell decomposition, to solve the treasure hunt problem
in an identical workspace, initial conditions, and target layouts
faced by human participants in the active satisficing treasure hunt
experiment. The objective function Equation 8 is maximized by
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FIGURE 15
Object detection results (A) in clear and (B) fog conditions.

FIGURE 16
The first workspace and target layout for the physical experiment
under (A) clear and (B) fog condition.

using these methods. Unlike existing approaches (Ferrari and Cai,
2009; Cai and Ferrari, 2009; Zhang et al., 2009) that solve the
original version of the treasure hunt problem as described in
(Ferrari and Wettergren, 2021), the developed planners handle the
problem without pre-specification of the final robot configuration.
Consequently, the search space increases exponentially, thus
rendering label-correcting algorithms (Bertsekas, 2012) no longer
applicable. Additionally, unlike previous methods that solely
optimize the objective with respect to the path, the developed
planners consider the constraint on the number of observed
features due to information cost pressure. The number of observed
features thus becomes a decision variable with a long planning
horizon. To solve the problem, the developed planners use PRM

and cell decomposition techniques to generate graphs representing
the workspace (Ferrari and Wettergren, 2021). The Dijkstra
algorithm is used to compute the shortest path between targets.
Furthermore, an MINLP algorithm is used to determine the
optimal number of observed features and the visitation sequence of
the targets.

8.1.1 Performance comparison with human
strategies

The performance of the optimal strategies known as PRM
and cell decomposition is compared to that of human strategies
in Supplementary Figure S4. It can be seen that, under information
cost (money) pressure, the path and number of observed features per
target are optimized using a linear combination of three objectives.
Letting τ denote the planned path (as defined in (LaValle, 2006)),
four performance metrics are used for evaluation and comparison,
i.e.,: path efficiency ηP = 1/D(τ) [m

−1]; information gathering
efficiency ηB = B(τ)/D(τ) [bit/m]; measurement productivity ηJ =
B(τ)/J(τ) [bit]; and classification performance N = N(τ) (with
higher values indicating higher performance). Six case studies
are examined. One case study comprises of three different
experiment layouts. The optimal strategies and the human
participants have no prior knowledge of the target positions and
initial features, and all environmental information is obtained
from FOV SP. The results, shown in Supplementary Figure S4,
indicate that the two optimal strategies consistently outperform
the human strategy across all four performance metrics. The
performance envelopes of the optimal strategies are outside of
the performance of the human strategy, thus indicating their
superiority.

The finding that the optimal strategies outperform human
strategies is unsurprising, because information cost (money)
pressure imposes a constraint on only the expenditure of
measurement resources, which can be effectively modeled
mathematically. The finding suggests that under information cost
(money) pressure, near-optimal strategies canmake better decisions
than human strategies.
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FIGURE 17
Target visitation sequence of AdaptiveSwitch in the first workspace.

TABLE 4 Performance Comparison of Heuristic Strategies in
target layout 1.

Performance
metrics

Heuristic strategies

AdaptiveSwitch ForwardExplore

Number of classified
targets, Nv

6/6 6/6

Travel distance,
D(τ) [m]

6.43 ± 0.90 8.38 ± 2.07

Correct target feature
classifications

13.40 ± 1.82 12.40 ± 1.95

Info gathering
efficiency, ηB [bit/m]

0.155 ± 0.023 0.090 ± 0.018

8.2 Sensory deprivation (fog pressure)

An extensive series of tests are conducted to evaluate
the effectiveness of AdaptiveSwitch (Section 7.) under sensory
deprivation(fog) conditions and compare it with other strategies.
These tests comprise of 118 simulations and physical experiments,
encompassing various levels of uncertainty. The challenges
posed by fog in robot planning are twofold. First, fog obstructs
the robot’s ability to detect targets and obstacles by using
onboard sensors such as cameras, thus making long-horizon
optimization-based planning nearly impossible. Second, fog
complicates the task of self-localization for the robot with respect
to the entire map, although short-term localization can rely
on inertial measurement units. Three test groups are described
as follows:
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FIGURE 18
The second workspace and target layout for the physical experiment under (A) clear and (B) fog condition.

