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Cooperative multi-agent systems make it possible to employ miniature robots
in order to perform different experiments for data collection in wide open
areas to physical interactions with test subjects in confined environments such
as a hive. This paper proposes a new multi-agent path-planning approach to
determine a set of trajectories where the agents do not collide with each other
or any obstacle. The proposed algorithm leverages a risk-aware probabilistic
roadmap algorithm to generate a map, employs node classification to delineate
exploration regions, and incorporates a customized genetic framework to
address the combinatorial optimization, with the ultimate goal of computing
safe trajectories for the team. Furthermore, the proposed planning algorithm
makes the agents explore all subdomains in the workspace together as a
formation to allow the team to perform different tasks or collect multiple
datasets for reliable localization or hazard detection. The objective function for
minimization includes two major parts, the traveling distance of all the agents
in the entire mission and the probability of collisions between the agents or
agents with obstacles. A sampling method is used to determine the objective
function considering the agents’ dynamic behavior influenced by environmental
disturbances and uncertainties. The algorithm’s performance is evaluated for
different group sizes by using a simulation environment, and two different
benchmark scenarios are introduced to compare the exploration behavior. The
proposed optimization method establishes stable and convergent properties
regardless of the group size.

KEYWORDS

multi-agent, path planning, probabilistic roadmap, collision avoidance, genetic
optimization, bio-hybrid systems

1 Introduction

Exploring animal–robot interactions involves the ambitious goal of comprehending
how living species behave in the presence of robotic systems. Driven by a range of
motivations, biologists and robotic researchers are compelled to investigate these hybrid
dynamics, recognizing their potential to revolutionize biological–artificial integration
(Romano et al., 2019). For instance, let us consider the concept of ecosystem hacking
through a multi-robot system designed to influence honeybee colonies by interacting with
the queen (Stefanec et al., 2022). Another example involves the utilization of a robotic
hive to investigate collective behavior within this hybrid context concerning Western
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honeybees (Barmak et al., 2023). However, transition from the
concept to real-world scenarios demands more sophisticated
algorithm development, particularly for multi-agent systems
that consider cooperation between the robots. For instance, the
multi-arm robot presented in Rekabi-Bana et al. (2023), which
is responsible for managing various tasks for the biological
experiments described in Stefanec et al. (2022), requires an elaborate
framework for decision-making, path planning, and motion control
to achieve the expected goals. Although investigating the hybrid
collaborative systems’ behavior results in extensive challenges
for algorithm design, the former applications that utilized multi-
agent solution challenges (Zlot et al., 2002; Amigoni et al., 2017;
Vinyals et al., 2019) can be inspiring to design new frameworks
compatible with new problems. Those algorithms allow the
formulation of diverse cooperative frameworks and evaluate
various aspects of multi-agent systems to solve the complexities. In
addition, utilization of a team of heterogeneous robots with different
capabilities creates a more versatile system that manages different
sensing and actuation tasks, although it will increase the control
complications (Rizk et al., 2019). In similar multi-robot applications
such as exploration missions in disaster relief or search and rescue,
cooperating robots spread throughout the targeted area to obtain
its map as quickly as possible, while satisfying various constraints,
such as communication (Rouček et al., 2020) or physical couplings
between robots (Rekabi-Bana et al., 2023). These scenarios often
require the robots to operate in adverse conditions, such as rain
and wind, and they also experience conditions of reduced visibility
due to smoke, fire, or dust (Tranzatto et al., 2022). Furthermore, in
cases such as pollution source localization (Štibinger et al., 2020) or
underwater inspection (Xiang et al., 2010), the robotic team has to
assume or keep a specific formation to exploit all agents’ sensing
capabilities. These scenarios require that the exploration methods
take into account the environmental disturbances and uncertainties.
Such scenarios have many features in common with the scenarios
where robots should work in environments such as a hive, which
is a confined and adverse environment. This paper presents a risk-
aware path-planning algorithm that allows a group of robots to find
safe trajectories, while considering the formation objectives for data
collection in an adverse environment where actuation disturbances
and sensor uncertainties affect the performance considerably.

1.1 Background

Various missions and objectives employ different approaches to
describe the multi-agent system management problem (Dorri et al.,
2018). For instance, Markov decision process (Liu et al., 2020);
MAPF problem formulation, which is a layered optimization
framework (Stern et al., 2019); and sampling-based approaches such
as Monte Carlo simulation (Dalmasso et al., 2021) are some of the
approaches that can describe the uncertainties in the environment
properly and result in more robust solutions.

