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In traditional cardiac ultrasound diagnostics, the process of planning scanning
paths and adjusting the ultrasound window relies solely on the experience and
intuition of the physician, a method that not only affects the efficiency and
quality of cardiac imaging but also increases the workload for physicians. To
overcome these challenges, this study introduces a robotic system designed
for autonomous cardiac ultrasound scanning, with the goal of advancing both
the degree of automation and the quality of imaging in cardiac ultrasound
examinations. The system achieves autonomous functionality through two key
stages: initially, in the autonomous path planning stage, it utilizes a camera
posture adjustment method based on the human body’s central region and
its planar normal vectors to achieve automatic adjustment of the camera’s
positioning angle; precise segmentation of the human body point cloud is
accomplished through efficient point cloud processing techniques, and precise
localization of the region of interest (ROI) based on keypoints of the human
body. Furthermore, by applying isometric path slicing and B-spline curve
fitting techniques, it independently plans the scanning path and the initial
position of the probe. Subsequently, in the autonomous scanning stage, an
innovative servo control strategy based on cardiac image edge correction is
introduced to optimize the quality of the cardiac ultrasound window, integrating
position compensation through admittance control to enhance the stability of
autonomous cardiac ultrasound imaging, thereby obtaining a detailed view of
the heart’s structure and function. A series of experimental validations on human
and cardiacmodels have assessed the system’s effectiveness and precision in the
correction of camera pose, planning of scanning paths, and control of cardiac
ultrasound imaging quality, demonstrating its significant potential for clinical
ultrasound scanning applications.
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ultrasound scanning, robotic system, posture recognition, point cloud, path planning,
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1 Introduction

The heart, as one of the most critical organs in the human body,
performs the essential functions of pumping blood and supplying
oxygen. However, heart disease remains one of the major global
health challenges. In the diagnosis and monitoring of heart disease,
echocardiography (commonly known as cardiac ultrasound) has
become the most frequently used non-invasive cardiac imaging
technique due to its portability, real-time capability, lack of radiation
risk, and low cost. Nonetheless, the traditional cardiac ultrasound
(US) scanning process faces several challenges, including the
susceptibility of image quality to the probe’s position and operator
technique, poor reproducibility of handheld operations, physical
strain on operators due to prolonged working periods, and potential
risks of radiation and infection.These challenges limit the efficiency
and safety of echocardiography in clinical applications. With
technological advancements, autonomous US scanning technology
has shown immense potential for development. Integrating robotics,
advanced image processing methods, and artificial intelligence
can effectively reduce the operational burden on physicians and
enhance the level of autonomy and intelligence in the diagnostic
process.This evolution promises to address the current limitations of
echocardiography, offering improvements in both clinical efficiency
and patient safety.

Most autonomous US scanning robots execute the scanning
process in two stages: initially, the robot analyzes pre-operative
human body data to locate the US probe scanning area and path,
and determines the probe’s initial scanning posture. Subsequently,
the robot adjusts and optimizes the probe’s position and contact
force in real-time based on interactive information with the human
body during the scanning process (such as force-position data and
USimages), thereby ensuring patient safety and achieving high-
quality US imaging. This dual-phase approach leverages advanced
robotics and real-time feedback mechanisms to enhance the
precision and safety of US diagnostics.

The localization of scanning areas and the planning of scanning
paths are fundamental to achieving autonomous US scanning.
With the advancement of visual sensing technology, vision-based
guidance techniques have gained widespread application in the
field of medical robotics. For instance, Graumann et al. (2016)
utilized an RGB-D camera to collect point cloud data of the
patient’s surface, then manually selected regions of interest (ROI)
for alignment with preoperative CT images to plan the US probe’s
scanning trajectory. However, reliance on CT images and manual
registration models increased the overall cost of US scanning. To
simplify the process, Kojcev et researchers (2017) demonstrated the
repeatability of vision-based robotic US acquisition by manually
delineating scanning trajectories in RGB-D images. To further
advance the autonomy of US robotic scanning and achieve
autonomous localization of US scanning areas, Huang et al. (2018,
2019) and Lan and Huang (2018) implemented autonomous
segmentation of scanning areas utilizing image color features and
established the probe’s contact posture using the normal vectors
of point clouds. Moreover, researchers including Mustafa et al.
(2013) and Li et al. (2018) segmented the navel and nipples in
RGB-D images based on skin color pixel differences to locate
initial scanning positions. However, recognition methods based on
color features are susceptible to interference from environmental

colors and lighting conditions. In response to this challenge,
image processing techniques driven by deep learning have shown
significant advantages. For example, Tan et al. (2023) employed
a keypoint detection method based on YOLO-Pose to identify
and locate breast ROIs in RGB images. However, this method
assumes that the body is aligned and symmetrical relative to the
camera, and significant localization errors can occur if the body is
tilted relative to the camera (Okuzaki et al., 2024). Researchers like
Soemantoro et al. (2023) used the YOLOv5 object detection model
to train on manually selected quadrilateral windows of scanning
areas in color images, achieving automatic localization of ROIs
without analyzing the accuracy of positioning. In addition, most of
the above path planningmethods intuitively select scanning paths in
a 2D image and thenmap them to the 3D surface of the human body.
However, this approachmay lead to large differences in the distances
between the actual paths (Huang et al., 2018; 2019; Lee et al., 2018;
Welleweerd et al., 2020).

