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Tissue palpation in endoscopy
using EIT and soft actuators

Amirhosein Alian, James Avery and George Mylonas*

The Hamlyn Centre, Imperial College London, London, United Kingdom

The integration of soft robots in medical procedures has significantly improved
diagnostic and therapeutic interventions, addressing safety concerns and
enhancing surgeon dexterity. In conjunction with artificial intelligence, these
soft robots hold the potential to expedite autonomous interventions, such as
tissue palpation for cancer detection. While cameras are prevalent in surgical
instruments, situations with obscured views necessitate palpation. This proof-
of-concept study investigates the effectiveness of using a soft robot integrated
with Electrical Impedance Tomography (EIT) capabilities for tissue palpation
in simulated in vivo inspection of the large intestine. The approach involves
classifying tissue samples of varying thickness into healthy and cancerous tissues
using the shape changes induced on a hydraulically-driven soft continuum robot
during palpation. Shape changes of the robot are mapped using EIT, providing
arrays of impedance measurements. Following the fabrication of an in-plane
bending soft manipulator, the preliminary tissue phantom design is detailed. The
phantom, representing the descending colon wall, considers induced stiffness
by surrounding tissues based on a mass-spring model. The shape changes of
the manipulator, resulting from interactions with tissues of different stiffness,
are measured, and EIT measurements are fed into a Long Short-Term Memory
(LSTM) classifier. Train and test datasets are collected as temporal sequences of
data from a single training phantom and two test phantoms, namely, A and B,
possessing distinctive thickness patterns. The collected dataset from phantom
B, which differs in stiffness distribution, remains unseen to the network, thus
posing challenges to the classifier. The classifier and proposed method achieve
an accuracy of 93% and 88.1% on phantom A and B, respectively. Classification
results are presented through confusion matrices and heat maps, visualising the
accuracy of the algorithm and corresponding classified tissues.
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soft robotics, tactile sensing, palpation, medical robotics, endoscopy, artificial
intelligence

1 Introduction

Robotic technologies play a significant role in healthcare, contributing to both
diagnostic and therapeutic interventions Avgousti et al. (2016). This level of attention
stems from their ability to enhance surgical capabilities through improved dexterity,
precision, and robustness. The introduction of surgical robotics has revolutionized
Minimally Invasive Surgeries (MIS) Advincula and Wang (2009), transforming traditional
laparoscopy approaches Williamson and Song (2022). However, conventional surgical
robots, characterized by rigid and high-stiffness components, pose challenges in ensuring
safe interactionwith the patient’s body. Concerns arise, particularly in high-force operations,
where the risk of ruptures and perforations becomes a notable issue. To address the concern,
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soft robotics emerges as a viable alternative to the field.
Leveraging concepts that have found success in various
technological fields over the past two decades, soft robotics
offers extended compliance, hyperelastic behaviour, and
characteristics resembling human tissues Cianchetti et al. (2013);
Rateni et al. (2015); Cianchetti et al. (2014).

Soft robotics demonstrate noteworthy capabilities in enhancing
maneuverability, ensuring safety, and adapting to diverse
environments, rendering them effective assets in surgical
interventions. These attributes contribute to the realization of
“theranostics,” encompassing both diagnostic and therapeutic
treatments Kwok et al. (2022). The prominence of soft robotics is
evident in numerousmedical applications, including peripheral lung
diagnostics and interventions Nguyen et al. (2023), tissue retraction
Amadeo et al. (2022), breast cancer detection Berthet-Rayne et al.
(2021), and tissue sampling Van Lewen et al. (2023). Similarly,
the advantages of soft robotics extend to lower gastrointestinal
endoscopy, where high flexibility is required to negotiate tortuous
paths while minimizing postoperative complications Chauhan et al.
(2021). Explorations into MIS applications have involved soft
robots designed with continuum mechanisms, introducing
novel locomotion methods for inspecting the gastrointestinal
tract Tolley et al. (2014); Stilli et al. (2014). Additionally, their
effectiveness in delivering therapeutic interventions is validated by
the employment of resilient yet flexible designs capable of exerting
high forces Runciman et al. (2020).

Many soft endoscopes require a clear and unobstructed
line of sight, typically facilitated by an endoscopic camera or
alternative intraoperative imaging Fu et al. (2021), to navigate
the endoscope or visualise lesions. However, in colonoscopy,
visual-oriented diagnosis faces challenges in early-stage cancer
detection, requiring soft tactile sensors to diagnose non-polypoid
lesions Wang et al. (2016). Conversely, early malignant tissues
exhibit distinctive mechanical properties, such as stiffness, differing
from healthy tissues. This disparity highlights the relevance of
tactile sensing for tissue palpation Stewart et al. (2018); Ahn et al.
(2010); Lopez et al. (2011). Table 1 summarizes the conventional
and state-of-the-art tactile sensors in MIS, categorized by their
technological designs Othman et al. (2022). These sensors can be
implemented by making indentations in tissues, catheterization,
and non-contact approaches Konstantinova et al. (2014).Utilizing
touch for tissue manipulation enhances identification of lesions
Scimeca et al. (2022), achievable by soft tactile sensors with human-
level accuracy Gwilliam et al. (2010) employed to detect the
depth of hard inclusions within soft tissue Ahn et al. (2012);
Nichols and Okamura (2013); Zhang Qiu et al. (2022); Yan and
Pan (2021). Conventional robot-assisted palpation, often with
rigid manipulators, relies on force measurements during ex vivo
operations, requiring tissue removal Xiao et al. (2020). Another
category of tactile sensors integrateswith laparoscopic or endoscopic
instruments, providing intra-operative tactile diagnosis without
tissue removal Tanaka et al. (2010). Some use optical fibres to
sense tissue stiffness Wanninayake et al. (2012); Lv et al. (2020);
Tang et al. (2021), offering high resolution but increasing cost
and complexity Othman et al. (2022). Additional tactile sensors
measure the force exerted by miniaturized and articulated probes,
providing information about tissue properties Sornkarn and
Nanayakkara (2017). Chuang et al. developed a piezoelectric sensor