Although problem formulation is a key element to reach the
main objectives, different methods might be applicable to solve
those problems that become impossible to solve analytically in most
cases according to the complexity order. Regardless of the problem
formulation, two prevalent attitudes toward finding solutions
are reinforcement learning (Qie et al., 2019; Semnani et al., 2020)

and evolutionary optimization (Biswas et al., 2017; Li et al., 2021;
Bahaidarah et al., 2024). Although the structures of both approaches
are quite similar, various studies demonstrate differences between
those methods to establish the advantages and weaknesses of
both in different applications (Di Mario et al., 2013; Das et al.,
2016). One of the best descriptions for the multi-robot path-
planning problem is that it exploits combinatorial optimization
to convert the discretized states into an efficient framework for
optimization (Yu and LaValle, 2013; Okubo and Takahashi, 2023).
Although the combinatorial problems allow considering multiple
states and effective features regarding the mission objectives,
the optimization search space becomes highly complicated and
nonlinear. Some studies demonstrate that reinforcement learning
is capable of solving such problems (Bengio et al., 2021). However,
evolutionary optimization and particularly the genetic algorithm
are a dominant methods for solving such problems according
to their reliable heuristic behavior and convergence capability
(Blum et al., 2011; Juan et al., 2015). Therefore, if a well-defined
combinatorial optimization is used to describe the multi-agent path
planning, the genetic algorithm will be a considerable approach
for finding the solution. Although some research studies developed
promising frameworks employing customized forms of the genetic
algorithm to solve the pathfinding problem in 2D workspaces
(Kala, 2012; Nazarahari et al., 2019) or independent coverage for
large areas (Sun et al., 2019),many robotic applications in real-world
scenarios demand considering other aspects such as uncertainties,
robustness, and cooperative performance to fulfill their objectives.
Therefore, the development of new optimization frameworks to
investigate other practical objectives facilitates the applicability
of employing reliable multi-agent robotic systems in real-world
scenarios.

Path planning in an uncertain environment, which increases
the risk of collision with the static or dynamic obstacle, is another
challenging aspect that has been investigated in many recent studies
(Rafai et al., 2022). One of the promising solutions to confront
the uncertainties, particularly with the environment, is the risk-
aware framework to avoid collisionswith the obstacles (Pereira et al.,
2013; Cai et al., 2021). However, such risk-aware frameworks can
consider various types of risks in dynamic environments to address
not only the collision but also other risk factors that cause
mission failure (Barbosa et al., 2021).

On the other hand, the basic framework for pathfinding has
a significant influence on the system’s performance. Although
many different approaches are studied for path planning in
various applications (Galceran andCarreras, 2013), the probabilistic
roadmap (PRM) algorithm (Kavraki et al., 1996) proposed a
flexible foundation that is adaptable to a wide range of planning
problem formulation and optimization techniques to make robust
planning frameworks, particularly in uncertain environments
(Agha-mohammadi et al., 2014; Ravankar et al., 2020).

1.2 Contributions

This paper proposes a novel form of genetic optimization
to find a solution for a multi-agent robotic system employing a
risk-aware PRM scheme that was presented in Rekabi-Bana et al.
(2024) as a robust framework for one robot to explore an area
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efficiently with minimum failure risk. The proposed planning
algorithm utilizes the genetic algorithm in conjunction with the
single-agent exploration method to find a conflict-free solution
that enforces the agents exploring all subdomains together. Each
subdomain is considered a district in the exploration area that
includes at least one exploration point. Moreover, it considers the
risk of collision with the obstacles according to a risk assessment
function obtained from a priori knowledge of the environment
and the robot’s dynamics. However, according to the problem
definition, the risk assessment function can be defined to consider
different sources of failure risk according to different scenarios.
The proposed optimization framework allows incorporating the
risk of failure according to the environmental conditions and,
therefore, results in a reliable solution for exploration scenarios in
workspaces with uncertainties. It allows the team to combine the
data collected from each district to obtain as much information
about the explored environment as possible. Therefore, the mission
planning will include finding a proper formation shape for data
collection, allocating the destinations to the agents, and collision-
free pathfinding through the environment considering obstacle
avoidance. The algorithm is capable of path planning in both 2D
and 3D environments. Therefore, it will be applicable to use in
the robotic system introduced in Rekabi-Bana et al. (2023) and
small drones as well. Furthermore, the secondary objective is to
develop a compatible path-planning algorithm with the distributed
control framework designed for a multi-drone system (Rekabi-
Bana et al., 2021) to make an entire autonomous robust framework
for a group of flying robots to explore uncertain environments.
The optimization scheme considers the traveling distance and the
failure probability to determine the cost function. According to
the problem definition, the exploration subdomain sequence, the
agents’ destination in each district, and the priority order to find a
collision-free set of trajectories are considered effective parameters
that should be optimized to reach the mission objective. The
combinatorial nature of the problem implies a particular structure
to efficiently find the optimum point. Therefore, a customized
structure is introduced to generate the chromosomes, reproduce the
population, and analyze the convergence in each generation. The
algorithmwas designed as a centralizedmotion planning framework
and has no dependencies on the agents’ communication. Therefore,
this algorithm is applicable to cases where the robots are working
close to the ground station and have a reliable network with it. The
main contributions of this paper can be summarized as follows:

• Development of a multi-agent collision-free PRM-based
path-planning algorithm for a group of robots working in
an arbitrary 2D or 3D environment to explore the area
cooperatively. The proposed algorithm allows the team to
explore the area in a particular formation geometry for
application in themulti-armmanipulator described in Rekabi-
Bana et al., (2023).
• Proposing a new customized genetic framework to solve
the path-planning problem as a combinatorial optimization.
The proposed structure establishes a stable converging
performance regardless of the number of agents in the
multi-agent system.

The subsequent sections of the paper are structured as
follows: Section 2 outlines the problem formulation, followed by

Section 3 presenting the genetic algorithm framework developed to
address the depicted problem. Section 4 explains the simulation
environment and the evaluation procedure, and Section 5
demonstrates the results derived from the analysis. Finally, Section 6
provides the concluding remarks for the paper.

2 Problem formulation

The first step toward the algorithm design is describing
the problem mathematically to formulate the objectives and
constraints. This paper aims to develop a new framework for
heterogeneous multi-agent path planning for a team of robots with
different sensing capabilities exploring an uncertain environment.
The robots should stay in a particular formation shape to
maintain reliable communication, exploiting the measurement
and actuation capabilities together, and comply with coupling
constraints according to the robots’ dependencies on each other.
The collision-free multi-agent path planning for area exploration
is described and formulated in this section. The exploration area,
Ae ⊂ ℝ3, is described as an arbitrary three-dimensional space
according to the following definition:

Ae = F ∪O
Ae = {[xe ye ze]T|xmin

e ≤ xe ≤ xmax
e ,

ymin
e ≤ ye ≤ y

max
e ,z

min
e ≤ ze ≤ zmax

e } , (1)

where xmin
e ,…,zmax

e represents the workspace borders andO and
F demonstrate the occupied and free space, respectively.

It is assumed that the workspace for the exploration is mapped
using the risk-aware PRM method and according to the available
data set from the environment, including the workspace borders and
occupied areas’ boundaries. Nevertheless, the proposed algorithm in
Rekabi-Bana et al. (2024) needs few data, considers uncertainties of
the environment data, and creates a pathfinding graph according to a
predefined admissible risk to handle the collision risk with obstacles.
Therefore, the environment graph is described as follows:

Ge = (Ve,Ee)

Ve = {v
e
k ∈Ae} , k = 1,…,N node

prm ,R(vek) ≤ Rad

Ee = {e
e
t = (v

e
i ,v

e
j )} , t = 1,…,N edge

prm ,R(eet) ≤ Rad, (2)

where Ge is the environment exploration graph; vek ∈ ℝ
3 and eet ∈

ℝ3×2 represent the graph nodes and graph edges, respectively;
Nnode
prm and Nedge

prm are the number of nodes and edges in the graph,
respectively; Rad is the admissible collision risk considered to
calculate the PRM nodes and edges, andR(.) is the risk assessment
function obtained according to Rekabi-Bana et al. (2024). The
exploration objective is to cover a set of randomly distributed
exploration points in the workspace to harvest information. The
workspace is divided into districts according to the robots’ sensors’
capabilities for coverage. Each district includes some of the
exploration points, and the robots should cover each of them
cooperatively. According to the number of agents, the agents’ sensing
radius, and the exploration targets’ distribution, the destination
points form an equilateral polygon to place the agents in a formation
shape that allows the agents to cover the exploration points as much
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as possible. Consequently, the formation shape at each district is
defined according to the following equation:

Cd
fr = P̄

d
ex

Rd
fr = F

R (‖σ(Pdex)‖,R̄
s)