The control of scanning pose compensation and the
optimization of the US window are crucial for maintaining good
contact between the probe and the body surface, as well as stable
window quality. During the autonomous US scanning process, the
magnitude and variation of contact force significantly impact the
quality and stability of US images, as observed by Ipsen et al. (2021).
Researchers have proposed various control algorithms to maintain
a constant contact force, including impedance control (Suligoj et al.,
2021), admittance control (Tan et al., 2022; Wang Z. et al., 2023),
and PID control (Ma et al., 2021; Zhang et al., 2021; 2022).
Moreover, due to the significant fluctuations in window quality
during cardiac US scanning, researchers have introduced several
US image servo control algorithms to ensure stable, high-quality
imaging. Chatelain et al. (2016, 2017) introduced an US confidence
map integrated into a visual servo framework to enhance window
quality and target tissue tracking through probe scanning direction
adjustments. Jiang et al. (2020, 2022) used US confidence map
technology to accurately estimate the optimal probe direction
at contact points, thereby improving image quality at specific
locations. However, the US confidence map serves only as a means
to quantify US credibility, and the US window adjusted based
on the confidence map may not represent the actual optimal
image. Moreover, real-time calculation of the confidence map
demands high computational performance from the host computer
(Jiang et al., 2023). Despite significant advancements in autonomous
US scanning control technology, the practicality of robotic systems
is limited due to their reliance on complex environmental sensing
and control algorithms (Li et al., 2021; von Haxthausen et al., 2021;
Roshan et al., 2022).

Considering the current state of cardiac US autonomous
scanning technology, which remains in its infancy with few existing
studies on US robots possessing both autonomous path planning
and scanning pose compensation capabilities (Ferraz et al., 2023),
this paper addresses these technical challenges with two hypotheses:
Firstly, ensuring the human body remains symmetrical and centered
within the camera’s positioning window is crucial for the accuracy
and stability of ROI localization. This objective can be achieved by
utilizing camera-based recognition of human keypoints followed
by pose correction. Secondly, maintaining symmetry in the areas
of lower quality on both sides of the cardiac US window helps
ensure that the probe’s window remains perpendicular to the
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heart throughout the autonomous scanning process. Given the
limited precision of confidencemap calculations, this study employs
grayscale image analysis to assess the areas of lower quality within
the cardiac US window for probe window correction. Furthermore,
based on the aforementioned hypotheses and the practical needs of
robotic operation, this research has developed a fully autonomous
cardiac US scanning system aimed at advancing the diagnosis of
heart diseases towards automation and intelligence. The primary
contributions of this paper include:

i) To accurately segment human body surface point cloud
data, an efficient processing method for complex raw point
cloud data is introduced. Addressing the limitations of
two-dimensional human posture localization in capturing
complex spatial relationships and posture variations, an
innovative camera posture adjustment method based on
human posture recognition is proposed. The method ensures
correct alignment of the viewing angle through camera pose
correction based on human posture keypoints and their planar
normal vectors. Additionally, a positioning strategy based
on the geometric relationships of keypoints is presented for
precise localization of the cardiac ROI.

ii) To ensure comprehensive, uniform, and smooth autonomous
scanning of the probe over the body surface, a path
planning method based on point cloud slicing and Non-
UniformRational B-Splines (NURBS) curves is introduced. By
equidistantly segmenting the projection of the body surface
ROI point cloud on the camera coordinate system’s XOY plane
and using NURBS curve techniques to fit the path within
slices of discrete point clouds, the uniformity and smoothness
of the scanning path are ensured, laying the foundation for
high-quality cardiac US scanning.

iii) To address the issue of target displacement within the cardiac
US window, a lightweight US image servo control algorithm
has been developed.This algorithm, by analyzing the grayscale
values of the cardiac edges, dynamically adjusts the angle
of the cardiac center axis in real-time, ensuring the heart
maintains its optimal position within the imaging window.
Moreover, in response to the dynamically changing scanning
environment, a scanning pose compensation method that
integrates multiple sources of information has been proposed.
By real-time integration of axial admittance control for
position compensation andUS image servo control for posture
compensation on top of visually planned probe scanning pose
information, the position and posture of the scanning probe
are effectively optimized. This approach enhances the quality
and stability of cardiac US imaging throughout the scanning
process and offers a significant improvement in the efficiency
and reliability of cardiac diagnostic procedures.

2 Materials and methods

2.1 System setup and design

2.1.1 System setup
As depicted in Figure 1, The cardiac US scanning robot consists

of five major components as follows: a six-degree-of-freedom

robotic arm (EC612, Elite Robotics, China), a US imaging system
with a linear probe (Clover 60,Wison, China), a force/torque sensor
(γ82, Decheng, China), an RGB-D camera (D132s, ChiSense,
China), and a human heart model (BPH700-C, CAE, United
States). The robot hardware system and functionality are shown
in Figure 1, in which the RGB-D camera, the robot controller,
the six-dimensional force sensors, and the PC communicate
via an Ethernet switch. And the US image data is transferred
from the device to the PC via an HDMI interface. The robot
control and image processing algorithms are implemented on
a PC (AMD Ryzen 7 5800H, 3.20 GHz, 16 GB RAM). The
development environment is PyCharm, based on Open3d,
geomdl, OpenCV2 libraries, and the device SDK for algorithm
development.