for colonoscopies, mounted at the colonoscope tip, capable of
detecting tissue stiffness variations Chuang et al. (2016). Fluid-
driven tactile sensors, enabling cost-effective and easy fabrication,
identify tissue stiffness through volume changes Zhao et al. (2023b)
or fluidic channel impedance variations Avery et al. (2020). The
sensors outlined in the literature either require tissue excision or
depend on separate devices for mounting and operation.

This paper proposes an Electrical Impedance Tomography
(EIT)-based tactile sensing scheme embedded in a soft manipulator
suitable for colon tract navigation. The method enhances
hydraulically-driven soft endoscopes with proprioceptive tactile
sensing for tissue palpation, without any additional modalities,
aiming to improve their early-stage cancer diagnostic capabilities.
The proposedmethodminimizes system complexity and integration
challenges while enhancing dexterity in endoscopes with multiple
degrees of freedom Treratanakulchai et al. (2022). The sensor
operates by measuring varied deformation of the continuum
endoscope during interaction with tissues of different stiffness,
complementing the concurrent detection of visible polyps through
the endoscopic camera. The interaction between a flexible
continuum robot and the environment alters system stiffness,
reflecting external force and displacement at the contact point,
corresponding to the elasticity of the target Stella et al. (2023).
Thus, the configuration of the robot in a static equilibrium
depends upon the stiffness of the contact tissue. In oncological
diagnostics, early-stage malignant colon tissues exhibit increased
stiffness compared to benign counterparts Stewart et al. (2018).
Conventional approaches relying on cameras may overlook these
stiffened tissues. In a hypothetical scenario, if a suitably soft
endoscope probes the colon tissue while negotiating the lumen,
the tissue stiffness can be manifested in the backbone shape of
the endoscope as varying bending curves (see Figure 1A). Tactile
feedback provided by shape information, coupled with visual
information, enhances the detection of elusive cancerous tissues.The
proposed scheme measures electrical impedance variations induced
by shape deformation along the endoscope’s working channel.
Saline serves as the conductive fluid for mapping impedance
measurements through nine channels. Machine learning models
analyze these impedances, facilitating the classification of early-
stage malignant tissues. To validate the approach, a suspended
tissue phantom representing the colon and mesentery is designed.
The phantom incorporates silicon tissue samples with varying
thicknesses, mimicking stiffness changes along the colon. The soft
continuum robot traverses vertically, recording sequences of data,
including pressure and impedance values, upon interaction with the
tissue phantom.

2 Materials and methods

To demonstrate tissue palpation using soft continuum
endoscopes, we explored the proposed sensing capability using
an elastomer bending manipulator with integrated EIT sensing,
capable of in-plane deformation. This hydraulically-driven
manipulator represents typical hyperelastic soft continuum robots
used as soft endoscopes in the literature Manfredi et al. (2019);
Zhang et al. (2019); Abidi et al. (2018). EIT, previously developed
for deformation measurements and tactile force predictions in soft
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TABLE 1 A summary of the conventional tactile sensors in MIS.

Sensing technology Advantages Disadvantages References

Piezoresistive/
Piezoelectric

- Low cost
- High sensitivity

- Repeatable

- Prone to hysteresis
- Accuracy loss in

long-term

Ahmadi et al. (2010)
Radó et al. (2018)

Sornkarn and Nanayakkara (2017)

Capacitive - Ease of design
- Thermal noise

immunity
- Tunable resolution

- Prone to hysteresis
- Non-linear

Lee et al. (2015)
Kim et al. (2018)

Optical - Versatility
- Miniaturization

- Lightweight
- MRI compatible

- Complex design
- High cost

Ahmadi et al. (2011)
Polygerinos et al. (2010)

Lv et al. (2020)
Tang et al. (2021)

Microfluidic/
Fluidic

- High flexibility
- Low-cost

- Easy fabrication

- Leakage
- Limited stability

in long-term

Zhao et al. (2023a)
Avery et al. (2020)
Kara et al. (2023)

Imaging-Based - High resolution
- Large area coverage
- Minimized coverage

- Large-sized
- Restricted camera

focal distance

Venkatayogi et al. (2022)
Trueeb et al. (2020)

Kawahara et al. (2010)

FIGURE 1
The schematics and experimental simulations of the proposed approach, which is based on the shape changes resulted from the interaction with
different stiffness of tissue. (A) schematic illustration of a soft colonoscope sliding against the descending colon tissue. (B) Replicating the schematic
representation in experimental simulations. Different shape configurations (e.g., bending angle and radius) over interaction with varying stiffness
tissue samples.

actuators Alian et al. (2023), serves as the core sensing modality.
The soft manipulator simulates navigating the descending colon
for demonstration and procedural simulation. A tissue phantom,
resembling colon tissue suspension and the mesentery, is fabricated

for this purpose. The continuum manipulator palpates the tissue
phantom while a vertical linear motor lifts it along the simulated
colon. Collected sensory data, including pressure and EIT values,
are interpreted and classified using a Recurrent Neural Network.
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FIGURE 2
Soft continuum robot and integrated electrodes. (A) dimensions of the manipulator and its cross-section. (B) The specifications of the FPC and the
assignment of electrodes to measurement and injection pairs in the selected protocol. Measurement and injection electrodes are denoted by V, I, and
positive and negative poles are denoted by +, −, respectively. The indexing of each electrode refers to the corresponding channel. For instance, I+1,2,3
under the first electrode demonstrates its role as the injection positive pole in channels 1, 2, 3.

