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Towards reconciling usability and
usefulness of policy explanations
for sequential decision-making
systems

Pradyumna Tambwekar* and Matthew Gombolay

School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, United States

Safefy-critical domains often employ autonomous agents which follow a
sequential decision-making setup, whereby the agent follows a policy to dictate
the appropriate action at each step. AI-practitioners often employ reinforcement
learning algorithms to allow an agent to find the best policy. However,
sequential systems often lack clear and immediate signs of wrong actions,
with consequences visible only in hindsight, making it difficult to humans to
understand system failure. In reinforcement learning, this is referred to as the
credit assignment problem. To effectively collaborate with an autonomous
system, particularly in a safety-critical setting, explanations should enable a user
to better understand the policy of the agent and predict system behavior so that
users are cognizant of potential failures and these failures can be diagnosed and
mitigated. However, humans are diverse and have innate biases or preferences
which may enhance or impair the utility of a policy explanation of a sequential
agent. Therefore, in this paper, we designed and conducted human-subjects
experiment to identify the factors which influence the perceived usability
with the objective usefulness of policy explanations for reinforcement learning
agents in a sequential setting. Our study had two factors: the modality of
policy explanation shown to the user (Tree, Text, Modified Text, and Programs)
and the “first impression” of the agent, i.e., whether the user saw the agent
succeed or fail in the introductory calibration video. Our findings characterize
a preference-performance tradeoff wherein participants perceived language-
based policy explanations to be significantlymore useable; however, participants
were better able to objectively predict the agent’s behavior when provided
an explanation in the form of a decision tree. Our results demonstrate that
user-specific factors, such as computer science experience (p < 0.05), and
situational factors, such as watching agent crash (p < 0.05), can significantly
impact the perception and usefulness of the explanation. This research provides
key insights to alleviate prevalent issues regarding innapropriate compliance
and reliance, which are exponentially more detrimental in safety-critical
settings, providing a path forward for XAI developers for future work on
policy-explanations.
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1 Introduction

There is a widening chasm between AI-practitioners and
consumers due to the ever-expanding breadth of Artificial
Intelligence (AI) systems.This rift between end-user and technology
leads to a decrease in trust and satisfaction in autonomous
systems (Matthews et al., 2019). Humans understandably become
suspicious towards these systems and are less tolerant to failures and
mistakes (Robinette et al., 2017; Kwon et al., 2018; Das et al., 2021).
Explainable AI (XAI) was thus proposed as a means for developers
to engender greater confidence in these systems by enabling users to
understand the inner-workings and decision making process of AI
algorithms (Xu et al., 2019; Jacovi et al., 2021). As such, XAI systems
have now been broadly deployed in various capacities such as for
banking (Grath et al., 2018), healthcare (Pawar et al., 2020), robotics
(Anjomshoae et al., 2019) among other domains.

Many AI systems within these domains leverage a sequential
decision making setup, where the agent follows a policy which
sequentially dictates the action it will take at any given state in the
environment. ExplainableAI for sequential decisionmaking systems
raises different challenges compared to single-interaction tasks, such
as decision support (Chakraborti et al., 2017a). User experiences
with sequential decision making systems often involve repeated
interactions. Furthermore, many applications within sequential
decision making involve human-supervisory control in which
humans provide feedback or demonstrations to change an agent’s
behavior (Griffith et al., 2013; Ravichandar et al., 2020), which
require the user to iteratively update their feedback based on the new
behavior of the sequential agent. Explanations for such interactions
need to take into account the continuously shiftingmentalmodels of
users, and provide explanations in the context of the agent’s behavior
in various scenarios.

For users who work with these systems, the stakeholder may
have varying degrees of understanding of the agent’s behavior
in different contexts. An inappropriate understanding of an AI
agent’s behavior can have a regressive effect on AI-safety through
creating a false sense of security (Ghassemi et al., 2021) and
encouraging blind compliance (Poursabzi-Sangdeh et al., 2021) to
uninterpretable behavior. Analyzing the mental models (Gentner
and Stevens, 2014) of end-users has become a popular method of
gauging a user’s understanding of an autonomous system. The role
of an explanation is to reconcile any differences in the user’s mental
model of the system with the actual conceptual model of the system,
which in the case of sequential decisionmaking systems is the policy.
Recent work has shown the importance of mental models in user
interactions with a sequential decision making agent by utilizing
a formulation called “critical states,” wherein the actions at these
states encapsulated the essence of the policy (Huang et al., 2018).
The authors showed that by presenting the actions of an agent at
these critical states, a user is able to better identify the quality of
two policies. Anderson et al. (2020) similarly study mental models
for sequential agents, through a qualitative measurement of the
accuracy of a user’s mental model of the agent and the information a
user utilizes to make a prediction. In our work, we utilize a post hoc
plan-prediction task, in which wemeasure how often a participant is
able to correctly predict an agent’s behavior for the next few actions.

To avoid liability andmistrust between human-stakeholders and
their AI-partners, we need to promote “explanatory debugging”

(Kulesza et al., 2015) of these systems, so that humans can
adequately simulate an agent’s behavior and debug any faults. In
this paper, we present a user study in which we compare multiple
modalities of policy explanations with regards to the simulatability
(Belle and Papantonis, 2021) of a sequential decision making
agent. Our study focuses on an intereptable architecture, called
differentiable decision trees (DDT), whichwere originally developed
by Suárez and Lutsko (1999), and recently adapted to reinforcement
learning as policy learners (Silva and Gombolay, 2020). DDTs are
of interest to us due to the “white-box” nature of the architecture
wherein the explanation is derived faithfully from the decision
making process of the agent. Through DDTs, the actual policy
learnt by an agent can be distilled as a predicate-based decision
tree (Silva et al., 2020). In our study, we analyze the utility of
decision-tree-based policy explanations in relation to other policy-
explanation modalities such as language or programs. Language
explanations are formatted as a paragraph or set of sentences, and
programs are a set of if-else statements. Crucially, the information
is presented in a different format but is internally consistent with
the decision making process of the agent. We developed a forward
simulation protocol (Doshi-Velez andKim, 2017) inwhichwe tested
a participant’s ability to interpret four modalities of explanations
for a self-driving car on a highway, to build on prior work on
mentalmodels in the same domain (Huang et al., 2018; Huang et al.,
2019). Driving is an accessible domain, as people generally have
a model of how a car should drive on a highway, making it an
interesting task to measure how well an explanation is able to
shift this model to the car’s actual policy. Autonomous driving
is also a safety-critical application and thus is a highly relevant
domain for explanatory debugging due to the ethical and liability
concerns involved (Stilgoe, 2019; Zablocki et al., 2021). Therefore,
it is important to better understand the factors that influence the
perception and ability to apply the explanations in these scenarios.
Our work also seeks to unpack the relationship between perceived
usefulness of an explanation and actual usefulness, which we define
as how well a participant is able to apply the explanation towards
predicting the behavior of the AI agent.