αdfr = ∠σ(P
d
ex) , d = 1,…,Ndist, (3)

where Pdex = {p
d
iex
∈ ℝ3} is the set of exploration target points, Cd

fr
is the center point according to Pdex, Rd

fr is the formation radius,
αdfr is the formation polygon rotation angle, Rs = {r si ∈ ℝ} is the
set of sensing radii according to the agents’ measurement system
capability, and Ndist is the number of districts for exploration.
In addition, ̄(.) is the mean value, ‖(.)‖ is the norm, ∠(.) is the
vector angle, and σ(.) is the variance operator. FR is a function
used to determine the circumradius of the polygon and is defined
as follows:

FR (‖σ(Pdex)‖,R̄
s) =
{{
{{
{

‖σ(Pdex)‖, if ‖σ(Pdex)‖ ≤ R̄
s

R̄s + ‖σ(Pdex)‖

2
, if ‖σ(Pdex)‖ ≥ R̄

s.

(4)

The formation shape obtained from Equation 3 represents
the robots’ target positions, allowing them to access the
exploration points as much as possible for data collection using
this configuration. Figure 1 presents the graphical perspective
of Equation 3. According to the aforementioned environment
partitioning and target formations, the path-planning algorithm
should find a set of collision-free paths in the environment graph
to pass the agents through the safe area and prevent them from
colliding. Additionally, the traveling distance for the group should
be minimized, and the agents should go through each district once.
Furthermore, placing the agents in the formation considering their
sensing radius is important to maximize the number of exploration
targets. Therefore, path planning can be defined as a constrained
optimization problem described in the following equation:

i f Π = {πi} ,πi = {π
d
i } ⊂Φ(Ge) , i = 1,…,Nag

Π∗ = arg min(Jmission) ,

s.t. πi ∩ πj = Ø if i ≠ j, πi ∩O = Ø
d = 1,…,Ndist, (5)

considering

Jmission = 𝕃(Π) +Σ
Ndist
d=1Σ

Nd
ex

iex=1
λdiex𝕊(p

d
iex
) , (6)

𝕃(Π) = γℙ(Π) +ΣNdist
d=1Σ

Nag

i=1D(π
d
i ) ,

𝕊(pdiex) =
{
{
{

0 if min(‖pdiex − q
d
i ‖) ≤ r

s
i

1 otherwise
, i = 1,…,Nag,

where πi is the path for the ith agent, π
d
i is part of πi that allows the

ith agent to reach its destination in dth districts, Φ(Ge) is the set of
all possible paths in the environment graph, Jmission is the mission
overall cost,D(πdi ) is the distance traveled by the ith agent throughπ

d
i ,

ℙ(πi) is the failure probability for Π implementation regarding the
collision between the agents or with obstacles, γ is the importance

FIGURE 1
Formation shape for six agents according to the definitions
in Equation 3.

factor for the failure probability, qdi is the destination point for the
ith agent in the dth district, and λidex is the importance weight for
each pdiex exploration point. According to Equations 5, 6, the solution
of the problem includes a set of paths that belong to the possible
paths in the environment graph which do not undergo any collision
with each other. On the other hand, the agents should reach a target
formation in each district, and therefore, they should use paths that
might be close to each other. Consequently,making a set of collision-
free paths needs to prevent use of the same nodes and edges for
two agents simultaneously. Therefore, in this paper, the proposed
algorithm for path planning considers three main parameters that
affect the mission cost:

• The order of districts that the agents should pass through to
explore the area.
• The destination point of each agent in the formation.
• The order of the path association in the exploration graph for
the agents.

The procedure to solve the problem, defined in Equations 5, 6,
using genetic optimization is described in the next section.

3 GA multi-agent path planning

The path-planning algorithm is a combinatorial optimization
problem. The final set of paths includes two main features: 1)
the best combination of the districts that the agents should pass
through and 2) the best mapping from the agents’ IDs and the
destination points in the target formation. Furthermore, the paths
should have no similar nodes and edges so as to reduce the collision
risk between the agents. In addition, it is necessary to check if
the final trajectories through all the waypoints are collision-free.
The proposed strategy to find collision-free paths in the graph
is explained in Algorithm 1. Therefore, those features should be
considered in the genetic algorithm to find the solution.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1375393
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Bana et al. 10.3389/frobt.2024.1375393

FIGURE 2
A sample chromosome (for four exploration subdomains and four agents) to demonstrate the structure defined to solve the collision-free multi-agent
pathfinding.

Algorithm 1. Collision-free pathfinding.