2.1 Soft continuum manipulator fabrication
and EIT integration

The manipulator, Figure 2A, following the procedure
outlined in Polygerinos et al. (2015), is constructed using a three-
componentmold filledwith Ecoflex 00–50 Silicone.With a length and
diameter of 100 mm and 12 mm, respectively, and a wall thickness
of approximately 4 mm, it forms a semi-circle inner chamber with
4 mmwidth.The inner chamber is hydraulically inflated andproduces
in-plane unidirectional bendingmotions towards the tissue phantom.
Nylon fibres and an inextensible polyester layer are incorporated to
restrict radial expansion and minimize longitudinal tension.

Integrating EIT requires an array of electrodes, an impedance
spectroscope, and a conductive fluidic medium. The impedance
spectroscope stimulates electrical current and measures
corresponding voltages, reflecting changes in the conductivity of
the medium. Stimulation and measurements follow a protocol
determining which electrodes are used for current injection
and impedance measurements. In the experiments, a 9-channel
EIT protocol is applied, utilizing a linear array of 12 electrodes
on a Flexible Printed Circuit (FPC) made of a Polyamide film.
Each channel includes a pair of injection electrodes and a pair
of measurement electrodes. The schematics of the protocol and
formation of the electrodes are illustrated in Figure 2B, where I+i and
I−i , i = [1 9] denote the positive and negative poles of injection pairs
for the ith channel, respectively. Positive poles of measurement pairs
are represented asV+i , whereasV−i represents negative measurement
poles. For instance, I+1,2,3 under the first electrode in Figure 2B
denotes its positive injection pole in channels 1, 2, 3. The electrodes
can act as both positive and negative poles but in different channels,
depending on the protocol.

The integration of EIT into the soft manipulator involves
embedding and fixation of the FPC into the inner chamber
of the manipulator. Assuming the manipulator undergoes pure
bending, the manipulator’s inner chamber geometry defines the

flat side as the neutral surface, suitable for non-stretchable FPC
placement. Upon pressuring the manipulator using 0.9% saline
as the conductive medium, the varying impedance measurements
collected by the spectroscope are observed. The deformations upon
bending increase the cross-section of the inner chamber due to
the restricted elongation. These changes are associated with the
pressure values and affect the impedance readings according to
Pouillet’s law. The increased area leads to the reduced impedance
values, which subsequently are alluded to the backbone shape
changes of the manipulator. EIT data are recorded using the Quadra
impedance spectroscopy developed by Eliko tech Min et al. (2018).
The device incorporates an alternating current source capable of
generating signals with 15 frequencies up to 349 kHz. Additionally,
the spectroscope records the data using a data acquisition unit and a
multiplexer at varying frame rates based on the number of channels
in the protocol. Herein, the 9-channel protocol is sampled at 20 Hz
by injecting a current signal of 1 mA amplitude. The reference data
are collected using the current signal at the frequency of 61 kHz,
sampled through Time Division Multiplexing (TDM).

2.2 Colon tissue phantom simulator

To replicate colon tissue stiffness, a set of phantoms are designed,
considering the colon tissue suspension. Typically, phantoms
overlook the normal stiffness of colon tissue, essential to mimic
the resistance of ligaments and surrounding organs. The proposed
phantoms in this study enable tactile sensory data collection. These
phantoms, categorised into training and test phantoms, follow a
mass-spring model. As shown in Figure 3B, an artificial tissue
segment is suspended to a rigid component via compression springs
with a constant of 175.1 N/mUnder quasi-static loading and a fixed
spring constant, the elasticity modulus of 0.425 MPa is computed
using the spring geometry (25 mm length, 6.5 and 1 mm outer and
wire diameters, respectively), aligning with Massalou et al. (2019)
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FIGURE 3
(A) The phantoms used for training and test dataset collection together with their specifications. (B) The fabricated tissue phantom simulator based on
a mass-spring model and composed of Silicone samples of varying stiffness.

results in the circumferential direction. The springs model the
resistance yielded by ligaments and neighbouring tissues upon the
palpation of the colon wall.

The tissue segment consists of Ecoflex 00–50 (Smooth-On,
Inc., Macungie, PA, United States) silicone cast into 3D printed
moulds, providing a location-based stiffness varying pattern
through thickness variations. Stiffness variations are subsequently
categorised through a binary classifier. The training phantom
includes five tissue samples of 1mm and 2 mm thickness, with
the latter indicating unhealthy tissues. The samples, measuring
34.5 mm in length and 25.5 mm in width, are randomly distributed
across the segment. In Figure 3B, thicker tissue samples are
identified by a darker colour. Test phantoms, A and B, follow
similar fabrication principles, but A has an alternative distribution
pattern of 1 mm and 2 mm samples, and B is composed of two
additional samples of 3 mm and 4 mm thicknesses. While the
lengths of the samples on phantom A are identical, they differ on
B as depicted in Figure 3A. The varying design factors present in
phantomB, namely, sample length and thickness, serve as ameans to
investigate the generalization of the proposed classifier. These tissue
phantoms, combined with the soft manipulator, are employed to
simulate in vivo colon palpation. A data-driven classification model
will interpret tactile data collected during the procedure.