8.2.1 Performance comparison tests inside
human experiment workspace

AdaptiveSwitch is applied to robots operating in the same
workspace and target layouts used in the active satisficing human
experiments (Section 3.), described in Figures 3, 4. Using these
eighteen environments, the performance of hypothesized human
strategies, AdaptiveSwitch and ForwardExplore, was compared to
that of existing robot strategies (cell decomposition and PRM). One
important metric used to evaluate a strategy’s capability to search
for targets in fog conditions is the number of classified targets:Nv. As
shown by the quantitative comparison in Supplementary Figure S5A
and Supplementary Figure S5B, under sensory deprivation (fog) the
optimal strategies face difficulties in moving and classifying targets
because of the lack of information on target and obstacle layout.
Here, the distance travelled and classification performance are
plotted by averaging the results of extensive simulations, along with
the standard deviation (bars in Supplementary Figures S5A, S5B).
In contrast, both the human strategies and AdaptiveSwitch are
able to explore the unknown environment, even if at times they
do not capture target information through SP. In particular,
AdaptiveSwitch achieves slightly higher target classification rates
and shorter travel distances than the observed human strategies.

8.2.2 Generalized performance comparison
In order to demonstrate the generalizability of the human-

inspired strategy AdaptiveSwitch to robot applications, extensive
comparative studies were performed using new workspaces and
target layouts, different from those used in human experiments.

In order to fully assess the performance and generalizability of
AdaptiveSwitch, the sensor range was also varied to investigate
the influence of sensor modalities and characteristics. Extensive
simulations were conducted in MATLABⓇ using four newly
designed workspaces and corresponding target layouts (Figure 13).
For evaluation purposes, these additional simulations considered
fixed FOV geometries and assumed no missed detections or false
alarms, as well as perfect target feature recognition.

As part of this comparison, ForwardExplore and the two existing
robot strategies, cell decomposition and PRM, are also implemented
for comparison. Due to the limitations posed by fog and limited
sensing capabilities, the performance in terms of travel distance,
D(τ), and classification, (Nv), is significantly hindered, as shown by
the averaged values plotted in Figure 14A on the left (histogram
bar) and right (line) vertical axis, respectively. Robots implementing
AdaptiveSwitch outperform those implementing other strategies in
terms of the number of correctly classified targets, because they are
able to explore the workspace even when no targets were visible.

Additionally, AdaptiveSwitch is more efficient than
ForwardExplore in terms of travel distance. By adapting its
exploration strategy and leveraging the combination of three
simple heuristics, AdaptiveSwitch is able to classify more targets
while traveling shorter distances. Consequently, higher information
value B(τ) than that with both ForwardExplore and existing robot
strategies is observed across all four case studies (Figure 14B).
These findings highlight the effectiveness of the AdaptiveSwitch
in navigating foggy environments and its superiority to existing
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FIGURE 19
Target visitation sequence of AdaptiveSwitch in the second workspace.

robot strategies and the ForwardExplore in terms of information
gathering and travel efficiency.

8.2.2.1 Simulations with artificial fog
Two new workspaces are designed in Webots® as shown in

Supplementary Figure S6.The performance of AdaptiveSwitch and its
standalone heuristics for the two workspaces is shown in Tables 2, 3.
The comparison reveals the substantial advantage of AdaptiveSwitch.

In both workspace scenarios, as shown in Tables 2, 3, AdaptiveSwitch
outperforms its standalone heuristics by successfully finding and
classifying all targets within the given simulation time upper bound.
In contrast, the standalone heuristics are unable to achieve this level of
performance. AdaptiveSwitch not only visits and classifies all targets,
but also accomplishes the tasks within shorter travel distances than
the standalone heuristics. Therefore, AdaptiveSwitch exhibits higher
target visitation efficiency (ηv) which is calculated as the ratio of the
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FIGURE 20
The third workspace and target layout for the physical experiment
under (A) clear and (B) fog condition.

numberof classified targets to the travel distance (Nv/D(τ)).The target
visitation efficiency ofAdaptiveSwitch is at least twice higher than that
of the standalone heuristics thanks to the combination of multiple,
simple heuristics. In contrast, when used in a stand-alone fashion, the
same heuristics may become trapped in ineffective “moving patterns”,
struggling to perform in certain areas of the workspace.