2.1.2 Definition of probe scan pose
To standardize the spatial pose description, we unified the

probe’s coordinate space and the human body surface’s ROI into
the robot base coordinate system. As depicted in Figure 2, the robot
base coordinate system is {B}, the robot end coordinate system
is {F}, the camera coordinate system is {C}, the probe coordinate
system is {U}, and the coordinate system at the scan target point
P is {A}. Homogeneous transformation from the robot end effector
coordinate system {F} to the robot base coordinate system {B}
is derived through forward kinematics. Transformation from the
camera coordinate system {C} to the robot end effector coordinate
system {F} is achieved via hand-eye calibration using a calibration
plate, as detailed by Marchand et al. (2005). The center point of the
end of the US probe to the end of the robot TU

F can be obtained by
tool calibration with a tool. Consequently, the transformation from
the scan target point to the robot base coordinate system, TA

B , is
delineated as follows:

TA
B = T

F
BT

C
FT

A
C (1)

And the left of Eq. 1 can be expressed as follows:

TA
B = [

[

RA
B PAB
0 1
]

]
(2)

where PAB denotes the coordinate of the scan target point P(x,y,z), the
rotation matrix RA

B can be converted to obtain the Euler angle about
the ZYX axes:

rz = arctan 2(Rprobe
B 21,R

probe
B 11)

ry = − arcsin Rprobe
B 31

rx = arctan 2(Rprobe
B 32,R

probe
B 33) (3)

Consequently, according to Eqs 2, 3, the initial attitude of the
probe at the target point can be expressed as:

Pprobe = (x,y,z, rx, ry, rz) (4)

2.1.3 Workflow
The robotic scan workflow can be divided into the following

three primary phases:

(i) Information-gathering
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FIGURE 1
System setup.

FIGURE 2
System coordinate transformation.

This initial phase involves calibrating the camera, probe, and
robotic system, as well as gathering the necessary data before US
scanning to ensure that all equipment is ready and accurately
aligned.

(ii) Planning of scanning paths and probe poses

First, with the help of human posture recognition technology,
the camera is adjusted to be directly above the human posture
recognition plane. Then, the human body surface point cloud is
preprocessed, and the ROI point cloud is segmented autonomously
based on the keypoints of the human body. Next, the scanning path
is planned by projecting slices of the point cloud combined with
NURBS curve fitting. Finally, the scanning attitude of the US probe
is determined by passing the normal vector of the path points and
the path direction.

(iii) Compensatory control of probe scanning poses

In the autonomous scanning stage, the robot real-time fuses
the axial contact force-based guide position compensation and the
US image servo-control-based attitude compensation in the vision-
guided position information, realizing the real-time optimization of
the scanning position and US view window.

The entire workflow is depicted in Figure 3, which illustrates the
synergy of the three phases mentioned above.

2.2 ROI localization based on human
posture recognition

In the field of human posture recognition, although algorithms
such as YOLO-Pose and YOLOv5 have demonstrated rapid and
efficient characteristics in target detection, they exhibit certain
limitations in accurately recognizing complex human postures
and localizing keypoints. This study selects HigherHRNet as
the keypoint recognition algorithm, primarily due to its high
accuracy and robustness in handling multi-scale human postures
and precise keypoint localization. These capabilities are achieved
through the use of high-resolution feature pyramids and multi-
resolution fusion techniques. The structure of the HigherHRNet
network model is depicted in Figure 4. Moreover, the advantages of
HigherHRNet have been validated on the COCO dataset, currently
recognized as the standard testing platform for complex posture
recognition. The performance of HigherHRNet on the COCO
dataset, especially in cases of partial occlusions, demonstrates
its exceptional capability in processing a variety of complex
postures (Cheng et al., 2020). This provides a reliable scientific
basis for its application in ROI localization within cardiac
US scanning.
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FIGURE 3
Workflow of the autonomous US scanning process.

FIGURE 4
Human pose recognition algorithm: (A) HigherHRNet network structure model, and (B) Human critical points of COCO dataset A. Adjustment of the
camera’s positioning pose.

2.2.1 Adjustment of the camera’s positioning
pose

To address the issue of inaccurate ROI localization caused by
the body’s inclination relative to the camera, this study proposes
a camera pose adjustment technique based on a human posture
recognition algorithm. This method precisely corrects the camera’s
pose by analyzing keypoints of human posture and their planar
normal vectors, achieving consistent alignment of the camera’s
viewpoint. This alignment ensures the body remains symmetrical
within the camera’s positioning window, effectively overcoming the
limitations of two-dimensional image localization techniques in
capturing complex spatial relationships and changes in posture. The
specific steps include:

i) Key point positioning

Utilize a human keypoint detection model trained on
HigherHRNet to precisely identify four main keypoints of the
human body in color images: left shoulder A, right shoulder B,
left hip C, and right hip D, as shown in Figure 5B. These points’
cloud positions in three-dimensional space are calculated, providing
critical coordinate information for subsequent plane fitting.

ii) Plane fitting

Employing the least squares method, a plane representing the
human posture is fitted based on the coordinates of the four
keypoints, calculating the normal vector n⃑i of the plane. Further,
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FIGURE 5
Camera pose adjustment: (A) Input RGB image. (B) Key point identification. (C) Schematic diagram of the human body posture plane. (D) Spatial
diagram of camera adjustments.

the projections of these keypoints on the human posture plane are
denoted asA′,B′,C′ andD′, withWi as the geometric center of these
projection points' coordinates, as depicted in Figure 5C.

iii) Camera pose calculation

The origin of the camera coordinate system is set at positionWi
′,

directly above the pointWi at a distance of l mm. The Z-axis of the
camera coordinate system is directed along n⃑i and passes through
the point Wi, the X-axis direction is aligned with ⃑A′B′, and the Y-
axis direction is calculated through the cross-product, as illustrated
in Figure 5D.

iv) Camera Pose Adjustment

Following the guidance from steps 1 to 3, the robotic arm
executes iterative adjustments of the camera’s pose. During this
process, by comparing the pose difference with a predefined
threshold, it is determined whether the condition for stopping
adjustment has beenmet, thereby achieving precise correction of the
camera’s pose.

