
TYPE Original Research
PUBLISHED 22 May 2024
DOI 10.3389/frobt.2024.1372375

OPEN ACCESS

EDITED BY

Mario Molinara,
University of Cassino, Italy

REVIEWED BY

Nils Goerke,
University of Bonn, Germany
Siao Wang,
Xtreme Intelligence LLC, China

*CORRESPONDENCE

Ioannis Polykretis,
ioannis.polykretis@accenture.com

RECEIVED 17 January 2024
ACCEPTED 29 April 2024
PUBLISHED 22 May 2024

CITATION

Polykretis I and Danielescu A (2024), Mapless
mobile robot navigation at the edge using
self-supervised cognitive map learners.
Front. Robot. AI 11:1372375.
doi: 10.3389/frobt.2024.1372375

COPYRIGHT

© 2024 Polykretis and Danielescu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Mapless mobile robot navigation
at the edge using self-supervised
cognitive map learners

Ioannis Polykretis* and Andreea Danielescu

Accenture Labs, San Francisco, CA, United States

Navigation of mobile agents in unknown, unmapped environments is a critical
task for achieving general autonomy. Recent advancements in combining
Reinforcement Learning with Deep Neural Networks have shown promising
results in addressing this challenge. However, the inherent complexity of
these approaches, characterized by multi-layer networks and intricate reward
objectives, limits their autonomy, increases memory footprint, and complicates
adaptation to energy-efficient edge hardware. To overcome these challenges,
we propose a brain-inspired method that employs a shallow architecture
trained by a local learning rule for self-supervised navigation in uncharted
environments. Our approach achieves performance comparable to a state-
of-the-art Deep Q Network (DQN) method with respect to goal-reaching
accuracy and path length, with a similar (slightly lower) number of parameters,
operations, and training iterations. Notably, our self-supervised approach
combines novelty-based and random walks to alleviate the need for objective
reward definition and enhance agent autonomy. At the same time, the shallow
architecture and local learning rule do not call for error backpropagation,
decreasing the memory overhead and enabling implementation on edge
neuromorphic processors. These results contribute to the potential of
embodied neuromorphic agents utilizing minimal resources while effectively
handling variability.

KEYWORDS

navigation, planning, autonomous, robot, edge, self-supervised, local learning,
neuromorphic

1 Introduction

The navigation of mobile agents in unfamiliar environments is a crucial first step
for autonomously accomplishing progressively complicated tasks. Global knowledge of
the environment, typically in the form of meticulously constructed maps, contains all
the information required for effective navigation through efficient planning (Meyer and
Filliat, 2003). Although such global knowledge dramatically simplifies the problem,
generating and storing these maps has significant resource demands (Egenhofer, 1993).
Long mapping sessions or their supervised formation limit the applicability of such
methods for consumer-oriented agents, whose ease of deployment and use is of
central importance. In large-scale environments such as those encountered during
rescue missions (Niroui et al., 2019), and planetary (Schuster et al., 2019) or underwater
explorations (Rosenblatt et al., 2002), creating such maps is practically infeasible and
actual autonomy is crucial. Lastly, dynamic environments limit the usefulness of a
static map, while its real-time update introduces additional computational complexity.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1372375
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1372375&domain=pdf&date_stamp=2024-05-22
mailto:ioannis.polykretis@accenture.com
mailto:ioannis.polykretis@accenture.com
https://doi.org/10.3389/frobt.2024.1372375
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1372375/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1372375/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1372375/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

To bypass the acquisition and storage of global knowledge of
the environment, current planning methods aim to utilize limited
global cues and combine them with local sensory information
about the agent and its immediate surroundings (Tai et al., 2017;
Zhu et al., 2017; Tang et al., 2020; Ding et al., 2022). Integrating
the core principles of such methods with the learning capabilities
inherent in modern Deep Neural Networks (DNNs) and the
recent advancements in Reinforcement Learning (RL) has paved
the way for achieving optimal solutions (de Jesús Plasencia-
Salgueiro, 2023). However, achieving optimality with Deep
Reinforcement Learning (DRL) solutions requires time, computing
resources and power, which are not readily available in
edge solutions.