Through our analysis, of subjective and objective metrics of
explanation usefulness, we seek to present a better understanding
of how to connect users to the right explanation which suits their
individual context and characteristics.We identify key demographic
factors that elucidate when anXAImethod ismore or less helpful for
an individual user. Our analysis highlights issues regarding a lack of
internal evaluative consistancy of XAI modalities by demonstrating
that users objectively better understand the underlying working of
the self-driving car with the help of an explanation, but subjectively
prefer a differentmodality because the first explanationwas ill-fitting
towards their distinct disposition Zhou et al. (2022). To summarize,
our contributions are as follows,

1. We present a novel study design to compare multiple
modalities of explanations through both subjective metrics
of usability and acceptance as well as objective metrics of
simulatability.

2. We conduct qualitative and quantitative analysis on data
from 231 participants to elucidate individual preferences
of explanation modality as well as highlight the effect of
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situational or dispositional factors on the perception of
the XAI agent.

3. Our results highlight a lack of consistency in evaluative
preference of explanationmodalities, by showing that although
participants rated text-based explanations to be significantly
more useable than the decision tree explanation (p < 0.05), the
decision tree explanation was found to be significantly more
useful for simulating the functionality of the self-driving car
(p < 0.001).

2 Related work

2.1 Explainable AI methodologies

Explainable AI is a prominent area of research within artificial
intelligence. The most prevalent explainability methods are model-
based approaches, which seek to explain the black-box of a deep
neural network. A popular preliminary approach was by visualizing
the outputs and gradients of a deep neural network (Simonyan et al.,
2013; Yosinski et al., 2015; Selvaraju et al., 2017; Ghaeini et al.,
2018). These methods provided informative visualizations of neural
network outputs and parameters in order to enable users to interpret
the functionality of the network. However, it has been found
that approaches that rely on visual assessment can sometimes be
misleading, as they may be specific to unique data or modelling
conditions, and can be highly susceptible to outlying outputs that
contradict the explanation (Adebayo et al., 2018; Kindermans et al.,
2019; Serrano and Smith, 2019). Prior work has also sought
to transform uninterpretable deep networks into interpretable
architectures or modalities such as decision trees (Humbird et al.,
2018; Silva and Gombolay, 2020; Paleja et al., 2021), or bayesian rule
lists (Letham et al., 2015), and generate explanations by exploiting
the “white-box” nature of these architectures (Silva et al., 2020).

Other researchers focus on generating human-centered
explanations which describe the actions of an agent in human-
understandable language. One such approach is rationale generation
which present post hoc explanations which rationalize the actions
taken by an agent in a human-understandable manner (Ehsan et al.,
2019; Das et al., 2021). Susequent human-centered AI work builds
on rationalizing individual actions, by also providing a set of
suggested actions to enable the user to understand how to achieve
their specified goal (Singh et al., 2023). In instances where data
is presented in a format understandable to an end-user, an elegant
solution is to highlight individual training examples which influence
themodel to expose the reasons behind amodel’s output. Prior work
has enabled approaches to identify and visualize individually the
effect of training examples on the hidden representations of a neural
network, and have applied these methods towards explaining the
network or understanding the source of bias (Koh and Liang, 2017;
Silva et al., 2022a). Alternative data-based explainability methods
have also provided methods to highlight the sections of the training
example which provide a reasoning for an output (Mullenbach et al.,
2018; DeYoung et al., 2020; Lakhotia et al., 2021). Finally, recent
work seeks to adapt the explanation to the needs or preferences of
the user. Such approaches modify the explanation by eliciting user-
inputs (Lai et al., 2023) or by learning an embedding to encode a
user’s preferences or performance (Li et al., 2023; Silva et al., 2024).

2.2 Explainable Reinforcement Learning

Autonomous agents deployed in safety-critical settings, often
follow a sequential decision making paradigm wherein the agent
learns a policy to determine the appropriate action at each state.
Due to the distinctive nature of a sequential decision making tasks,
explanations in this domain have varying structures and properties.
Explanations for sequential-decisionmaking algorithms are broadly
categorized as Explainable Reinforcement Learning (XRL). XRL
approaches often seek to reconcile the inference capacity or the
mental model (Klein and Hoffman, 2008) of a user. Inference
reconciliation involves answering investigatory questions fromusers
such as “Why not action a instead of a′?” (Madumal et al., 2020;
Miller, 2021; Zahedi et al., 2024), or “Why is this plan optimal?”
(Khan et al., 2009; Hayes and Shah, 2017). Other instance-based
methods seek to provide the user with an explanation to elucidate
the important features or a reward decomposition to enable a user
to better understand or predict individual actions of a sequential
decision making agent (Topin and Veloso, 2019; Anderson et al.,
2020; Das et al., 2023a) Model reconciliation approaches format
explanations to adjust the human’s mental model of the optimal plan
to more accurately align it with the actual conceptual model of the
agent (Chakraborti et al., 2017b; Sreedharan et al., 2019). The last
important category of XRL is policy summarizations or highlights
(Amir et al., 2019; Huang et al., 2019; Lage et al., 2019; Sequeira and
Gervasio, 2020). These approaches describe the functionality of
an AI agent, through intelligently selected example trajectories or
visualizations.