3.1 Genetic population

According to the features defined for the final solution, the
suggested chromosome structure is composed of the district
identifiers, the agents’ identifiers allocated to the destination points,
and the order of agents’ identifiers for collision-free pathfinding.
Therefore, each chromosome can be described as a matrix that is
structured as shown in Figure 2.

According to the proposed structure, the initial population
is created by generating Npop random permutations for the
districts’ sequence, agents’ identifiers for mapping to the
destination points, and the sequence for pathfinding in the
graph. The population size is determined according to Ahn
and Ramakrishna (2002) to comply with the nature of
the problem.

3.2 Evolutionary regeneration

The first reproduction method is to transfer the Nel best
chromosomes directly to the next generation. However, the
proposed 2D chromosome structure and the combinatorial nature
of the problem do not allow for using popular strategies for
regeneration through crossover and mutation. Therefore, two new
strategies are proposed and applied to create the next generation

from the current parents.The first strategy is a one-parent crossover
according to the following steps:

• Selection of Ncrs random chromosomes from the current
population as the crossover parents.
• For each selected chromosome, one or two random
breakpoints for the first column and a permutation are
determined to reorder the districts’ sequence.
• For each selected chromosome, two or three random
columns will be selected among the next Nag columns
(depending on the number of agents), and their position
will be switched according to a random permutation
to rearrange the agents’ destination points in the target
formations.
• For each selected chromosome, two random columns are
selected among the last Nag columns, and their position will
be switched to reorder the agents’ priority for pathfinding
in the graph.

Considering the above procedure, each child will inherit some of
the parents’ characteristics and shows new behavior. Furthermore,
the parents are selected randomly regardless of their achieved cost
function in the current generation to prevent the algorithm from
following the current best population members and preserve the
algorithm’s heuristic performance. In addition, a proposedmutation
is used to generate Nmut = Npop − (Nel +Ncrs) remaining children
to complete the next-generation chromosomes. The proposed
mutation works as follows:

• For each selected chromosome, a random number between 1
and 3 is generated to determine which part of the chromosome
should be mutated.
• If the first part is selected, then the current district sequence
will be replaced by a random permutation for the districts’
identifier to generate a completely different one.
• If the second part is chosen, then a random row will be
designated and the mapping order will be replaced with a
random permutation of the agents’ identifiers.
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FIGURE 3
2D representation of a mission for a group of five robots in an arbitrary
workspace. Blue lines show the borders for the subdomains, circular
points demonstrate the exploration points, and square points and
dashed lines depict the formation shape boundaries and the
destination points in each district, respectively, which are represented
by different colors.

FIGURE 4
Best value of the cost function in the genetic optimization obtained
for three, four, and six agents in the exploration team.

• If the third part is chosen, a random row will be selected and
the pathfinding priority order will be replaced with a random
permutation of the agents’ identifiers.

The further important parameters significantly affecting the
algorithm’s behavior are the number of chromosomes that will be
selected to pass through the elite, crossover, or mutation process
for regeneration. In this paper, the following process is proposed to
determine those parameters:

• Nel is a constant value, and it is equivalent to the top 5% of the
population.

• Ncrs is variable to cover between 80% and 90% of the
population. Its value depends on the population density. The
higher the population density, the lower the Ncrs to allow
mutation to reinforce the heuristic features.
• Thenumber of chromosomes for themutationwill be obtained
fromNmut = Npop − (Nel +Ncrs) to keep the population size over
generations.

3.3 Convergence criteria

There is no theoretical method to establish the final convergence
for the genetic algorithm in an arbitrary problem. Therefore,
it is necessary to stop the algorithm while it satisfies a set of
predefined conditions. Different types of convergence analysis are
applicable to the genetic algorithms in different problems (Safe et al.,
2004). In this paper, the following criteria are considered to
determine the algorithm’s convergence:

• Elite group sustainability: if the chromosomes that reached the
top 5% remain in their positions for at least 20 generations,
it means the search is converged, and it is more likely for the
algorithm to stay on the same point as the optimum solution
in the next generations.
• The cost function gradient: according to the combinatorial
nature of the problem, it is possible to have more than
one solution as the best combination of features to satisfy
the minimum value for the cost function. Therefore, it
is necessary to consider another condition rather than an
elite set of chromosome sustainability. The cost function
gradient is another condition that demonstrates the algorithm’s
convergence. In this paper, if the cost function gradient
remains less than 2% for 50 generations, itmeans the algorithm
has reached its final convergence.
• Population distribution: checking the population distribution
is not very easy in combinatorial problems, particularly with
the 2D chromosome structure. Accordingly, a new strategy
is proposed to compare the current population with the
previous generations to check how many new points in the
search domain are considered in the current generation. For
this reason, a random key is generated in the beginning to
select particular genes from the chromosomes and devise a
comparison feature to evaluate the heuristic performance level.
Accordingly, if the number of new chromosomes remains less
than 2% of the population size for more than 20 generations, it
means the algorithm has reached its final convergence.
• The maximum iteration: a maximum number of iterations
equivalent to 10 times the population size is considered to
prevent computational overloading.