The first source of resource requirements in DRL is the
utilization of multi-layer networks to exploit their escalating
computational capacity when handling high-dimensional
problems. However, such architectures require training with error
backpropagation, the backbone of DL (Rumelhart et al., 1986).
While adaptable to virtually any task with remarkable effectiveness,
backpropagation is not yet universally applicable to edge hardware.
Deep networks (Chowdhery et al., 2019) and ensemble models
(Vergara et al., 2012) based on backpropagation have been
successfully deployed in microprocessors, but their implementation
on neuromorphic processors (Furber et al., 2014; Merolla et al.,
2014; Moradi et al., 2017; Davies et al., 2018; Pehle et al., 2022) that
promise even lower power consumption is challenging. Even when
successfully adapted to neuromorphic hardware (Neftci et al., 2017;
Renner et al., 2021), backpropagation introduces additional space
complexity during both the training and inference phases, posing
memory footprint challenges (Chishti and Akin, 2019). In contrast,
neuromorphic processors draw their efficiency from utilizing local
learning rules that update a few parameters without necessitating
data transfer (Burr et al., 2017; Zenke andNeftci, 2021), highlighting
the need for algorithms leveraging local learning.

The second origin of resource requirements is the meticulously
tailored reward objectives required for DRL, which make
extensive training sessions and careful tuning imperative.
Influential methods from DRL for policy learning (Schulman et al.,
2015; Schulman et al., 2017), Q learning (Mnih et al., 2013),
or their combination (Mnih et al., 2016; Haarnoja et al., 2018)
have demonstrated remarkable results in navigation tasks
(de Jesús Plasencia-Salgueiro, 2023). However, such methods
require the precise definition of reward objectives adapted to the
given task, and result in the need for extensive training sessions
and significant tuning. In contrast, autonomous agents at the
edge can benefit significantly from self-supervision strategies
(Kahn et al., 2018; Kahn et al., 2021) that would allow on-chip
training to utilize minimal resources.

This work leverages the computational advantages of combining
a self-supervised approach with local learning rules on edge
hardware.We adapted CognitiveMap Learners (CML) (Stöckl et al.,
2022), a brain-inspired planning method that has been applied to
hierarchical action selection (McDonald, 2023), to a continuous
2D navigation task. We did so by minimizing the model’s
embedding space to only encode the agent’s position and its action
space to a few discrete actions to support navigation. We also
used more elegant exploration strategies to push the navigation
performance closer to the optimal standards. Our approach

performs comparably to the RL baseline (DQN) (Mnih et al.,
2013) on goal-reaching accuracy and path optimality while
necessitating a similar number of parameters, operations, and
training iterations. Notably, our self-supervised method not only
enhances agent autonomy but also benefits from a shallow
architecture and a local learning rule, mitigating the necessity for
backpropagation.

In summary, our main contributions are as follows.

• The adaptation of CML to a continuous 2D navigation task
whileminimizing themodel’s dimensions and, consequently, its
resource requirements,
• The enrichment of the model’s training with elegant

exploration strategies that brought its performance closer
to optimality,
• The extension of the method and its evaluation in dynamic

environments with unmapped obstacles.

Our results highlight the fitness of our approach for
learning directly on neuromorphic processors, aligning with
the overarching goal of embodied neuromorphic agents
exhibiting robust performance with minimal resource utilization
at the edge.

2 Methods

2.1 CML network architecture

Cognitive Map Learners (CML) are a recently proposed
architecture comprising of three distinct yet collaboratively trained,
single-layer, artificial neural networks. The three networks can
be trained to learn and utilize high-dimensional representations
of the nodes and edges in arbitrary bidirectional graphs. With
the graph nodes encoding the states of a system and the edges
encoding actions that lead to the transition between states, CML
can learn the system’s internal dynamics. The CML utilized in
this paper adhere to the design principles outlined by Stöckl et al.
(2022) in the original paper introducing this network architecture
(Figure 1). The CML operates in two distinct modes: training and
planning. In the training mode (Figure 1A), the CML explores
the environment using a predefined strategy. In the planning
mode (Figure 1B), the network uses its learned architecture
to plan a sequence of actions to get from an initial state to
a desired goal state. In this work, we adapted the method
proposed in the original paper to a 2D navigation task without
changing its core features. We also used the proposed random
exploration strategy during training, but experimented with a
more elegant strategy to examine whether it would improve
the method’s performance in our navigation task. Our strategy
included a novelty-based exploration factor (see Section 2.2)
to promote the faster visitation of unseen locations in
larger environments.