2.2.2 Point cloud segmentation and registration

i) Background filtering

As shown in Figure 6A, the raw point cloud data of the human
body captured by the RGB-D camera is voluminous and contains
significant noise. Given that the position of the operating table and

the robotic arm is relatively fixed, this paper utilizes a pass-through
filter on the Z-axis dimension of the world coordinate system to
segment and filter the point cloud data.This process retains only the
point cloud related to the human body, as depicted in Figure 6B.

ii) Point cloud downsampling

Although background filtering can reduce the number of point
clouds to some extent, the remaining data volume is still substantial,
impacting the system’s ability to process point clouds efficiently.
To decrease data density while preserving the integrity of the
point cloud’s geometric structure, voxel filtering is used for data
downsampling, as depicted in Figure 6C.

iii) Point cloud denoising

To enhance the positioning accuracy of path points within
the ROI, it is necessary to further denoise the reconstructed
point cloud model. This study employs a combined approach of
statistical filtering and DBSCAN clustering to remove outliers. The
DBSCAN clustering method is used to specify density criteria to
identify clusters, removing small clusters and scattered points. This
is further combined with statistical filtering to eliminate outliers
significantly different from neighboring points, thereby smoothing
the point cloud surface while preserving data structure, as depicted
in Figure 6D. This dual-filtering approach demonstrates higher
robustness when processing noise data of varying densities and
shapes in human bodies.
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FIGURE 6
Point cloud processing and ROI localization steps: (A) Raw point cloud data. (B) Background filtered point cloud. (C) Point cloud after downsampling.
(D) Denoised point clouds. (E) Multi-point cloud registration. (F) Schematic diagram of ROI localization. (G) Segmented ROI point cloud.

iv) Multi-point cloud registration

To capture the complete surfacemorphology of the human body
and supplement partial informationmissed from a single viewpoint,
this study proposes a method of multi-viewpoint cloud capture
and registration. This method involves collecting point cloud
data from multiple viewpoints for 3D reconstruction and using
Fast Point Feature Histograms (FPFH) features and the Random
Sample Consensus (RANSAC) algorithm for global registration.
Subsequently, the Iterative Closest Point (ICP) algorithm is
employed for fine registration to achieve high-precision matching
of point cloud data, as depicted in Figure 6E. The optimized
mathematical model of the ICP algorithm can be expressed as
follows:

T i+1 = argmin
T
∑
j
‖qi −T(pi)‖

2
2 (5)

In this context, Ti+1 represents the transformation matrix
obtained after the i+ 1 iteration, T(pj) denotes the mapped
position of point pj in the source point cloud under the current
transformation, and qj is the corresponding point in the target point
cloud to pj.

2.2.3 ROI localization and segmentation
Based on an in-depth analysis of the ROI in cardiac US and

the clinical experience of US physicians, this study identifies a clear
geometric positional relationship between the surface ROI area and
human keypoints. Drawing on existing research findings (Hao et al.,

2024), we propose a novel ROI localization method that relies on
acquired RGB images and point cloud information to precisely
locate human keypoints, thereby accurately determining the ROI
position using the coordinate relationships of these keypoints. The
specific method is as follows:

i) ROI localization

Initially, within the camera coordinate system, the projection
points of the two shoulder keypoints on the XOY plane, A″, B″, are
determined. Based on these two points, the four boundary points of
the ROI, G1, G2, G3 and G4, are defined, as depicted in Figure 6F.
Here, G1 and G4 serve as the starting and ending points of the
scanning path, respectively. The perpendicular bisector of the line
segmentA″B″,G1E is used as the left-right dividing line of the body,
while the Euclidean distance between A″ and B″, lA″B″ , serves as a
basis for determining the overall size of the ROI range. Furthermore,
it is set that G1G2 are parallel to G3G4, and G1G3 and G2G4 are
parallel to EF. On this basis, the length of G1E is set to 0.4 lA″B″ ,
the length of G1G3 is set to 0.25 lA″B″ , the angle formed between the
line segment G1G2 and A″B″ is θ, and the distance between G1G3
and G2G4 is 0.3 lA″B″ .

ii) ROI point cloud segmentation

After defining the boundary points of the ROI, we extract all
the human body point clouds projected onto the XOY plane and
located within the four boundary points G1, G2, G3, and G4 to
complete the point cloud segmentation of the cardiac US ROI. As
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depicted in Figure 6G, this shows the point cloud of the cardiac
ROI when θ is 0.

2.3 Planning of scanning paths and probe
poses

2.3.1 Planning of scanning paths
ToensurethepathsuniformlycoverthecardiacROIspace, thepath

planes are selected equidistantly based on the XOY plane. Given the
sparse distribution of point clouds on the designated path plane, path
slicing is utilized to acquire nearest neighbor points to populate the
points required for path fitting.Thedistance between adjacent paths is
related to the width of the US (US) probe, denoted as d mm, with the
probe’s scanning direction oriented along the longer dimension of the
scanning area. To increase the overlap between paths, an additional
overlap measure c is defined. As depicted in Figure 7A, path planes
are evenly positioned along the shorter edge of the ROI projection,
adhering to a predetermined path spacing of d-c mm. Subsequently,
path slices required for path fitting are created by extracting points on
both sides of these path planes at a distance of σ

2
mm.