3 Experimental setup

Tissue palpation involves probing the tissue while traversing
the surface for data sampling at various locations. Two classes of
actuation units are employed: one for probing motion and the
other for manipulator displacement. The number of units for each

class depends on the required Degrees of Freedom (DOF) for each
motion. Here, the 2D plane is targeted with 1-DOF probing motion
and vertical line traversal, requiring one actuation unit per motion.
Hydraulically pressurising the manipulator with a syringe pump
system, driven by a linear stepper motor, generates in-plane probing
motion. Stepper motors, controlled by S-lite and S series uStepper
drivers, with a resolution of 400 steps per revolution, actuate the
traversing and probing motions, respectively. Vertical manipulator
displacements are recorded using a built-in encoder.

To probe the tissue, the manipulator tip indents the phantom,
ensuring the exerted normal force stays within a safe range. The
phantom is vertically mounted on an aluminium structure, and the
manipulator is attached to the moving stage of a vertical linear
motor, moving parallel to the phantom. Prior to initializing the
experiments, the manipulator faces the tissue phantom with its flat
side parallel to the phantom surface. To replicate in vivo trials,
the manipulator’s rest position is set within colon dimensions,
ensuring its relative position to the phantom aligns with values
from Finocchiaro et al. (2023). In Figure 5 at t = 0, the manipulator
is configured at its rest position with an absolute pressure of
1.260 bar, recorded using anMS5803-14BA sensor with a resolution
of 1 mbar. Pressure data were recorded throughout the experiments,
transmitted to an Arduino Due at 20 Hz through an I2C interface.

3.1 Data collection

Two series of experiments were conducted. The first illustrates
EIT output distinctions while probing tissue samples of varying
thicknesses on the training phantom (Figure 3A). The second
involves joint data collection on the training and test phantoms,
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FIGURE 4
The experimental setup consisting of the tissue simulator, actuation units, continuum manipulator, and sensing devices. (A) top view, (B) front view.

followed by implementing a data-driven classifier. The experimental
setup and required components for actuation and data acquisition
are shown in Figure 4. In the first experiment, pressure is applied
to the manipulator in trapezoid signal waves with a constant
high value of 1.750 bar and a high time of 2 s. The pressure is
produced by the stepper motor rotating at the maximum speed
of 2000 steps/s and acceleration of 6000 steps/s2. This process is
repeated at five different vertical positions of the manipulator tip,
corresponding to distinctive parts of tissue samples with 1 mm
and 2 mm thicknesses. These locations include the top, middle,
and bottom sections of each sample. The experiment was repeated
10 times to assess the repeatability and separability of the EIT
signals. In practical scenarios, factors such as the distance between
the tip and tissue surface or the initial manipulator pose can
vary randomly. Uncertainties involved during palpation due to the
presence of complex colon anatomy and undesired motion of the
manipulator render the surgical site unpredictable. This heightened
uncertainty challenges the differentiation of tissue stiffness based
on EIT outputs. To observe the impact of these uncertainties and
create a more generalized dataset, the manipulator is pressurised
with randomly bounded inputs from 1.25 bar to peak values ranging
from 1.6 to 1.8 bar. Despite the added complexity by randomising
the pressure inputs, the overall robustness of the network is
enhanced. Triangular wave signals of pressure (depicted in Figure 7)
inflate the manipulator instead of trapezoid ones. The bounds (1.6
and 1.8 bar) ensure a safe interaction between the manipulator and
the phantom while keeping the exerted force within a permissible
threshold. The dataset from the second experiment comprises both

training and testing data. The training data are acquired as the
manipulator traverses and probes the training phantom (Figure 5).
Similarly, the test data come from palpating test phantoms A
and B. Both training and testing data collection started with the
manipulator positioned at the bottom of the phantom and gradually
moved to the top. The manipulator traverses the phantom at a rate
of 2 mm every 3 min during training, while the test data collection
rate is set at 1 mm every 12 s.

3.2 Data post-processing

The data required for classifying palpated tissues include
pressure values, EIT outputs, and the vertical displacement of the
manipulator. Collected pressure and displacement datasets from
Arduino and uStepper boards, respectively, are communicated
to MATLAB 2022. These datasets, stored as string arrays with
corresponding timestamps, are processed further. Impedance
values, sampled at 20 Hz, are logged as text files and formatted
into string and numerical arrays in post-processing. Pressure and
EIT temporal sequences will be used as classifier inputs, while
displacement data are used for labeling and illustration only. Each
input sequence represents a single cycle ofmanipulator inflation and
deflation with corresponding EIT changes. Despite nominal similar
sampling rates for pressure and EIT data, variations in start and end
points necessitate data synchronization. Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) interpolation ensures consistent
data points in each sequence, maintaining the same number of
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FIGURE 5
The inflation and deflation of the manipulator during data sampling, and the direction of traversing.