8.2.3 Physical experiment tests in real fog
environment

To handle real-world uncertainties that are not adequately
modeled in simulations, this paper conducts physical experiments
to test the AdaptiveSwitch. These uncertainties include factors
such as the robot’s initial position and orientation, target miss
detection and false alarms, depth measurement errors, and control
disturbances. In addition, the fog models available in Webots
®, are relatively simple and do not provide a wide range of
possibilities for simulating the degrading effects of fog on target
detection and classification performance. Consequently, this paper
performs physical experiments to better capture the complexities
and uncertainties associated with real-world conditions.

The physical experiments use the ROSbot2.0 robot equipped
with an RGB-D camera as the primary sensor. The YOLOv3
object detection algorithm, the best applicable at the time of these
studies, was implemented to detect targets of interest (e.g., an apple,
watermelon, orange, basketball, computer, book, cardboard box, and
wooden box) identical to those in human experiments. Training
images for the YOLOv3 were obtained in fog-free environments, in
order to later test the robot’s ability to cope with unseen conditions
(fog pressure) in real time.

As shown in Figure 15, the YOLOv3 algorithm successfully
detects the existence of the target “computer” when the environment

is clear, as shown in Figure 15A. However, when fog is present, as
illustrated in Figure 15B, the algorithm fails to detect the target.
This result demonstrates the degrading effect on the performance
of target detection algorithms.

In the physical experiments conductedwithROSbot2.0 (Husarion,
2018), AdaptiveSwitch and ForwardExplore are implemented to
test their performance in an environment with fog. A plastic box
is constructed with dimensions 10′0″ x 6′0″ x 1′8″ in order
to create the foggy environment. The box is designed to contain
different layouts of obstacles and targets, capturing various aspects
of a “treasure hunt” scenario, such as target density and target
view angles. Each heuristic strategy is tested five times in each
layout, considering all the uncertainties described earlier. The travel
distances in the physical experiments are measured in inertial
measurement unit.

The first layout (Figure 16) is comprised of six targets, i.e.,: a
watermelon, wooden box, basketball, book, apple, and computer.
The target visitation sequences of AdaptiveSwitch along the path
are depicted in Figure 17, showing the robot’s trajectory and the
order in which the targets are visited. The performance of the two
strategies is summarized in Table 4, as evaluated according to three
aspects: travel distance D(τ), correct target feature classifications,
and information gathering efficiency ηB. These metrics assess the
quality of the strategies’ action and test decisions.

The second layout (Figure 18) contains eight targets: a
watermelon, wooden box, basketball, book, computer, cardboard
box, and two apples. The obstacles layout is also changed with
respect to the first layout: the cardboard box is placed in a
“corner” and is visible from only one direction, thus increasing
the difficulty of detecting this target. This layout enables a case
study in which the targets are more crowded than in the first
layout. The mobile robot first-person-views of AdaptiveSwitch
along the path are demonstrated in Figure 19, and the performance
is shown in Supplementary Table S1.

The third layout (Figure 20) contains two targets: a cardboard
box, and a watermelon. Note that having fewer targets does
not necessarily make the problem easier, because the difficulty
in target search in fog comes from how to navigate when no
target is in the FOV. This layout intentionally makes the problem
“difficult”, because it “hides” two targets behind the walls. The
mobile robot first-person-views of AdaptiveSwitch along the path
are demonstrated in Figure 21, and the performance is shown in
Supplementary Table S2. The videos for all physical experiments
(AdaptiveSwitch and ForwardExplore in three layouts) are accessible
through the link in (Chen, 2021).