Given the discrete nature of the point clouds within the
path slices, a third-order Non-Uniform Rational B-Splines
(NURBS) curve is employed to fit the path curves, thereby more
effectively adapting to changes in the surface curvature of the body
(Zhang et al., 2023). This is achieved by adjusting weights and
selecting appropriate control points to enhance consistency with
the characteristics of the point cloud data. The fitting equation for
the third-order NURBS curve is as follows:

P(t) =
∑n

i=0
NI,3(t) ·wi · Pi

∑n
i=0

NI,3(t) ·wi
(6)

E = ∑n
i=1
‖P(ti) − Pi‖

2 (7)

Ni,3(t) =
1
6
[(1− t)3,3t3 − 6t2 + 4,−3t3 + 3t2 + 3t+ 1, t3] (8)

where P(t) is the point on the curve; Ni,3(t) represents the third-
order NURBS basis function, E is the control vertex optimization
objective function, and Pi is the coordinates of the control vertices;
wi is the weight associated with each control vertex; n is the number
of control vertices; t is the curve parameter, ranges with [0,1].

As depicted in Figure 7E, the scanning paths are designed along
a two-dimensional plane, with the baseline from the ROI boundary
G1 to G3. To ensure the continuity of the scanning process, the
probe automatically moves to the starting point of the next path
after completing one path and scans in the opposite direction.
This process continues uninterrupted until all predetermined paths
have been thoroughly scanned. As depicted in Figure 7B, extract
appropriate path points along each scanning path.

2.3.2 Planning of initial probe scanning poses
To optimize the US probe’s angle of incidence to be nearly

perpendicular, thereby enhancing image clarity (Wang Y. et al.,
2023), the probe’s initial pose was established based on the
normal vector to the skin surface at path points. Given the
local geometric characteristics of the point cloud data, a KD tree
structure was constructed for efficient indexing of neighboring

point sets for each path point. Centroid alignment is applied to
these point sets to eliminate offset, followed by linear fitting using
the least squares method to derive local plane equations. From
these equations, normal vectors were extracted and further refined
through optimization based on the residual sumof squares, ensuring
a precise approximation of local surface features. The equation for
this specific optimization process is delineated as follows:

min
c,n,||n||=1

m

∑
i=1
((Pi −C)

TZi)
2 (9)

where C is the centroid of a set of neighboring points and (Pi −C)
denotes a decentered point.

The unit normal vectors obtained from Eq. 9 are bidirectional,
and direction unity is achieved by the path point to viewpoint
vector coinciding with the normal vector (Figure 7D), which
is satisfied:

Zi · (vp − Pi) > 0 (10)

In order to ascertain the axial angle rz of the probe, its broadside
is aligned such that it remains parallel to the scanning path’s
tangent. As depicted in Figure 7F, the tangent vector Y′i determined
from the sum of two adjacent points Pi+1 and Pi, may not align
perpendicularly with the normal vector. The unit positive direction
vector for the X and Y coordinate axes at the target point’s location
is determined through cross-product operations as illustrated in
Figure 7C. Subsequently, the rotation transformation matrix for
the probe’s coordinate system to the robot arm’s base coordinate
system, Rprobe

B = (X,Y,Z), is formulated by arranging them in the
order of Xi、 Yi and Zi. This rotation matrix is then translated into
Euler angles rz, ry, rz following Eq. 3, facilitating the acquisition of
the probe’s initial pose information at the target point, denoted as
Pprobe = (x,y,z, rx, ry, rz). Figure 7G presents the planning diagram
for all scanning paths and probe poses within the ROI.

2.4 Compensatory control of probe
scanning poses

2.4.1 Axial position compensation based on
admittance control

To ensure effective US penetration through the skin and
the acquisition of high-quality cardiac images, this study builds
upon previous research on force-controlled US scanning by
applying an admittance control algorithm for precise axial position
compensation of the probe (Jiang et al., 2024). This admittance
control guides the robotic arm to adjust the probe’s position along
the Z-axis based on the changes in axial contact force between the
probe and the skin, thereby enhancing the system’s adaptability to
complex environments and the stability of cardiac US imaging. The
expression for admittance control is as follows:

Md(Z̈d − Z̈) +Bd(Żd − Ż) +Kd(Zd −Z) = Fc (11)

∆z = Zd −Z (12)

where Md,Bd, and Kd are the inertia, damping, and stiffness
parameters of impedance control, respectively; Fc is the difference
between the actual force and the reference force; Z is the initial
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FIGURE 7
Scanning paths and probe poses planning algorithm: (A) Path planes within ROI. Discrete point cloud within the ith slice with a width of σ

2
mm. Path

fitting in the ith slice Si. (B) Isometric selection of path points. (C) Formulation of probe orientation at path points. (D) Schematic diagram of normal
vector calculation. (F) Schematic diagram of probe orientation calculation. (E) Schematic diagram of 2D path planning. (G) Scanning paths and probe
poses are planned.

positioning position in the axial direction; Zd is the desired position
in the axial direction; ∆z is the compensated axial position.