FIGURE 6
(A) Regions with different stiffness on training phantom, used in the first experiment and marked by specific colours as well as labels from M2 to B1
respective to their position on the phantom. (B) The raw data of channel six of EIT (top), with respect to pressure (bottom). (C) Bar plot of EIT outputs
for all of the channels at their peak (indicated by a dashed line on the raw data plot), showcasing the distinction of the outputs (right).

pressure and EIT measurements. Finally, the data are organized into
train and test datasets, creating an n-by-d matrix for each sequence,
where n represents the feature space size and d denotes the number
of data points. The feature space size is ten (pressure and 9-channel
EIT values) for all sequences, with d varying among them.

3.3 Machine learning model

Due to the intrinsic nonlinear and hyperelastic nature of the
continuum manipulator and tissue phantom, linear separability
of data featuring different stiffness levels is not feasible. Colon
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FIGURE 7
The sequential data obtained from the training phantom in experiment two, indicating the pressure signal on the left and corresponding EIT changes in
each channel, sequentially separated by dashed lines.

tissue, in particular, exhibits isotropic and anisotropic hyperelastic
biomechanics with time-dependent behaviour Bhattarai et al.
(2021). Thus, recognizing nonlinear and temporal patterns in
the data requires data-driven models for classifying colon tissue
stiffness into healthy and cancerous categories. In the literature,
Convolutional and Deep Neural Networks (CNN, DNN) are
common to classify colorectal cancer images utilizing Visual
Geometry Group networks (VGGs) Anju and Vimala (2023) and
Residual networks, also known as ResNets Sarwinda et al. (2021).
Theoverall structure ofVGGs includes convolutional layers followed
by fully connected layers Ferreira et al. (2018). ResNets are deep
architectures used to reduce training time. They establish shortcuts
by skipping connections between specific layers, addressing the issue
of vanishing gradients in convolutional neural networks.

Recurrent Neural Networks (RNN) are well-suited candidates
for time-dependent data Yu et al. (2019), incorporating feedback
loop connections to handle sequential input data of varying lengths.
However, RNNs face challenges like vanishing and exploding
problems due to their limited memory capacity. Alternatively, Long
Short-Term Memory (LSTM) networks, as an improved class of
RNNs, have been introduced Gers et al. (2000) with additional
gates to the standard recurrent cell. This amendment improves the
remembering capacity and addresses the aforementioned issues in
RNNs. Given the variable sampling rate of the sensing modalities
of the setup, resulting in varying-size data sequences, the inherent
ability of LSTMs to handle this type of data renders them suitable.

In this study, a 6-layer LSTM network serves as the core
algorithm for classifying the dataset into healthy and unhealthy
tissues. The network comprises an LSTM layer, a drop-out layer,
and a softmax layer. Training data consists of 1,057 sequences,
reducing to 427 sequences for the test datasets on phantoms A and
B. The input size, representing the feature space dimension, consists
of nine vectors for EIT channels and one pressure value. With a

2-sized output denoting healthy and unhealthy tissues, the network
is configured accordingly.

Prior to inputting data into the classifier, the dataset is
normalized and sorted based on sequence length to minimize
the padding extent added by the network, thereby optimizing the
mini-batch size. The feature normalization is performed using the
maximum and minimum values of the datasets, resulting in scaling
the feature variables to a range from 0 to 1. The LSTM classifier is
trained using Adam solver and the execution environment is set to
automatic. Adam enables faster convergence of the parameters by
dynamically adapting the learning rate. The solver is suitable for
noisy input data and robust to hyperparameter tuning. Alternatively,
Nesterov-accelerated Adaptive Moment Estimation (NAdams) can
be used for faster and more generalized convergence. Training
and validation of the network are implemented in MATLAB
R2022a and the learning algorithm iterated over 500 epochs. The
hyperparameters of the network including the Number of Hidden
Units (NHU), Initial Learn Rate (ILR), and Mini-Batch Size (MBS)
are tuned through the Bayesian optimization algorithm Bull (2011),
within the corresponding ranges of [1,100] [0.0001 0.1], and [1,300].
After 100 evaluations of the objective function defined as the error
of classifications, NHU, ILR, andMBS are determined as 9, 0.02, and
170, respectively.

4 Results

4.1 Experiment one

The results of the first experiments where the distinction of EIT
outputs is investigated are shown in Figure 6. The plot in Figure 6B
denotes the raw output data for the sixth channel of the EIT
protocol. As discussed in Section 3, in the experiment, a trapezoid
pressure signal with an amplitude ranging from 1400 to 1700 mbar
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is applied to the manipulator with a high time of 2 s. The raw
data illustrate that as the pressure increases, the impedance values
decrease correspondingly (see Figure 7B bottom). This behaviour
is not specific to the channel noted here and is observed across
the entire protocol. The reason for the decline in the impedance
value can be described by the increase in the cross-section of
the manipulator upon pressurizing the manipulator. As pressure
increases, the inflation induces the volume of the conductive fluid,
namely, saline, to increase, hence reducing the impedance values
according to Pouillet’s law.