Within the set of XRL approaches, the format of explanations
that our study focuses on are “global” policy explanations, wherein
we explain the policy as a whole to the user rather than explaining
at the action-level. A prevalent global explanation methodology is
“policy trees,” wherein the agent explains the policy of the user
in the form of a tree. A popular methodology to generate policy
trees is through distilling a learned policy into a soft decision-tree
(Wu et al., 2018; Coppens et al., 2019). However, these distallation
approaches have a critical flaw: the policy trees may not represent
the actual policy of the agent, but merely an understandable
approximation (Rudin, 2019). To resolve this issue, recent work
utilize a differentiable decision tree Suárez and Lutsko (1999) to
learn and visualize the actual policy of the RL-agent (Silva and
Gombolay, 2020; Paleja et al., 2023). In this work, we analyze the
usability and usefulness of these policy-trees as explanations, in
the context of other “global” explanation baselines, for explaining
policies of a self-driving car in a highway-driving domain. In this
work,we donot present a novel XAImethodology. Rather, we seek to
better understand the utility of policy trees towards user-preference
and performance while working with a sequential decision-making
agent, in order to safeguard from the dangers of innapropriate
compliance with an autonomous agent.

2.3 Evaluating explainability

With a greater focus placed on XAI systems, facilitating
a means of evaluating the effectiveness and usability of these
approaches has become increasingly important. Human-grounded
evaluation (Doshi-Velez and Kim, 2017) is a popular methodology
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to evaluate the usefulness of proposed approaches within simulated
interactions. Human-grounded evaluation seeks to understand the
perception of XAI systems and the aspects of the user-experience
which can be improved to facilitate smoother interactions with
such autonomous agents (Booth et al., 2019; Ehsan et al., 2019;
Tonekaboni et al., 2019; Madumal et al., 2020). A common practice
in human-grounded evaluation is to leverage the principle of
mental models (Klein and Hoffman, 2008), wherein researchers
attempt to reconcile the differences between the mental model of
a user with the conceptual model being explained to measure how
well the XAI method explains the agent’s model (Hoffman et al.,
2018; Bansal et al., 2019). This is typically measured by a post-
explanation task or description which attempts to understand how
much the explanation has helped the user learn to better understand
the AI agent’s decisions (Madumal et al., 2020; Zhang et al., 2020;
Kenny et al., 2021; Silva et al., 2022b; Brachman et al., 2023). Our
user study employs a similar task prediction methodology which
reconciles a user’s understanding of the self-driving car by asking
participants to predict the actions of the car before and after
receiving an explanation to measure the effect of an explanation on
the accuracy of their predictions. We incorporate confidence ratings
to each prediction question to develop a weighted task prediction
metric for each participant.

To subjectively evaluate the perception of an XAI methodology,
researchers have primarily applied the Technology Acceptance
Model (TAM) (Davis, 1989). Many prior XAI surveys have
employed this model to study the willingness of an individual
to accept an XAI agent, through metrics such as ease-of-use,
usefulness, intention to use, etc. (Ehsan et al., 2019; Conati et al.,
2021). Another popular avenue of studying acceptance is through
the items of trust and satisfaction. In prior work, Hoffman et al.
(2018) present a trust scale which predicts whether the XAI
system is reliable and believable. Recent work also formalizes a
new human-AI trust model and emphasizes why “warranted” trust
is an important factor in XAI acceptance (Jacovi et al., 2021). In
this paper, we follow these two lines of analysis by leveraging a
validated survey which combines the TAM model for usability with
trust to understand the participants’ subjective perception of our
XAI agents.

Finally, the last avenue of related work that needs to be covered
is studies which pertain to the impact of personality factors on a
user’s interactionwith an explainable system.Recentwork highlights
the effects of differing XAI modalities on human-AI teaming with
respect to subjective and objective metrics (Silva et al., 2022b).
Their results suggest that explainability alone does not significantly
impact trust and compliance; rather adapting to users and “meeting
users half-way” is a more effective approach for efficient human-AI
teaming. Prior work has also investigated how factors such as need
for cognition (Cacioppo et al., 1984), openness (Goldberg, 1990)
and other personality traits impact design of explainable interfaces
for recommender systems (Millecamp et al., 2019; Millecamp et al.,
2020; Conati et al., 2021).

Contemporary work has also found that system, demographic
and personality factors as well as the type of explanation provided
can have an impact on the perceived fairness and subjective
sense of understanding of an intelligent decision making system
(Shulner-Tal et al., 2022a; Shulner-Tal et al., 2022b). Furthermore,
contemporary work has shown that dispositional factors, such as

a user’s intuition regarding the various decision making pathways
in a human-ai interaction, can explain some differences in reliance
and usefulness of different types of explanation (Chen et al., 2023).
In congruence with these work, we incorporate some important
dispositional (computer science experience, learning style, etc.) and
situational (car failure/success) factors into the design of our study,
and seek to understand how these factors impact a user’s ability to
utilize an explanation.

3 Methodology

To analyze utility of different modalities of explanations
describing the decision making process of a sequential AI-agent,
we conducted a novel human-grounded evaluation Doshi-Velez
and Kim (2017) experiment to see which explanation modality is
the most helpful objectively for simulating/predicting an agent’s
behavior and subjectively for usability. Our study was conducted
within the highway domain (Abbeel and Ng, 2004) (see Figure 1).
In this environment, the car needs to navigate through traffic on a
three-lane highway, where the traffic is always moving in the same
direction. We chose this domain due to the easily understandable
nature of the domain. Most participants would have had prior
experience driving or being a passenger in a car on a highway, so
they are likely to have an expectation of how to “properly” drive
on a highway. This allows us to test whether we are accurately
able to convey the car’s decision making process, and consolidate
the differences between the two. Through this study we attempt
to not only understand more about explanation preferences and
perceptions but also the dispositional (CS Experience, Video Game
experience, learning style, etc.) and situational (success/failure)
factors which influence these preferences. Specifically, our analysis
sought to answer the following questions,

• Q1: Which explanation modality affords the greatest degree of
simulatability in terms of understanding the decision making
process of the car and accurately predicting the car’s actions?
• Q2: How do individual explanation modalities impact

subjective measures of usability and trust, and are these
individual preferences consistent with themetric of explanation
usefulness studied in Q1?
• Q3: Are there any interaction affects between dispositional and

situational factors, e.g., computer science experience, learning
style, success/failure, on the subjective and objective measures
studied in this protocol?