Thus, according to Eq. 4 and Eq. 12, the pose after position
compensation of the probe can be expressed as follows:

P′probe = (x,y,z+∆z, rx, ry, rz) (13)

2.4.2 Orientation compensation based on servo
control of cardiac US image edges

As depicted in Figure 8A, although the probe scanning posture,
employing position compensation technology based on visual
positioning and admittance control, can achieve clear imaging of the
heart, artifacts and cardiac displacement may still occur within the
US window. In order to optimize the cardiac US window in real-
time during the scanning process, this study proposes an US image

servo-control based attitude compensation strategy. This strategy
aims to ensure the accuracy and quality of cardiac US imaging by
adjusting the probe attitude to reduce or eliminate artifacts and
offsets during imaging.

In the US sectoral window, the upper layer typically comprises
the skin fat layer, whereas the lower layer often exhibits lower image
quality. The observation area is delineated as an annulus within
the polar coordinate system, defined by Ω = [rmin, rmax]×[θmin,
θmax], situated between these two layers. To enhance the precision
of window optimization, this area is partitioned into m sub-
areas, where the central angle of each subregion is α, as depicted
in Figure 8B. A threshold, σ, is established based on the mean
grayscale value across the observation area to distinguish the valid
region (values above σ) from the invalid region (values below
σ). The mean grayscale value, μj, of each sub-region, along with
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FIGURE 8
Schematic diagram of US image servo control (A) Artifacts and cardiac deviation in the echocardiography window. (B) The observation area of the US
window is divided into 24 sub-regions. (C) Schematic diagram of cardiac US image servo control.

the desired steering angle, Ф, for compensation, are computed as
follows:

μj =
1
N
∫
θi+1

θi
∫
rmax

rmin

I(r,θ)rdrdθ, i = 1,2, · · ·,m (14)

Ф =
K · (a− b) · α

2
(15)

where I(r,θ) is the grayscale value of the pixel at the polar position
(r,θ), N is the number of pixels in each sub-region, K is the control
gain, a、b represent the amount of the invalid region adjacent to the
center region on both sides, respectively, obtained by comparing the
grayscale values calculated according to Eq. 14 with the threshold
value σ, and α is the angle of the center of the circle of the sub-region.

Finally, based on Eq. 13 and Eq. 15, the pose of the probe after
attitude compensation, considering probe position compensation,
can be expressed as follows:

P″probe = (x,y,z+∆z, rx+Ф, ry, rz) (16)

As depicted in Figure 8C, the robot arm adjusts the probe,
causing it to rotate around its X-axis coordinate system to the desired
steering angle Ф, thereby aligning the probe’s gray centerline to the
desired yellow centerline. Throughout this procedure, Ф (targeting
an expected value of 0°) serves as the control parameter. Orientation
compensation is executed in real time via an iterative method,
designed to enhance image quality.

The overall US image servo control algorithm flow can be seen
in the pseudo-code in Table 1:

2.4.3 Establishment of a coordination mechanism
Given that the tasks of ISC and admittance control operate

independently under separate threads, maintaining the contact force

within a consistent range is prioritized. At the initial point, the robotic
system employs admittance control to determine the compensated
position for the entire path in the normal direction. Throughout the
scanning process, it persistently assesses the contact force’smagnitude
and the real-time variations in image quality. Should the image quality
fall below the desired standard, the USwindow is adjusted to improve
image quality without compromising the stability of the contact force.
Conversely, if the contact force exceeds a predetermined threshold,
the robotic system prioritizes the adjustment of the Z-axis position to
maintain a safety level of contact force.

3 Experimentation and results analysis

To evaluate the methods and algorithms proposed in this study,
experiments were conducted using the cardiac scanning robot
system depicted in Figure 1. The experimental setup includes the
robot’s control frequency set at 30 Hz, force information read at a
frequency of 200 Hz, and cardiacUS image processing at a frequency
of 50 Hz. As shown in Figure 9, the experiments were divided into
three groups across two models, aiming to assess the precision of
camera adjustment localization, the quality of path fitting, and the
imaging outcomes of US servo control.

3.1 Evaluation of localization accuracy
under camera pose adjustment

To verify the effectiveness of the camera pose adjustment
method based on human posture recognition algorithms proposed
in this study, and to evaluate its positioning accuracy, experiments
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TABLE 1 Cardiac US image servo control algorithm flow.

Algorithm 1: Cardiac US image servo control (ISC)

Input: observation window parametersΩ (center coordinates p, inner radius rmin, outer radius rmax, start angle θstart, end angle θend), sub-regions_amountm

Output: steering angle Ф

1: masks, α ← divide_observation_regionTomasks( p, rmin, rmax,; θstart, θend, m)

α = θend−θstart
m

;//the central angle of each subregion

2:While readVideoFrames() = True do

3: grayscale_frame ← convert_frameTograyscale()

4: grayscale_values μj, mean μ0 ← mask_extract_grayscalevalues(grayscale_frame, masks)

μj =
1
N
∫θi+1θi
∫rmax
rmin

I(r,θ)rdrdθ, i = 1,2, · · ·,m;//The grayscale value of the subregion

5: if μ0 > 0.16 then

6: a, b ← calculate_invalid_subregions(μj, μ0)

//The amount of the invalid zone adjacent to the center region on both sides

7: calculate_steering_angle (a, b, α, K)

Ф = K⋅(a−b)⋅α
2

;//Steering angle

8: end if

9: scan_control(∆z, Ф); //∆z is axial position compensation

10: end while

FIGURE 9
Experimental test platform: (A) experimental platform based on visual planning. (B) experimental platform for autonomous scanning control.

were conducted using a human model as the recognition target.
Camera positioning adjustments were tested, as depicted in Figure
9A. The experiment was set with an iteration count of 5, a
predetermined camera pose difference threshold of 10 mm, and
a camera distance setting height of 670 mm. The adjustment
experiment was conducted under 20 different initial camera
poses. Following the operational steps described in Section 2.2 1,

the camera was adjusted to the optimal positioning pose, and
the pose of the camera, as well as the coordinate information
of the four identified human keypoints (A, B, C, and D)
were recorded.