According to the performance summaries in Table 4,
Supplementary Tables S1, S2, both AdaptiveSwitch and
ForwardExplore are capable of visiting and classifying all
targets in the three layouts under real-world uncertainties.
However, AdaptiveSwitch demonstrates several advantages over
ForwardExplore:

1. The average travel distance of AdaptiveSwitch is 30.33%,
59.93%, and 56.02% more efficient than ForwardExplore in
the three workspaces, respectively. This finding indicates that
AdaptiveSwitch is able to search target with a shorter travel
distance than ForwardExplore.
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FIGURE 21
Target visitation sequence of AdaptiveSwitch in the third workspace.

1: Π = [b1,b2,b3]T

2: k = 0, g = 0

3: while (tk ≤ tT ∨ not all targets are

classified) do

4:  if ∃xj ∈ SI(qk) then

5:   πI(u(tk) | qk,o(tk))

6:  else

7:   if o(tk) ≠ ∅ then

8:    πP(a(tk) | qk,o(tk))

9:    k = 0, g = 0

10:   else

11:    if g > 0∧k ≤ K then

12:     πg(a(tk) | qk,o(tk))

13:     k = k+1

14:    else

15:     if k ≥ K then

16:      Π[g] = γ ∗ Π[g]

17:     else

18:      if not closed to wall then

19:       Π[1] = 0

20:      else

21:       Π[1] = β(b1 +b2 +b3)

22:      end if

23:     end if

24:     Π = normalize(Π)

25:     g ∼ Π

26:    end if

27:   end if

28:  end if

29: end while

Algorithm 1. AdaptiveSwitch.

2. The target feature classification performance of
AdaptiveSwitch is slightly better than that of ForwardExplore,
with improvements of 8.06%, 17.11%, and 4.16% in the
three workspace, respectively. One possible explanation for

these results is that the “obstacle follow” and “area coverage”
heuristics in AdaptiveSwitch cause the robot’s body to be
parallel to obstacles during classification of target features,
thus ensuring that the targets are the major part of the
robot’s first-person view and make them relatively easier to
classify. In contrast, ForwardExplore does not always lead the
robot body to be parallel to obstacles during classification,
thereby sometimes allowing obstacles to dominate the robot’s
first-person view and decreasing the target classification
performance.

9 Summary and conclusion

This paper presents novel satisficing solutions that modulate
between near-optimal and heuristics to solve satisficing treasure
hunt problem under environment pressures. These proposed
solutions are derived from human decision data collected through
both passive and active satisficing experiments. The ultimate goal
is to apply these satisficing solutions to autonomous robots. The
modeled passive satisficing strategies adaptively select target features
to be entered inmeasurementmodel based on a given time pressure.
The idea behind this approach is the human participants behavior
that dropping less informative features for inference in order tomeet
the decision deadline. The results show that the modeled passive
satisficing strategies outperform the “optimal” strategy that always
use all available features for inference in terms of classification
performance and significantly reduce the complexity of target
feature search compared with exhaustive search.

Regarding the active satisficing strategies, the strategy that deals
with information cost formulates an optimization problem with
the hard constraint imposed by information cost. This approach is
taken because the information cost constraint doesn’t fundamentally
undermine the accuracy of the model of the world and the agent,
and optimization still yield high-quality decisions. The results show
that the strategy outperforms human participants across several key
metrics (e.g., travel distance and measurement productivity, etc.).
However, under sensory deprivation, the knowledge of the world is
severely compromised, and thus decisions produced by optimization
is risky or even no longer feasible, which is also demonstrated
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through experiments in this paper. The modeled human strategies
named AdaptiveSwitch shows the ability to use local information
and navigate in foggy environment by using heuristics derived
from humans. The results also show that the AdaptiveSwitch can
adapt to varying workspaces with different obstacle layouts, target
density, etc., beyond the workspace used in the active satisficing
experiments. Finally, AdaptiveSwitch is implemented on a physical
robot and conducts satisificing treasure hunt with actual fog, which
demonstrates the ability to deal with real-life uncertainties in both
perception and action.

Overall, the proposed satisficing strategies comprise of a
toolbox, which can be readily deployed on a robot in order
to address different real-life environment pressures encountered
during the mission. These strategies provide solutions to scenarios
characterized by time limitations, constraints on available resources
(e.g., fuel or energy), and adverse weathers such as fog or heavy rain.
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