3.1 Experiment design

The factors in our experiment were 1) Explanation Format
and 2) Success-vs.-Failure video. Our experiment was a between-
subjects study with a 2× 4 study design.

Explanation Format–Our study compares policy trees with
other “global” explanation modalities to provide an alternate
means of presenting the same information in the tree. In general,
explanations as policy trees can be generated by various methods.
Differentiable decision trees can be initialized by users through a
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FIGURE 1
This diagram depicts the environment utilized in this study. The green car denotes the AI agent which is navigating through the highway and presenting
explanations to the particpant for each action it takes.

FIGURE 2
This figure depicts the four policy explanations shown to participants corresponding to each baseline. (A) Basic Text: A language description generated
using a template from the decision-tree policy, (B) Modified Text: A simplied version of the language description presented in an easy-to-understand
manner, (C) Decision Tree: A decision tree describing the exact policy of the self-driving car, (D) Program: Pseudo-code of the decision making
process of the car.

graphical user-interface (Silva and Gombolay, 2020), or through
language descriptions of the policy (Tambwekar et al., 2023). Once
these DDTs are trained, these models can be discretized to present
a discrete policy tree to the user as an explanation (Silva et al.,
2020). In our work, for our RL-agent’s policy, we select a policy
tree for our approach from a dataset of lexical decision trees in
prior work (Tambwekar et al., 2023), which included 200 human-
specified policies for a car in the highway domain. The policy
we chose was a complete decision tree of depth three, which
corresponded to the largest possible policy in this dataset. The
complete set of modalities we utilize in our study, all stem from
the selected policy tree. The selection of these modalities was
motivated by the principles of “explanatory debugging” proposed in

prior work (Kulesza et al., 2013; Kulesza et al., 2015). These works
discuss balancing “soundness” and “completeness” of an explanation
with the need to maintain comprehensibility. By choosing these
baselines, we seek to understand the comprehensibility of four
explanation modalities that are all perfectly sound and complete.
We provide a description and rationale for the selection of each
modality below:

Explanation Modality 1: Tree—The first explanation modality
is a decision tree which represents the policy of the self-driving
car. Decision trees have become a popular method of explaining
decisions for human-AI teaming scenarios (Paleja et al., 2021;
Wu et al., 2021; Tambwekar et al., 2023). Differential decision trees
have been proven to be an interpretable method of representing
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FIGURE 3
These graphs plot the means and standard errors for three objective evaluation metrics i.e., (A) Phase 2 Correct Predictions, (B) Unweighted Score Diff,
and (C) Score, across the four explanation modalities. Significant differences between modalities is noted in the graphs. The score is computed through
the equation presented in Eq. 1.

a policies that can be employed towards generating “white-box”
explanations for users that actually represent the underlying
behavior (Silva and Gombolay, 2020; Paleja et al., 2022; Custode
and Iacca, 2023). The decision tree explanation seeks to represent
explanations generated by these differentiable decision trees. Further
details regarding the functionality of differentiable decision trees can
be found in the appendix.

Explanation Modality 2: Basic Text—A policy description
generated from the decision-tree policy using a simple text-
grammar. Language has also shown to be an effective means of
explaining the actions of an sequential decisionmaking agent (Hayes
and Shah, 2017; Ehsan et al., 2019; Das et al., 2021). Therefore,
we wanted to ascertain whether a user could better interpret
the information in the decision tree when presented in a text
paragraph.

Explanation Modality 3: Modified Text—A modified version
of the text description, presented in a format which is easier to
parse, with simplified language and indentation. The modified
text explanation seeks to improve comprehensibility of the text
explanation by simplifying and rephrasing details of the original
text explanation and additional formatting. By including this
modality, we hope to understand whether our expectation of the
comprehensibility of an explanation is reflective in improvements of
actual user-comprehension.

ExplanationModality 4: Program—A set of if-else statements
encoding the logic of thedecision tree.Thechoice of program/rule-
based explanations was to cater to scenarios wherein explainable
systems are utilized to assist domain experts who wish to debug
agent behavior. As computer science experience was one of the
factors we were studying, we were interested in determining
whether participants with CS experience were able to process the
same information better as psuedo-code compared to the other
modalities.

The specific explanations provided to participants in our study
are shown in Figure 2. Our study follows a between-subjects study
design, therefore each participant only received a single explanation
modality.

Success/Failure–Prior work has studied how the nature
of an explanation sways a user’s ability to tolerate the agent
failing (Ehsan et al., 2019). In this study, we analyze the opposite
relationship, i.e., how does seeing the agent succeed or fail impact
their perception of the explanation. A user’s predisposition has
been known to impact a user’s interaction with an intelligent
agent (Chen et al., 2023; Clare et al., 2015). Through showing the
participant a video of the car succeeding or failing, our goal was
to measure whether this had any discernible impact on the user’s
predisposition such that it affected the way they interacted with
the policy explanation in our study. At the start of the experiment,
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FIGURE 4
These graphs plot the means and standard errors for each subjective evaluation metric i.e., (A) Perceived Usefulness, (B) Perceived Ease of Use, (C)
Attitude, (D) Intention to Use, and (E) Trust, across the four explanation modalities. Significant differences between modalities is noted in the graphs..

each participant was shown a 1-min video of a simulation of the
car in the highway domain to help the participant build a mental
model the AI’s behavior. Each participant was shown one of two
videos, depending on whether they were assigned to the success
or failure condition. In the “failure” video, the car crashed at the
end of the video, and, in the “success”, the car successfully reaches
a “finish line.” We have provided screenshots in the appendix to
depict what the participant sees at the end of each video. Both
these videos were generated using the same policy for the agent.
Our aim was to measure whether watching the car succeed or crash
subjectively influenced participants’ perception of any XAImodality
or objectively impaired their ability to apply the explanation. A
similar analysis of “first impressions” of the agent was done in a
parallel study from contemporary work, wherein the authors found
that lower decision accuracies for participants with the “failure”
condition (Vered et al., 2023). Our study differs, from this prior

work, in testing the impact of success/failure in the context of
explanatory debugging for reinforcement learning policies rather
than “single-move” explanations.