As depicted in Figure 10A presents the point cloud of the
human body after the camera was adjusted to the pose of the
first set of experiments, the distribution of the point cloud of

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1383732
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Tang et al. 10.3389/frobt.2024.1383732

FIGURE 10
Camera pose adjustment experiment (A) Normal vectors of human point clouds, keypoints, and human pose planes after a set of camera adjustment
experiments. (B) Spatial location of four human critical points after 20 sets of experiments. (C) Camera poses after 20 sets of experiments. (D) Four
keypoints of the human body after 20 sets of experiments.

the four keypoints, and the direction arrows of the camera pose.
Figure 10B presents the distribution of the coordinate positions of
the four keypoints in 3D space for the 20 sets of experiments.
To present the experimental results more intuitively, Figure 10C
presents the 3D coordinate box plots of the four keypoints
detected after camera adjustment, and the maximum Euclidean
deviations of the four keypoints were calculated from the data
to be 2.36 mm, 2.91 mm, 1.60 mm, and 2.19 mm, respectively.
Meanwhile, Figure 10D summarizes the corresponding camera-
adjusted pose parameters, including the x, y, and z coordinates and
the rx and ry rotation angles, which are −596.73 ± 1.13 mm, 447.99
± 1.12mm, 157.72 ± 0.72mm, and 188 ± 0.38°, −1,16 ± 0.41°,132.06
± 0.84°, respectively. These experimental results demonstrate the
high precision and repeatability of camera pose adjustments under
various initial viewpoints. Since ROI localization is based on the
positioning of keypoints and human posture within the camera’s
view, these results also indirectly prove the effectiveness of the
camera adjustment method based on human posture recognition in
solving two-dimensional ROI localization issues.

3.2 Evaluation of path-fitting performance

Ensuring the uniformity and smoothness of scanning paths
within the cardiac Based on an in-depth analysis of the ROI

in cardiac US and the clinical experience of US physicians, this
study identifies a clear geometric positional relationship between
the surface ROI area and human body keypoints. during the
autonomous cardiac US scanning process is crucial for achieving
stable and fluid scanning movements. For this purpose, this
study provides a detailed demonstration of path fitting within
the cardiac ROI and validates the rationality of the path design
through quality assessment. The initial steps involve projecting
the point cloud data within the ROI onto the XOY plane
and setting the angle between the path and the projected line
segment of shoulder keypoints θ to zero. Within the projected
boundary of the ROI, path slices 0.8 mm wide are selected
at equal intervals, and point cloud data extracted from these
slices are used for path fitting. Figure 11A shows the discrete
point cloud set corresponding to the first path slice in three-
dimensional space.

Using the Open3D and geomdl libraries, these point cloud
path slices were fitted with third-order Non-Uniform Rational B-
Splines (NURBS) curves. To accurately capture the path contours,
20 control points were selected for each path, and the weights of
all control points were uniformly set to 1, with the results shown
in Figure 11B. For a visual demonstration of the fitting effect,
Figure 11C displays the projection of the discrete point cloud and
its fitting curve for the first path slice on the XOZ plane. Finally,
Figure 11D comprehensively presents the point cloud data, control
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FIGURE 11
Scanning path fitting experiments (A) Discrete points of a slice. (B) Curve fitting after selecting control vertices within a slice. (C) Projections of fitted
curves and discrete point clouds onto the XOZ plane. (D) Path fitting of discrete point clouds within all slices.

points, and fitting curves for eight path slices, fully showcasing the
fitting results.

To comprehensively evaluate the fitting quality within the
path slices, this experiment quantified the bias by computing
the Euclidean spatial distances from the discrete point clouds
within the path slices to their nearest curve smoothing points.
As depicted in Figure 12, the histograms of mean square error
(MSE), root mean square error (RMSE), and maximum error
(MA) between the discrete point clouds and the fitted curves
within the selected eight path slices are displayed. The results
show that the MSE is ≤0.28 mm, the RMSE is ≤0.46 mm
and the MA is ≤1.19 mm. These metrics indicate that the
overall path deviation is in full compliance with the planning
requirements of the autonomous scan paths, thus confirming
the effectiveness of this path-fitting method in path quality
control.

3.3 Evaluation of cardiac US imaging
quality

During the autonomous cardiac US scanning process, relying
solely on visual positioning and force perception control proves
insufficient for ensuring the quality of imaging at the window center.
As demonstrated in Figure 9B, this study conducted automatic
scanning tests on a cardiac model to evaluate the effectiveness of
the Image Steering Control (ISC) algorithm in reducing cardiac
imaging displacement within the US window. In the experimental
setup, the US gain was fixed at 80, with probe position and posture
information updated at a frequency of 30 Hz to facilitate real-
time autonomous control. The experiments were conducted both
with the ISC mode enabled and disabled, where the robotic arm
controlled the probe to perform continuous autonomous scanning
along eight predefined paths within the heart’s ROI. By comparing
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FIGURE 12
Evaluation of fitted path curves.

the changes in grayscale values of the US images and the ideal
steering angles within the observation area under these two modes,
this experiment accurately assessed the effectiveness of the ISC
technology in enhancing the quality of US imaging and its precision
in adjustment.