4 Simulation environment and
evaluation

The performance evaluation for the proposed algorithm is
accomplished using a simulation environment presented in our
previous works (Rekabi-Bana et al., 2020; 2021). Furthermore, to
guarantee cooperative stability and robustness against uncertainties
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FIGURE 5
Path-planning results obtained from the proposed genetic optimization framework for three, four, and six agents in an arbitrary workspace. The
obstacles’ boundaries are shown by gray, brown, and blue surfaces; the target formations are depicted by square points and dashed lines; the path
waypoints are presented by red dots; and the final trajectories are demonstrated by colored lines.

FIGURE 6
Collision-free behavior evaluation using the minimum agent-to-agent
distance in four team configurations.

and disturbances, the distributed NLH∞ presented in Rekabi-
Bana et al. (2021) is applied. The test scenario includes an arbitrary
workspace with three obstacles. The procedure to map the
environment and create a risk-aware exploration graph is similar to
that mentioned in our previous work, which is discussed in Rekabi-
Bana et al. (2024).

Furthermore, in order to compare the algorithm’s behavior
for different group sizes, four conditions are studied. The group
size varies from three to six agents. The population size for the
optimization is determined as 20 times the number of agents. That
value is obtained by a trade-off between the computational burden
and the heuristic performance of the algorithm. In each iteration,
a set of 15 simulations is implemented considering the robots’
dynamics and environmental disturbances to evaluate the traveling
distance and failure probability due to collision between the agents
or the obstacles. Furthermore, the number of exploration points
covered according to the agents’ sensing radius and their destination
position in the formation is determined to calculate the second part
of the cost function. Accordingly, the cost functionwill be calculated
for each chromosome based on those values afterward.

In order to compare the proposed algorithm’s performance with
that of other planning schemes, two other methods are considered.
It is assumed that there is no possibility of collision with the
obstacles, and the agents can fly between different formations
directly in both comparison algorithms. In the first scenario, an
ideal exploration is considered, which includes the shortest path
between all the destination points. In the second case, the random
search is considered for the group, which is a classic method for
exploration. The coverage score is defined to consider the number
of exploration points in each district proportionally and the points
scattering diversely. It means that the districts withmore exploration
points which are less sparse have the highest score. It is evident that
if the agents cover all the districts, theywill achieve the highest score.

Figure 3 demonstrates one of the sample missions for
performance evaluation. It depicts how the exploration subdomains
are formed and how the formation shape will look according to the
exploration points’ distribution in each subdomain.

5 Results and discussion

The results obtained from the proposed algorithm
implementation in the simulation environment are discussed in
this section. According to the problem’s definition in Section 2, the
preliminary stage before the optimization involves determining the
target formations in each district to place the agents in the vicinity
of exploration points for data collection. A sample for exploration
points’ distribution, workspace partitioning, and target formations
is presented in Figure 3.

5.1 Exploration with aerial robots

As is presented in Figure 1, the formation shape is considered
an equilateral polygon regarding the number of agents in the
exploration team. The size and orientation of the polygons are
determined according to the exploration points’ distribution in each
district and the data collection radius for the agents. Therefore, the
more sporadic the exploration points, the larger polygon will be
considered to place the agents in positions for a complete coverage.

The results obtained for the cost function’s best value at each
generation are presented in Figure 4. The results demonstrated

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1375393
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Bana et al. 10.3389/frobt.2024.1375393

FIGURE 7
Comparison results for the proposed algorithm exploration performance in three group configurations. The solid lines represent the average
performance, and the shaded area with dotted boundary lines demonstrates the 25% and 75% quantiles for the statistical results.

TABLE 1 Algorithm run-time in minutes for different scenarios in 3D and
2D environments with PRM graphs of 2,663 and 12,812 edges
respectively.