3.2 Metrics

In this section we describe themetrics we employ to subjectively
gauge perception of each explanation, with regards to usability
and trust, and objectively evaluate a user’s ability to simulate the
decision making of the car. To measure usability, we adapted a
survey, which incorporated trust into the TAM model (Davis,
1989), from prior work on human-evaluation of e-service systems
(Belanche et al., 2012). This survey included questions on usability,
ease of use, attitude, intention to use, and trust. The TAM model is
the predominant measurement method for the perception of any
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TABLE 1 This table provides the specific items of the usability and trust questionnaire employed in this study. This survey was previously used to
measure perception of “e-services.” In our study, we replaced all references of “e-services” to “explainable agent.”

Category Questions

Perceived Usefulness

Using this explainable agent would be useful for me

Using this explainable agent will improve my effectiveness

Using this explainable agent will improve my performance

Perceived Ease-of-use

With this explainable agent, it would be easy to get the information I need

Learning to operate with this explainable agent would be easy

This explainable agent would be easy to use

Attitude

Using this explainable agent is an idea I like

Using this explainable agent would be a pleasant experience

Using this explainable agent is a good idea

Using this explainable agent is a wise idea

Trust

I trust this explainable agent

This explainable agent is reliable

This explainable agent is trustworthy

Intention to use

When I will need it, I will intend to use this explainable agent rather than an agent with no explanation

When I will need it, I predict I would use this explainable agent rather than an agent with no explanation

When I will need it, I would like to use this explainable agent rather than an agent with no explanation

technology due to its strong correlation with technology adoption,
and has recently been widely employed towards explainable-
AI (Ehsan and Riedl, 2019; Ehsan et al., 2021; Bayer et al., 2022;
Panagoulias et al., 2024). Our choice of survey for this study was
dictated by the desire to integrate Trust into the acceptance factors
measured by the standard TAM measurement survey. We replaced
references to “e-service” in the original survey with “explainable
agent” for this user study. The complete survey utilized in this
study can be viewed in Table 1. Note that we did not employ the
frequently utilized trust scale for XAI proposed in Hoffman et al.
(2018), because our study did not satisfy the assumptions required as
per the authors, i.e., “the participant has had considerable experience
using the XAI system.” In our case, participants were interacting
with the XAI agent for the first time for only 20 min, therefore we
ascertained that this scale was not applicable.

To measure objective simulatability, we computed a prediction
score using participants’ predictions before and after receiving
an explanation for the car’s actions. We asked participants four
prediction questions where they predicted the next sequence of
actions the car will take. Using their answers to these questions, we
compute a task prediction score as shown in Equation 1,

score =
4

∑
i=1

ca,i × δa,i −
4

∑
i=1

cb,i × δb,i (1)

In this formula, the δ parameters represent whether or not the
participant was able to predict the car’s actions correctly. δa,i is
assigned a value of +1 if the ith question was answered correctly
after receiving an explanation and −1 otherwise. δb,i similarly
represents the correctness of the participant’s prediction for the
ith question before receiving an explanation. cb,i represents the
confidence rating for question, i, before receiving an explanation,
and ca,i represents the confidence rating for the ith question
after receiving an explanation. Confidence ratings are obtained by
asking participants how confident they are in their prediction of
the car’s next sequence of actions, on a 5-item scale from “Not
confident at all” to “Extremely confident.” To compute cb,i and
ca,i, we assign numeric values to a participants confidence rating
uniforming between 0.2 and 1, in increments of 0.2 (i.e., Not
confident = 0.2, Slightly confident = 0.4, Moderately confident
= 0.6, Very confident = 0.8, Extremely confident = 1). When
combined, c and δ represent a weighted prediction score. The
score variable represents the difference between the weighted
prediction scores across four different prediction questions. Unlike
prior performance measurements, which measure compliance or
correctness in isolation, our weighted score metric enables us to
incorporate confidence such that a participant is rewarded for
having higher confidence in their correct predictions and vice versa.
We also measure the unweighted score, the number of correct
answers after receiving an explanation, and weighted number of
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correct answers after receiving an explanation to track simulatability
performance.

3.3 Procedure

This entire procedure was approved under a minimum risk
exempt-protocol by our institute’s IRB (Protocol H21040). This
experiment was conducted online via Amazon Mechanical Turk.
Our study began with a demographics survey about age, gender,
education and experience with computer science and video games.
Computer Science and video game experience were measured on
a 4-point, self-reported scale from “very inexperienced” to “very
experienced.” Participants were also asked to answer short surveys
regarding their orientation towards things or people (Graziano et al.,
2012) and learning style (visual-vs.-verbal (Mayer and Massa,
2003)). The rest of our study is divided into three phases.

In Phase 1 of the study, the participant first received a 1-
min video of the car driving on a highway, in which the car would
either reach the finish line (success) or crash into another car
(failure) at the end of the video. The purpose of this video is to
enable the participant to build a mental model of how the self-
driving car interacts with the world so as to improve their ability to
predict behaviors in other scenarios.The participant could reference
this video as many times as they needed throughout the study to
help understand the car’s behavior as it was provided at the top of
each page in the study. Participants could scroll to the top of the
page for each question to rewatch the video if they needed to. Next,
the participant would be asked to complete four prediction tasks.
For each prediction task, the participant was shown a unique, 8-s
video of the car driving on the virtual highway. These prediction
videos were selected from recordings of the driving agent to best
represent the different types of behavior of the car, i.e., slow down
and switch lanes, maintain the same speed in the same lane, overtake
from the left, etc. Based on this video of the car, participants were
asked to predict the next set of actions of the agent from a set of
five options (including an option for none of the above), by utilizing
their inferred mental model of the car. We chose to ask participants
to predict the next set of actions (“move right and speed up,”
“maintain speed and crash into the car ahead,” etc.), as this required
participants to perform multiple predictions of the car’s behavior
for each question thereby providing a more accurate measure of
how well they understood the car’s behavior. Each scenario involved
the car executing a policy on a different part of the highway. Each
prediction question was accompanied with a 5-point confidence
rating (Not confident - Extremely confident).