As depicted in Figure 13A records the variation of the desired
steering angle during probe scanning in both modes, while
Figure 13B shows the variation of the mean grayscale value of the
US image during probe scanning. The peaks and valleys of these
fluctuations correspond to the locations of the two ends of the heart
on the trajectory, respectively. It was observed that scanning the
probe to the right resulted in a significant increase in the desired
steering angle when ISC was not enabled, while it decreased when
scanning to the left. In addition, regardless of whether ISC was
enabled or not, themean grayscale value of the US images decreased
significantly when the probe was scanned to the right, while it
increased when the probe was scanned to the left. In particular,
when the desired steering angle was close to 0°, this indicated that
the heart was in the center of the viewing window when imaging
was optimal.

As can be seen from the gray value curves in Figure 13B,
the mean grayscale value of the images obtained during ISC-
enabled scanning is generally higher than that observed during
non-ISC-enabled scanning, especially in the regions outside the
path transitions. In addition, the fluctuation of the desired steering
angle is smoother when ISC is enabled, indicating higher and more
stable image quality. The yellow transparent area in Figure 13B
reveals a phenomenon: when the compensated steering angle
is too large, the mean grayscale value of ISC enabled may
drop sharply. At the orange marker line, the probe pose based
on visual navigation is close to ideal, showing that the image

quality remains good with or without ISC enabled. However,
at the green marker line on the left side of Figure 13, where
the probe is further away from the heart, the image quality
without ISC enabled and with ISC enabled shows a significant
difference, with a mean grayscale value difference and desired
steering angle difference of 0.041 and 39.5°, respectively. The
experiments showed that the application of the ISC algorithm
during the cardiac US scan can effectively perform orientation
compensation and significantly improve the image quality in the US
view window.

4 Discussion

Currently, autonomous US scanning robots typically face
challenges such as insufficient precision in localizing the ROI,
difficulty in ensuring window quality, high operational complexity,
and adaptability issues in dynamic scenes. For autonomous cardiac
US scanning, this study introduces camera pose adjustment
based on human posture recognition, enabling the system to
precisely locate the cardiac ROI based on human keypoints
in various scenarios. Compared to methods based on color
feature extraction (Lan and Huang, 2018; Huang et al., 2019)
and positioning solely on unadjusted two-dimensional images
(Soemantoro et al., 2023; Tan et al., 2023; Okuzaki et al., 2024), this
approach offers stronger anti-interference capabilities, providing
a more accurate and stable imaging benchmark. By projecting
three-dimensional point cloud data and processing it through
equidistant slicing, the system in this study effectively handles
irregular point cloud data in three-dimensional space and generates
uniform, smooth scanning paths through NURBS curve fitting. The
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FIGURE 13
Image quality assessment experiment (A) In ISC-enabled mode versus non-ISC-enabled mode, the probe scans record the desired steering angle. (B) In
both modes, the probe scans record the mean grayscale value within the viewing window.

innovation of this method lies in providing a simple and precise
path-planning solution for complex body surface geometries,
significantly enhancing the regularity and adaptability of scanning
paths compared to path selection based solely on RGB images
(Huang et al., 2018; 2019; Lee et al., 2018; Welleweerd et al., 2020).
The servo control strategy proposed in this study, based on
admittance control and cardiac image edge correction, allows
the system to monitor and adjust the US imaging window in
real-time to optimize image quality. This strategy effectively
optimizes the pose during scanning, improving the quality and
stability of cardiac imaging. Compared to complex calculations
for optimizing probe pose based on confidence maps (Jiang et al.,
2022; 2023), this strategy reduces the system’s adaptation cost
to dynamic changes, achieving real-time optimization of the
US window and offering new solutions for enhancing US
imaging quality.

Although this study has made significant progress in the
development of a cardiac US scanning robot system, there are
still some limitations. To reduce design and operational costs, the
scanning process primarily focused on axial position compensation
and optimization of imaging quality within the window, while
strategies for avoiding obstacles within the window (such as
ribs) need further exploration. Future work will consider using
out-of-plane angle adjustments to effectively avoid obstacles and
explore integrating multi-dimensional freedom control strategies
for the probe, to enhance the system’s adaptability to dynamic
environments. Additionally, the current manual application of US
coupling gel increases the risk of infection. Future work will

develop an automatic gel application device to enhance the system’s
convenience and autonomy.

5 Conclusion

In this study, we have successfully developed an autonomous
cardiac US scanning robot system capable of independently
identifying the cardiac scanning area, planning scanning paths,
and probe positions before the scan, and optimizing the pose in
real-time during the scanning to acquire high-quality cardiac US
images. Utilizing camera adjustment technology based on human
posture recognition, the system can correct the camera’s positioning
pose. After precise extraction of the human point cloud through
point cloud processing and registration techniques, the system
achieves accurate localization and segmentation of the Region of
Interest (ROI) based on human keypoints. Subsequently, using
point cloud slicing and Non-Uniform Rational B-Splines (NURBS)
curve fitting techniques, it obtains uniform and smooth scanning
paths. Furthermore, a servo control method for cardiac image edge
correctionwas proposed to optimize the cardiacUSwindow.During
the scanning process, the system integrates an innovative servo
control strategy based on admittance control and cardiac image
edge correction, enhancing the quality and stability of autonomous
cardiac US scanning imaging. Through rigorous experimental
validation, our research not only demonstrates the effectiveness and
precision of the system and its key technologies but also highlights
its significant potential for clinical applications.
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