Number of districts

10 8 7 5

Three agents 15.34 12.22 10.68 7.63

Four agents 20.31 16.39 14.34 10.16

Five agents 25.53 20.36 17.83 15.14

Six agents 30.54 24.47 21.43 15.26

Number of districts

10 7 6 5

Three agents 8.30 6.10 5.24 4.36

Four agents 12.72 7.95 6.86 5.72

Five agents 13.90 9.84 8.57 7.06

Six agents 16.62 11.76 10.09 8.45

3D: PRM graph with 2,663 edges.
2D: PRM graph with 12,812 edges.

in Figure 4 show the first 75 iterations of the optimization for
all the configurations. The result indicates that the algorithm
structure is designed properly and the heuristic and optimization
stability is not affected by the group size. However, the more
agents in the group, the larger the optimization search domain, and
accordingly, themore iteration is required to satisfy the convergence
criteria. Furthermore, the simulation results obtained using the
proposed planning algorithm for three different group sizes are
presented in Figure 5, demonstrating the trajectories that each agent
should pass to reach the allocated destination points in target
formations.

Although Figure 5 demonstrates the proposed algorithm’s
output for path planning, it is necessary to analyze the minimum
agent-to-agent distance criterion to evaluate the collision-free
feature of the proposed multi-agent path-planning algorithm. The
results obtained for that criterion in four team configurations are
demonstrated in Figure 6.The results depicted in Figure 6 show that
in all the studied conditions, the minimum agent-to-agent distance
is more than almost 0.5 m, and no collision has occurred between
the agents. Furthermore, it is evident that the variation bound of the
distance between the agents decreases with increase in the number
of agents. Although the presented results establish the capability
of the proposed optimization for multi-agent collision-free path
planning in an arbitrary environment, it is necessary to evaluate
the proposed algorithm’s performance in comparison with other
methods. The comparison results with two benchmark scenarios
based on the statistical data obtained from multiple simulations
for different configurations are presented in Figure 7. The first
benchmark is the ideal exploration, which means that the agents
explore the area by moving directly between each pair of districts
regardless of the existing obstacles and collision risk according to
the best combination of the districts obtained according to a TSP
problem.The second benchmark is the random exploration without
any risk of collision with the obstacle and directly between districts,
as considered in the first benchmark. According to the results
demonstrated in Figure 7, the behavior of the proposed algorithm is
similar to the ideal benchmarks considered for each configuration,
although it is supposed to avoid collision with obstacles and find
the trajectory through the PRM graph. Furthermore, the proposed
algorithm outperforms the random exploration by preventing the
agents from repeatedly visiting the districts, which is a problemwith
the random exploration method.

Although the proposed algorithm provides exploration plans
similar to an ideal case, the constrained optimization framework
requires a considerable computation resource. Algorithm speed
was analyzed using its implementation in MATLAB 2022b on a
computer with a 12th Gen Intel(R) Core(TM) i9-1200k processing
unit and 64 Gb of RAM. The results obtained for different numbers
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FIGURE 8
Multi-arm manipulator designed for data collection from the observation hive (Rekabi-Bana et al., 2023).

FIGURE 9
Results obtained for the multi-arm manipulator trajectory planning to cover egg-laying spots in three different sampling cases. The black circles
represent the egg-laying spots, the black dashed lines represent the workspace partitioning according to the selected egg-laying samples, and the
colored hexagon shows the footprint of the manipulator through time, starting from blue and shifting to red as time passes.

of agents, exploration districts, and environment dimensionality
are presented in Table 1. It is clear that compared to the 3D
environments, path planning in two-dimensional environments
achieves relatively short run times, even with a significantly larger
graph.The results also indicate that increasing the number of agents
or districts increases the run time approximately linearly.

5.2 Exploration of a honeybee colony with
a multi-arm manipulator

Theproposed algorithm is also applied to determine a proper set
of trajectories for the multi-arm robot designed for the RoboRoyale
project (Rekabi-Bana et al., 2023). In this study, a set of robotic

agents, attached to arms on the manipulator, will interact with the
honeybee queen (Stefanec et al., 2022). Each agent will be equipped
with a miniature sensor to retrieve information about the queen and
the comb. The robot configuration is presented in Figure 8.

When the queen is active, the agents follow her and monitor
her activity, and they detect where she lays the eggs. To assess the
healthiness of the brood, the agents have to visit the locations of
the previous egg-laying events and investigate the progress in the
brood development. This requires that the agents leave the queen
during the resting times and gather the observations of the brood
as quickly as possible to minimize the risk of missing important
queen activities. During the exploration, the agents have to avoid
disturbing the colony and prevent collisions with any elements
of the hive.
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FIGURE 10
Comparison results in four scenarios with different numbers of exploration target points.