In Phase 2, participants would perform the same tasks as in
Phase 1, with the exception being that participants also received an
additional explanation for the actions of the car in one of the four
formats specified earlier. Conducting the same prediction tasks with
andwithout an explanation allowed us to directly analyze the impact
of an explanation on the perception of the explainable agent. Finally,
in the third and final phase, participants were asked to complete our
usability and trust survey to subjectively evaluate the explanation
modality they worked with.

Our study design relates to that of another study conducted
by Huang et al. (2018), wherein they establish the importance of
“critical states,” in engendering an more representative mental

model of the self-driving car’s policy. In this work, the authors
show that by providing examples of what the car will do in
these critical states, a user is more likely to identify the superior
policy between two choices. Despite establishing that critical states
help build a mental model, they do not directly test whether
the explanation makes the participants more likely to be able to
interpret and predict the car’s actions. In our study, we directly
focus on the “explanatory debugging” capabilities of different
kinds of policy explanations which are all equally sound and
complete. By doing so, we hope to add to the existing literature
in this field and better understand how the comprehensibility of
a policy explanation changes with the presentation and format of
the explanation.

4 Results

Our analysis was conducted on data from 231 participants,
recruited from mechanical turk (54% identified as Male, 46%
identified as Female, and < 1% identified as Non-binary/other).
Out of all responses collected, we only included responses in
our final dataset from participants who had submitted the survey
once. To the best of our knowledge, all responses that were from
repeat or malicious responders were filtered out. A total of 46
participants reported having some degree of computer science
experience. The average time taken for our survey was 18 min and
participants were paid $4 for completing our study (which equates to
$13.34 per hour).

We created amultivariate regressionmodel with the explanation
mode, success/failure and demographics values as the independent
variable, with the dependent variable being the subjective or
objective metric being studied. Each regression model was
checked to meet normality, via the Kolgomogorov-Smirnov
Test and homoscedasticity via the Breusch-Pagan Test, and we
applied non-parametric tests to analyze models that did not
pass these assumptions (Table 2). Models were checked to meet
normality and homoscedasticity assumptions. Omnibus tests
were performed before pairwise comparisons were made. We
used multivariate linear regression with AIC as our occam’s
razor for modelling covariates and interaction effects. We chose
linear regression over its non-parametric alternatives as linear
regression is a straightforward approach which effectively reveals
the salient relationships between the independent and dependent
variables.

4.1 Research question 1

For Q1 (understanding the simulatability of each individual
modality), we compared how each explanation mode affected
the task prediction performance using our objective metrics
(See Figure 3).Wefind that tree explanationswere significantlymore
beneficial for predicting more questions correctly in phase 2 when
compared to modified (Estimate = −1.257, SE = 0.374, p < 0.001)
and basic text (Estimate = −1.138, Standard Error (SE) = 0.3548, p <
0.01). After taking into account confidence ratings, the usage of tree
explanations still significantly improvedweighted number of correct
answers in Phase 2 as compared to the modified text explanations
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TABLE 2 This table details the independent variable, dependent variable and covariates for each model. We have also listed down the assumptions of
the ANOVA test and transforms applied. Note that for the last column, we report the p-values for Breusch-Pagan test, which is a heteroscedasticity test.
Therefore p >0.05 implies that the models pass the homoscedasticity assumption.

DV Transform Significant covariates Normality Heteroscedasticity

Usefulness boxcox Explanation, education p < 0.05 p > 0.05

Ease of Use N/A Explanation, education p < 0.05 p > 0.05

Attitude boxcox Explanation, education, success p < 0.05 p > 0.05

Intention to Use boxcox Explanation p > 0.05 N/A

Trust boxcox N/A p > 0.05 N/A

Weighted Correct Answers Phase 2 N/A Explanation, Weighted Correct Phase 1 p < 0.05 p > 0.05

Correct Questions in Phase 2 N/A Explanation, Correct Questions in Phase 1 p < 0.05 p > 0.05

Score N/A Explanation p < 0.05 p > 0.05

Unweighted Score N/A Explanation, gender p < 0.05 p > 0.05

(Estimate = −0.571, SE = 0.167, p < 0.001), and the basic text-
based explanations (Estimate = −0.480, SE = 0.160, p < 0.01). For
the score metric described earlier, both trees (Estimate = 2.517,
SE = 0.558, p < 0.001) and programs (Estimate = 1.414,
SE = 0.555, p < 0.05) significantly improved the participant’s score
when compared to the modified text baseline. These results imply
that users are able tomore accurately simulate and understand an
agent’s decisions using trees.

4.2 Research question 2

With respect to Q2 (understanding the perceived usability
of individual modalities), we found that modified text was rated
to be significantly more useful than both the program (Estimate
= 47.6434, SE = 12.484, p < 0.001) and the tree (Estimate =
29.098, SE = 12.470, p < 0.05) baselines (See Figure 4). For
ease of use, the tree, text, and modified text baselines were
rated significantly higher than the program explanation (p <
0.001). For the metric of intention to use, a Wilcoxon signed
rank test showed that modified text was preferred to program
(p < 0.05). These results suggest an inconsistency between the
subjective and objective evaluation metrics for the decision tree
and program vs. text-based modalities. Although they were found
to be less useful for accurately predicing the actions of the car,
participants perceived text-based explanations as significantly
more useable than decision trees andprograms.Weapplied a non-
parametric Wilcoxon-Signed Rank Test to analyze trust, however,
none of the explanation modalities were found to significantly
impact trust.