Figure 6C illustrates peak EIT channel outputs resulting from
interactions with various regions of the tissue phantom. These
regions, identified in Figure 6A, are labelled as B1, B2, M1, M2, and
T1, representing the bottom of 1 and 2 mm samples, the middle of 1
and 2 mm samples, and the top of 1 mm samples, respectively. The
distinction is apparent in nearly all channels, withmore pronounced
variations in channels measuring impedances at the middle of the
manipulator. This corresponds to the middle row in Figure 6C,
aligning with electrodes in the middle of the manipulator per the
experimental protocol. These high variations result from the middle
section experiencing the most significant changes in cross-section.
Additionally, the bar plots reveal that the distal section of the
manipulator undergoes minimal changes in cross-section.

According to the plots, interaction with the middle of the
2 mm sample yields the lowest impedance value compared to
other regions on the phantom. This suggests that cross-section
changes are maximized when palpating the middle of the 2 mm
sample, indicating the highest resistance in that interaction.
This resistance is reflected in increased inflation across different
sections of the manipulator. In contrast, interaction with the
bottom of the 1 mm sample yields the highest impedance values,
implying the least resistance during palpation. The error bars
depicted on the plots demonstrate the repeatability of the outputs.
Overall, these values demonstrate the acceptable repeatability
of EIT outputs.

4.2 Experiment two

A series of sequential data collected during the second
experiment is shown in Figure 7, where the pressure signal and
corresponding changes in the EIT channels are demonstrated with
respect to each channel. Individual sequences are separated by
dashed lines.The sampled dataset inputs the LSTM classifier to train
the model. The results of the validation using the data sampled
from the test phantoms A and B are highlighted in this section.
In particular, the data from the test phantoms are not present or
involved in the training dataset and the learning algorithm, hence are
considered unseen to the classifier. The confusion matrix in Figure 8
demonstrates the classification accuracy of the test dataset from the
test phantom A. The phantom incorporates 1 and 2 mm samples,
representing healthy and unhealthy tissue samples, respectively.
The results indicate that the overall accuracy of the proposed
classifier is 93%, implying the correct classification of 397 out
of 427 sequences of the input data. The employed algorithms
misclassified 30 sequences of healthy target samples as unhealthy
tissues, resulting in an overall 7% false positive misclassification. In
particular, 30 sequences of the sampled data from 1 mm samples

on the phantom A were classified as tissues with high stiffness.
In the following paragraphs, the corresponding locations of the
misclassified sequences are highlighted using a colour map.

Similarly, Figure 8 demonstrates the validation results of
the proposed classifier using the dataset sampled from the
tissue phantom B. Contrary to the test phantom A, phantom B
incorporates tissue samples with 3 mm and 4 mm thicknesses in
addition to 1 and 2 mm samples. Furthermore, the length of the
samples is not constant, challenging the classifiermore considerably.
While the number of tissue samples on phantom A is 5, this number
increases to 11 on phantom B. This value is associated with the
number of transition regions where the thickness and stiffness of
the tissue sample undergo a sudden change. Intuitively, the overall
accuracy of the classifications drops to 88.1%, signifying the correct
pattern recognition of 374 out of 427 sequential data samples. The
remaining data samples are classified as false negative, leading to
an error of 11.9%. The confusion matrix illustrates that all of the
data samples associated with healthy tissues, represented by 1 mm
samples, are recognised correctly by the model. In contrast, the
dataset representing the unhealthy tissue samples on phantom A
was classified with 100% accuracy. The difference in the fabrication
and structure of the phantoms as well as the sampling procedure
can contribute to the varying accuracy between the datasets
collected from phantoms A and B. In what follows, the respective
locations of the misclassified sequences are highlighted using
a heat map.

4.3 Visualising the location of misclassified
data

Figure 9 visually represents the locations of misclassified
sequences on each phantom. Using the fabricated phantom as a
reference, the figure illustrates two stiffness classes, visualised as
colours with varying brightness. Bright colours represent healthy
tissues or 1 mm samples, while darker colours indicate unhealthy
tissues, including 2, 3, and 4 mm samples on both phantoms. The
heatmap plots are divided into true and predicted visualisations
on the vertical axis, denoting ground truth and classifier outputs,
respectively. The true part aligns with the fabricated phantom,
while the predicted part highlights misclassified palpations. The
misclassification distribution on phantom A, as shown in Figure 9,
indicates that most misclassifications occur in the middle section.
Additionally, some 1 mm samples between 27 and 34 mm are
misclassified as unhealthy. Figure 9 demonstrates that misclassified
sequences on phantom B are concentrated within transition regions
from 1 mm samples to higher stiffnesses. The stiffness changes
within these regions are challenging to recognize through EIT
outputs or the classifier due to identical stiffness properties.
Although classifier accuracy on phantomB is lower due to boundary
misclassifications, the centres of high-stiffness tissue samples are
clear. However, the misclassified distribution on phantom A
complicates the diagnosis by suggesting absent unhealthy tissues.
In particular, errors in phantom B are expected at the boundaries
between U and UH regions, avoiding false areas for investigation.
However, in phantom A, a number of misclassified areas are rather
scattered, leading to potential complications such as prolonged
operations. To explain the error distribution pattern on phantom
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FIGURE 8
Classification results shown by confusion matrices with respect to the dataset collected on the test phantoms (A) and (B). Class H and UH denote the
simulated healthy and unhealthy tissues with 1 mm and 2 mm thicknesses, respectively.