Our experiment is based on real egg-laying data collected
with respect to a honeybee observation hive. There, an image
processing system was used to determine a set of egg-laying
events (Žampachů et al., 2022), and the events gathered over
the 24-h period were considered target points for workspace
partitioning and target formation determination. A geometrical
constraint was also added to the optimization framework to
comply with the robot’s coupling and kinematic constraints.
Accordingly, the obtained results for three sets of egg-laying spots
are demonstrated in Figure 9.

The presented results in Figure 9 demonstrate the optimization
results and workspace partitioning in three cases. In each case,
150 egg-laying samples are selected randomly to make a different
distribution.Therefore, the workspace partitioning and each district
value for exploration would be different according to a new sample
distribution. Accordingly, the resulting trajectory becomes different
in each case and complies with the new sample distribution. The
robot’s endpoint footprint presented in Figure 9 demonstrates how
the algorithm attempts to find the best placement for the robot arms’
endpoint according to the kinematic constraints. The robot arms’
mechanical constraints make solid restrictions such as maximum
andminimumdiameter for expansion and retraction and the overall
rotation, which do not allow for full coverage of target points
in each domain. However, the proposed algorithm tries to attain
the maximum exploration score by reaching the position to cover
the maximum number of the target points at each district. The
performance of our method is compared with that of an efficient
algorithm recently proposed for a joint area coverage scenario with
a team of robots (Nawaz and Ornik, 2023). The performance of
both algorithms was evaluated in different conditions with different
numbers of exploration target points sampled randomly from the
egg-laying events. The results obtained from the comparison are
shown in Figure 10. The results in Figure 10 show that the two
algorithms achieve similar performance. However, our algorithm
finds optimal efficient solutions considering additional criteria
such as kinematic coupling and the conflict-free path between
the agents, which are not considered in the MA-MDP framework
proposed in Nawaz and Ornik (2023). Therefore, the comparison

result establishes the efficiency and optimality of the algorithm as
it complies with the practical requirements of the robots for the
exploration.

5.3 Limitations and future works

According to the results presented in previous sections, it
is evident that the proposed algorithm has some limitations,
particularly regarding the run-time performance. The results
demonstrated in Table 1 show that the current implementation
framework is time-consuming and limited to applications that do
not demand fast planning and re-planning. For instance, the studied
case of a multi-arm manipulator for egg-laying coverage in an
observation hive is one of the applications not needing prompt
planning, and the proposed algorithm is a good solution for that
application. However, implementing the algorithm with a more
efficient programming system and employing parallel computation
will enhance the performance and reduce the run-time to cover
more practical robotic applications. Moreover, the centralized
framework for the algorithm limited its applicability to those
cases that rely on a ground station with a reliable communication
link between the agents and the main processing unit. Therefore,
developing a distributed form of the algorithm will be one of
the future solutions that allow utilizing the proposed method for
applications that have less reliance on the ground station.

6 Conclusion

This paper presents an innovative path-planning algorithm that
leverages the risk-aware probabilistic roadmap (PRM) method,
combined with a customized genetic optimization approach,
which is compatible with the complexities of the path-planning
problem. The algorithm prioritizes two key criteria: minimizing
travel distance and reducing the probability of collision. These
criteria collectively constitute the objective function guiding
the optimization process. The proposed evolutionary framework
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employs a sampling-based method to compute the objective
function.This method relies on a series of simulations that consider
the dynamics of agents and environmental disturbances. Therefore,
those simulation results can reflect the statistical characteristics
of the objective function according to all random processes
considered in the model. The optimization results demonstrate
a reasonable convergence regardless of all the variations in the
environment and team configuration. Furthermore, the algorithm’s
effectiveness in ensuring collision-free trajectories is validated
by an analysis of the minimum agent-to-agent distances along
their paths. This analysis serves to underscore the collision-
free properties inherent in the algorithm. A comparison of
exploration scores for various group configurations demonstrates
the superior performance of the proposed algorithm, positioning
it as a promising optimization solution for benchmark cases.
It outperforms random exploration methods. Importantly, while
originally designed for finding three-dimensional trajectories for
cooperative exploration executed by a groupof drones, the algorithm
possesses the adaptability needed to address the path-planning
requirements of multi-arm robots operating in higher dimensions,
while maintaining collision avoidance capabilities. Looking ahead,
the current research envisions further enhancements, including real-
world testing with physical robots and integration with distributed
control algorithms, ultimately presenting a unified framework for
multi-robot autonomous exploration in uncertain environments
with dynamic disturbances. These future endeavors will contribute
to a more comprehensive and practical solution for a wide range of
robotic applications.
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