4.3 Research question 3

In relation to Q3 (understanding the effect of individual factors
on the subjective and objective measures of each modality), we

found that participants with low CS experience have significantly
improved relative prediction scores when using the modified text
explanation as compared to the tree (Estimate = −2.1597, SE =
0.611, p < 0.001) or program (Estimate = −1.436, SE = 0.609,
p < 0.05) explanations. For usefulness, higher CS experience
significantly decreases the relative advantage of text over program
for both the basic (Estimate = −14.12, SE = 6.335, p < 0.05)
and modified text (Estimate = −19.69, SE = 6.597, p < 0.01)
modalities. Similarly, with respect to attitude and ease-of-use, high-
CS experience was found to significantly decrease the preference of
modified text (p < 0.01) and text (p < 0.05) explanations relative
to programs. Overall, our results showed that with respect to
simulatability and usability, increasing CS experience negatively
impacts the text-based explanations compared to the program or
tree explanations.

4.4 Additional results -

We note that we did not find self-reported learning-style
preference (visual vs. verbal) to be a significant influencing factor
for either the subjective or objective measures we studied. Next
we studied whether success and failure were found to significantly
influence XAI perception. With respect to success, we found that
watching the car succeed in the priming video–as opposed to
failing, i.e., crashing–significantly improved a participant’s attitude
(Estimate = 11.986, SE = 4.64, p < 0.05). However, a similar effect
was not observed for the other dependent subjective variables, i.e.,
ease-of-use, usefulness and intent-to-use.This implies that although,
on average, participants felt that working with the XAI agent that
failed was “unpleasant”, it did not impact their usability. This may
indicate that better care needs to be taken to appease end-users in
situations where they work with agents that frequently fail. Unlike
in the case of attitude, success/failure was not found to affect the
score of a participant, i.e., watching the car fail did not affect the
participants ability to understand the explanation.
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From the results of an ANOVA test on a linear regressionmodel,
success was found to be extremely important. However, our trust
model did not satisfy the normality assumptions of our parametric
linear regression test. Prior work has shown that an F-test can be
robust to the normality assumption (Cochran, 1947; Glass et al.,
1972; Blanca et al., 2017). Therefore, while we cannot conclude that
success significantly impacts trust, it does appear to be a important
factor with respect to trust.

5 Discussion

In our study, we found inconsistency in human preferences
of explanation modalities with respect to subjective and objective
metrics. Participants found language-based explanations to be
significantly more useful (p < 0.001) even though participants
performed better according to our objective metrics when using
the tree-based explanation (p < 0.001). Prior work has often
reported a significant difference between the performance of a
stakeholder with and without an explanation. Explanations have
been shown to improve situational awareness (Paleja et al., 2021),
task-accuracy (Das et al., 2023a) and error-avoidance (Das et al.,
2023b). However, a stakeholder’s ability to utilize an explanation
to improve their “performance” is more nuanced than a simple
binary relationship (Poursabzi-Sangdeh et al., 2021). Explanations
are not universally benefitial; Sometimes, providing an explanation
begets over-reliance in the intelligent system leading to instances
of inappropriate compliance (Ehsan and Riedl, 2021; Silva et al.,
2022b). A contemporary study with neurologists showed that
more “explainable” methodologies may disrupt or hamper a
neurologists decision-making processes (Gombolay et al., 2024).
Our findings augment these prior works by further motivating
the need for human-centered or user-centered perspectives to
explainability which consider a user’s situational or dispositional
factors (Ehsan and Riedl, 2020; Liao et al., 2020; Dhanorkar et al.,
2021). Participants’ preference towards using modes of explanation
which objectively perform poorer on task performance metrics is
a clear indicator that explanations need to consider the individual
dispositions of the potential end-user to engender adoption.

When explanations are ill-fitting of an individual’s dispositional
or situational circumstances, users may be unable or unwilling to
utilize the explanation to understand the decision making of the
car. For example, we found, through our post-survey feedback, that
participants with little or no programming experience were often
discouraged and confused by the program-based explanation. One
participant stated that the explanation was counter-productive in
that it made the participant “second guess [their] initial choice,”
and further stated that “If it was supposed to be reassuring and
confirming, it was not.” Another participant stated that the nature
of the program-based explanation made it “functionally useless” to
the task assigned. Other participants took issue with the nature or
structure of the explanation. One participant stated in reference to
the modified-text explanation that, “Some of the sentences could
have been combined and just said left or right instead of having a
statement for each.”Another participant stated that theywere “better
with visual learning,” and, therefore, preferred to go by their initial
assumptions based on the video rather than use the text explanation,
thereby ignoring the explanation altogether.

Humans create mental models for systems they interact with
Hoffman et al. (2018), that encapsulate their understanding of
how the agent functions. These mental models often contain
misconceptions or misinterpretations, and it is the job of the
explanation to satisfactorily consolidate the user’s mental model. In
order to effectively do so, the explanation needs to be presented to
the user in a manner which caters to their unique socio-technical
disposition Sokol and Flach (2020). As seen by our findings, a
simple factor such as computer science experience can significantly
affect a user’s ability to employ an explanation to understand
functionality of the car. One participant’s response encapsulates this
sentiment regarding mental models: After receiving the decision
tree the participant stated, the explanation “was generally helpful
in that it helped [the participant] focus on the other car that
was the biggest factor in the AI’s decision making.” This indicated
that the participant was able to apply the explanation to improve
their mental model of the car’s behavior, by identifying the factors
in the environment that influence the car’s decisions. Another
participant stated that the modified-text explanation “really helped”
because “it showed how to see the car and how it would interact
with the world around it.” In both these situations, the user was
more open to adopting the explanation because the explanation
was able to satisfactorily fill in the gaps in their mental model
of the car, by helping participants perceive how the car may be
processing the information available in the environment to make
decisions.