A, the anisotropic model of the phantom should be taken into
account. The contributing factors include non-uniform moulding of
the silicone tissue samples due to uneven distribution of thematerial
during casting, and the relative position of the suspension springs
that can vary the stiffness at particular areas. Additionally, since
the manipulator traverses the phantoms in constant intervals over
the collection of the test data, an asynchronous vertical motion can
induce misleading changes in the impedance values. In particular, if
themanipulator is lifted while the tip is still contacting the phantom,
the manipulator undergoes an unforeseen shift in its shape,
impairing the classifier to recognise the input data. The limited
response time and Signal-to-Noise Ratio (SNR) of the proposed
sensing scheme can amplify the effect of the aforementioned
contributing factors.

5 Discussion

In this study, we proposed an integrated tactile sensing method
within a soft continuum manipulator. The approach holds potential
for facilitating in vivo tissue palpation during endoscopy, allowing
for in situ localization and assessment. Experimental investigations
conducted on simulated in vivo tissue, combined with a machine
learning classification method. The distinction between healthy and
unhealthy tissue within the phantom is within a 1 mm difference in
thickness, which challenges the classifier. The presence of contact
resistance at the FPC electrodes contributes to the signal noise.

Furthermore, the limited deflections created on the phantoms
diminished the differentiability of measurements obtained from
distinct regions. This limitation can be addressed by adjusting
the stiffness of the manipulator and deploying variable stiffness
designs in future works. The results demonstrated the achievement
of 93% and 88.1% precision in classifying phantoms with two
and four varying stiffness levels, respectively. Notably, previous
studies by Yan and Pan (2021) and Xiao et al. (2020) reported
accuracy rates of 97% and 99% in anomaly detection using
robot-assisted tactile methods. However, these studies employed
commercially established sensing modules, partially composed of
rigid components and integrable with laparoscopic instruments. In
contrast to the soft tactile sensors in the literature Hao et al. (2023);
Jones andDamian (2022); Galloway et al. (2019), our proprioceptive
tactile system exclusively utilizes the manipulator’s pressurizing
fluid, without requiring supplementary attachments on the device’s
exterior. This feature preserves the structural stiffness and conserves
space for the inclusion of interventional instruments alongside the
endoscope.

Apart from the promising results yielded by the proposed
algorithm and experimental setup, different aspects of the study
require further improvementwhichwill be regarded in futureworks.
Similar to the tactile studies in endoscopy Camboni et al. (2020);
Zhao et al. (2023a); Winstone et al. (2016); Venkatayogi et al.
(2022); Kara et al. (2023), the fabricated phantom discussed in
Section 2 represents the descending colon in a simplistic manner
and lacks the corresponding physiological features such as the
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FIGURE 9
Heat map of the classification results per each phantom, indicating the location of misclassified data samples on the phantoms (A) and (B).

segmented appearance of the colon or haustra. While the mass-
spring phantom possesses a flat surface, the majority of the
existing phantoms in the literature consider haustra. However,
these phantoms fail to simulate the mechanical properties of
the colon such as stiffness, which is the key feature to identify
cancerous tissues with palpation. Therefore, designing realistic
phantoms that are identical to the large intestine enables accurate
and generalized data acquisition with regard to in vivo colon tissue
palpation Finocchiaro et al. (2023). The promising classification
results on unseen tissue samples suggest that the proposed
approach holds potential reliability when tested on real tissue in
future studies.

The in-plane bending of the manipulator limits its motion to
one DOF, inhibiting the validation of the proposed method in bio-
realistic 3D phantoms. To enable thorough palpation of the colon
and considering the limited motion of the manipulator, a rotational
actuation unit is required to complement the vertical motion,
complicating the overall delivery system design. In addition to the
need for a manipulator capable of 3D movement, enhancing the
delivery system to convey the probing manipulator to the targeted
tissue is required. Here, a vertical linear motor is leveraged to enable
the manipulator traversing the tissue surface. To develop a targeted
delivery system and enable palpating tissues further inside the
intestine, soft everting robots or alternative everting mechanisms
Saxena et al. (2020) can be employed. These systems are capable
of compliantly and flexibly conveying the palpating device to the
targeted region. Additionally, the palpating manipulator can be
mounted on a conventional endoscope delivering the treatment to
the surgical site. In this study, controlled motions with random
depths were employed; however, the direct implementation of
these motions is limited in clinical settings. To generalize the
machine learning model in clinical scenarios, it is necessary to
incorporate data acquired from previous trials into the training
dataset. Furthermore, the deployment of support structures, such as

inflatable scaffolds with variable stiffness Runciman et al. (2020),
can effectively enlarge the surgical site. Additional anchoring
mechanisms, such as double-balloon systems Manfredi et al.
(2019), can contribute to the enlargement of the workspace
and mitigate external forces. The integration of an additional
sensing channel into the soft manipulator can capture readings
associated with the random motion of the endoscope, enabling the
distinction of tactile measurements. Additionally, themethod is also
transferable to other endoscopic technologies such as hydraulically-
driven everting mechanisms for locomotion in endoscopy
Saxena et al. (2020).

The impedance spectroscope records and exports EIT
measurements through text files which demands further data post-
processing, impairing the real-time classification of the collected
data samples. To address the issue, the current EIT system which
operates based on TDM and requires constant electrode switching
can be upgraded to a FrequencyDivisionMultiplexing (FDM) based
acquisition unit Avery et al. (2019).The current setup limits the real-
time acquisition and processing of the data samples, induced by the
limited sampling rate in TDM. Introducing FDM-based acquisition
removes the need to post-process the data, enabling on-demand
classification.

In addition to the employment of a TDM-based EIT system,
the proposed classifier based on RNN can impose constraints on
the real-time classification of the datasets. Although RNN and
LSTM algorithms surpass CNN and DNNs in processing temporal
data, RNN-based algorithms rely on a recursive mechanism,
increasing the training time of the model. Transformer networks
predict sequential data following a self-attention approach
where the attention and dependency between data points in
a sequence are captured more effectively. This procedure is
performed by processing the sequential data as a whole rather
than point-wise, which is opposed to RNNs Vaswani et al. (2017).
However, transformers commonly struggle with overfitting and
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generalization, introducing data-augmentation techniques as a
solution Zeyer et al. (2019). Transformers have demonstrated
prominent results in modelling of soft robotics sensory data as
in shape reconstruction applications Hu et al. (2023), rendering
them promising algorithms to interpret tactile data. Additionally,
implementing a model with prediction uncertainty, such as a
probabilistic model, could provide insights into the model’s
confidence levels regarding its classifications. This approach
may offer valuable information about boundaries and potential
misdiagnoses, particularly in the middle section of phantom A. In
addition to transformers, alternative anomaly detection networks
such as BayesianOnlineChangepointDetection (BOCD),One-class
Support Vector Machines (SVMs), and Temporal Convolutional
Networks (TCNs) will be investigated in future works.

Implementation of data-driven classification methods poses
challenges regarding data-collection time. In particular, one of
the advantages of elastomer robots in endoscopic applications
is their cost-effective manufacturing, offering the development
of disposable surgical tools. The disposability of soft robots
is achieved by repeatable manufacturing processes allowing
fabrication of robots with identical characteristics. However,
the conventional fabrication approaches, typically using silicone
casting, pose challenges in fabricating repeatable elastomer
endoscopes Runciman et al. (2019), requiring larger training
datasets to ensure generalization, hence extending data collection
time. The issue can be addressed either by devising repeatable
manufacturing processes or incorporating augmented data obtained
from simulation experiments. Alternatively, the design of bio-
realistic phantoms together with devising efficient and time-
saving pipelines for data acquisition suggest potential solutions
to the matter.

Additional factors influencing classification accuracy
encompass the signal-to-noise ratio (SNR) of the EIT hardware
system. Enhancements can be achieved by minimising electrode
contact resistance. While SNR may seem ineffective when palpated
regions are distant (as in the first experiment), close proximity can
affect EIT data, complicating classification. In particular, enhanced
SNR leads to higher separability of classes of similar stiffnesses.
Improvements can be performed by electrode coating techniques
using biocompatible and conductive substances Priya Swetha et al.
(2018). Furthermore, optimizing the injection-measurement
protocol contributes tominimizing the training time and improving
the accuracy.Theprotocol adopted in the study highlights significant
shape changes as shown in Figure 6B. The integration of a higher
number of electrode pairs in the middle section, optimized through
simulations, can reflect the changes in the shape more effectively.
Additionally, the material used to fabricate the manipulator can
impact the sensitivity of the approach. In particular, softer materials
undergomore significant cross-sectional changes uponpressurizing,
hence exhibiting more sensitivity when interacting with tissues of
varying stiffness.

Future studies will involve fabricating a 3D phantom
for enhanced validation of the proposed method in a more
realistic context, with subsequent validation on ex vivo trials.
This prospective phantom will represent additional sections
of the large intestine, including the descending colon. To
improve manoeuvrability, the proposed palpation method
will be applied to a continuum manipulator capable of

spatial motion Treratanakulchai et al. (2022). This manipulator,
already equipped with surgical instruments, can palpate tissue while
triangulating, eliminating the need for an additional palpating
instrument. Since the proposed sensing approach allows for
scalability, design parameter optimizations will be conducted
to make the manipulator’s dimension better aligned with colon
anatomical constraints. Further enhancements will focus on
achieving real-time classification, incorporating the FDM-EIT
hardware system and implementing machine learning models with
reduced training time.

6 Conclusion

Thepaper investigates the reliability of classifying tissue samples
with varying stiffness by recording shape changes in a soft
continuum manipulator driven by hydraulics. The experiments
evaluate the application of the proposed approach in classifying
tissues of varying stiffness by palpation of a phantom mimicking
the colon wall. An in-plane bending manipulator is fabricated, and
tissue phantoms with silicone samples of varying thicknesses are
designed based on a spring-mass model. Samples with thicknesses
exceeding 1 mm simulate early-stage cancerous tissues, considering
the stiffness of the mesentery and ligaments in preliminary
phantoms. These phantoms undergo palpation by the manipulator,
and the collected datasets are used for training and validation by an
LSTM classifier.

While a single phantom collects the training dataset, two specific
phantoms (A and B) validate the proposed algorithm. Phantom B
includes tissue samples with 1, 2, 3, and 4 mm thicknesses, while
phantom A only includes 1 and 2 mm thickness samples. The
classification method relies on shape changes of the manipulator
due to interactions with environments of different stiffness. To
track shape changes, EIT sensing and hydraulic pressure values are
employed. Sequential data inputs from the corresponding tissue
phantoms are used for the classifier. Initially, the separability of
EIT data is examined in experiments with a constant pressure
signal amplitude. The distinction of EIT measurements from
interactions with different tissue phantom regions is evident
through the electrodes in the manipulator’s middle. The results
of the data-driven classification indicate accurate classification
of 93% of data samples from phantom A, dropping to 88.1%
for phantom B.
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