Overall, our results support the position that researchers should
design personalized XAI interfaces which can cater to the social
needs of the end-users interacting with these systems. We do not
claim to be the first to show that Personalized XAI is necessary,
which has already been shown in recent work (Millecamp et al.,
2019; Millecamp et al., 2020). However, these works are restricted
to recommendation/tutoring systems. A highly relevant recent study
developed a personalized explainable-AImethodology such that the
AI-assistant can present the users with explanations that balance
their preferences and performance (Silva et al., 2024). Crucially, they
showed that a balanced personalization method lead to significantly
fewer instances of innapropriate compliance than personalizing
based on preference alone. Our analysis identifies key demographics
factors which can be integrated into such personalized xAI
methodologies, such as computer science experience, and highlights
the importance of these factors with respect to subjective perception
and objective use of XAI modalities.

6 Limitations and future work

Firstly, our study follows a human-grounded evaluation
structure we performed our analysis on for a simulated self-driving
car.Therefore, it is important to acknowledge that while these results
provide a comprehensive initial estimate, they may vary when this
study is replicated on the real task. It should also be emphasized that
in addition to real-world transfer, an additional limitation pertains
to the generalizability of our findings beyond our preliminary
experimental setup. We expect our results to generalize to other
sequential decision-making domains as these results fundamentally
concern the formatting of policy explanations widely employed in
recent work, however, every domain/application possesses unique
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intricacies which may affect the trends found in this study. Future
work could benefit from a similar study in a real setting, i.e.,
application grounded evaluation, which accurately reproduces the
experience of receiving explanations in the real world and measures
whether our results will generalize to differing experimental setups.
Interesting domains to conduct a similar study, to both understand
the generalizability of our results and real-world transfer, would be
in a state-of-the-art self-driving car simulator (Schrum et al., 2024)
or an in-home robot setting (Szot et al., 2021; Patel et al., 2023).

Secondly, this study does not consider longitudinal human-
adaptation to XAI systems. It may be possible that although a
participant initially does not prefer to use an explanation after
brief interactions with the agent, a period of time to adapt to the
explanation modality may alter their preference. In future work, it
would be interesting to setup the study as a multi-day experiment
where the participants work with the explainable agent on a series
of subtasks (one per day) to measure whether there are any
longintudinal factors which impact their behavior. These subtasks
could increase in difficulty to account for the user’s adaptation to
the system to ensure that the user still needs explanations.

Another important limitation to consider is the participant’s
level of immersion. Viewing the simulation of the car in our
environment may not be enough for the participant to recognize
the consequences of working with a self-driving car. In a
situation where the stakes are more obvious, participants may
perceive explanations differently. This may have contributed
towards the lack of significance for the trust model. Since
participants may not have been immersed/understood the
potential real-world consequences, their internal model for
trust may have been independent to the explanation provided.
However, we believe that our study still contributes novel insights
that provide a stepping stone towards a future application-
grounded analysis. Future work could leverage attentional
or physiological measurements of immersion to understand
whether immersion correlates with a participant’s perception of
preference or their performance on the task (Hagiwara et al., 2016;
Hammond et al., 2023).

Our analysis also found that computer science experience
influences end-user perception and preference in our sequential
domain. However, a relevant limitation of our approach is that
CS experience was measured on a self-reported scale. Therefore, a
participant’s inherent biases and experiences may impact their own
ratings of their computer science experience. In future work, we
hope to incorporate a quantitative measurement of CS experience
in the form of a short competency quiz. Furthermore, beyond CS
experience, there may be additional experiential or dispositional
factors which may impact our dependent variables. One important
dispositional factor that we did not consider in our study is
epistemic curiosity, or a user’s “general desire for knowledge”
(Hoffman et al., 2023). The two categories of curiosity are I-type
curiosity, which is triggered by subjective feelings of situational
interest, and D-type curiosity which is triggered by violated
expectations or missing information (Litman, 2019). Recent work
has found that individual differences in these curiosity types have
an impact in the relative utility and value of information in various
organizational settings (Lievens et al., 2022). These two dimensions
of curiosity dovetail well with our paradigm of subjective and
objective perception of XAI methods, and therefore, are items we

hope to incorporate in future work. Another important cognitive
factor to incorporate could be an individual’s “Need for Cognition,”
which measures an individual’s tendency to engage in or enjoy
effortful cognitive activity (Cacioppo et al., 1984). There may be a
correlation between a user’s “Need for Cognition” and their ability
to effectively process a given explanation, therefore making it a
relevant factor to include in future studies. In future work, we aim
to leverage the insights from this study to develop a personalized
XAI methodology. In such a case, the XAI interface could evaluate
an individual’s disposition and demographic factors to recommend
a type of explanation. Then the user can specify any additional
properties they would like within the explanation and adaptably
modify the type of explanations it receives from the agent. We
hypothesize that such an approach would truly give rise to human-
centered explainability and bridge the gap between stakeholders and
AI technology.

7 Conclusion

Explainable AI must have a stakeholder-focus to engender long-
term adoption. Simply unraveling the internal mechanisms of an
Artificial Intelligence agent is insufficient if it is not presented in a
way the end-user can easily understand. To produce user-centered
XAI approaches, we need to better understand what influences
XAI perception. In this paper, we present a novel user-study which
studies subjective user-preference towards disparate XAImodalities,
for a sequential decision-making system such as a self-driving car,
and how situational (e.g., watching the car succeed or fail) and
dispositional factors (e.g., computer science experience) influence
this perception. We show that computer science experience can
reduce an individual’s preference towards the text-based modalities,
as well as how watching the car fail (crash into another car) worsens
their attitude towards the XAI agent. Our findings also highlight an
important internal inconsistency in explanation preference. Text-
based explanations were perceived to be more useable according
to our subjective survey, however, decision tree explanations were
found to be more useful in terms of more accurately predicting the
car’s actions. XAI developers need to balance the tradeoff between
willingness to adopt and usefulness, as the perceived usability varies
based on an individuals specific intrinsic and situational criteria.We
hope that this work promotes a wider study of personalized XAI
approaches which curate explanations to fit the particular needs and
circumstances of individual stakeholders.
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