At each exploration step, the agent collects an observation of
its environment ot = (xt,yt) ∈ ℝ

Ni , where xt ,yt are the coordinates
of the agent on a 2D plane and, therefore, the dimension of the
observation space is Ni = 2. Then, it creates a high-dimensional
state space embedding st ∈ ℝNs , where Ns is the dimension of the

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

FIGURE 1
Cognitive Map Learner Network Architecture. (A) During each training step, the state of the agent ot is embedded into a high-dimensional vector st.
Then, an action is taken based on some exploration strategy, and its effect on the embedded state is estimated (ŝt+1). Based on the difference dt

between this estimate and the actual next embedded state st, the network parameters Wq,Wk and Wv are optimized. (B) During inference, the
embedded agent’s state st is compared with a desired embedded state s∗ . Based on the difference dt between these and the allowed actions at the
current state given by Wk, a Winner-Take-All (WTA) unit selects the most beneficial allowed action αt for the agent to perform.

embedding space. Notably, we do not digitize the locations into
a 2D discrete grid, but we directly feed the continuous values
of the spatial coordinates into the embedding of the network.
In that way, the continuous state space (spatial coordinates and
their embedding) resulted in a method complexity that does not
scale proportionally to the size of the environment (number of
required grid nodes).

After that, the agent takes an action αt ∈ Nα, where Nα is the
dimension of the action space. The structure of the original CML
model requires a discrete action space because the action selection is
realized through a discrete Winner-Take-All mechanism. With our
choice of 8 possible actions, we provided the method with a base of
actions that were able to effectively drive the agent to the required
environment locations in the 2D plane without complicating the
model architecture.

Then, the agent produces an estimate of its next state ̂st+1 ∈ ℝNs

based on the action taken and the current state. The agent then
supervises its own performance by calculating a training error |st+1 −
̂st+1|, defined as the distance between its estimated next state and the

actual observed state. Using a local, self-supervised learning rule, the
agent computes an update of its CML architecture, which comprises
three matrices: Wq, Wk, and Wv. The matrix Wq ∈ ℝNs×Ni embeds
state observations into a high-dimensional space;Wk ∈ ℝNα×Ns maps
state embeddings st to affordance values gt = Sigmoid(Wkst), which
estimate whether an action is available at the current state. Lastly,
Wv ∈ ℝNs×Nα maps actions to estimates of their potential impact
on the agent’s state. After each update calculation, this process
is repeated for a defined number of steps, constituting a training
episode, during which the matrix updates accumulate. At the end
of each episode, the matrix updates are applied to optimize the CML
architecture, as shown in the Eqs 1–3 below:

Wk =Wk +
T

∑
t=1

ΔWt
k, ΔWt

k = ℓk (αt − gt) s
T
t , (1)

Wv =Wv +
T

∑
t=1

ΔWt
v, ΔWt

v = ℓv (st+1 − ̂st+1)aTt , (2)

Wq =Wq +
T

∑
t=1

ΔWt
q, ΔWt

q = ℓq (̂st+1 − st+1)oTt+1, (3)

where ΔWt
i, i ∈ {k,v,q} are the matrix updates computed

after each episode step, and ℓi, i ∈ {k,v,q} are the learning
rates for each matrix. Throughout this work, we set all
three learning rates to 0.001, following the values used in
(Stöckl et al., 2022).

After an arbitrarily chosen number of 10 episodes constituting
en epoch, the trained model is evaluated by solving a planning
task. The planning error epos = |pgoal − pfinal|, defined as the distance
between the goal and final positions of the agent, serves as a
validation metric.

To solve the planning task, the agent externally receives the goal
location pgoal and embeds it into the state space usingWq. The CML
then utilizes the inverse of Wv to compute a utility score for each
action, indicating their usefulness for reaching the goal state. In fact,
in this work we exploited the orthogonal property ofWv the fact that
Wv approximately behaves as an orthonormal matrix to avoid the
matrix inversion and substitute it with a simple transpose operation
(see Appendix in (Stöckl et al., 2022) for a detailed explanation.)
Intuitively, the inverse of Wv can be sufficiently approximated by
its transpose because the equation ut =W−1v dt that computes the
utility of each action can be well approximated by the inner products
between the target vector dt and the vectors encoding the impact of
an action on the state space, which are the columns of Wv. With
the inner product being a similarity metric, this would result in
higher utility scores for increasingly similar actions, which is the
desired outcome. Concurrently, the CML uses Wk to estimate an
affordance score for each action in the current state.These scores are
combined through element-wisemultiplication, and themost useful
action among the affordable ones is selected in a Winner-Take-All

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

(WTA) fashion.This process continues until either the agent reaches
the goal location or a predefined maximum number of actions has
been taken.

2.2 Novelty-based exploration policy

To allow for our agent to explore and learn its environment, we
started by implementing the random exploration strategy outlined
in (Stöckl et al., 2022). At each timestep during exploration, the
agent randomly selected to move in one of the eight possible
directions in the 2D grid (Figures 2A,B). This strategy led to
significant repetition of actions in the same locations and resulted
in effective learning of local navigation policies. However, the
randomness inherent in this strategy constrained the exploration
of previously unseen parts of the environment. To investigate
whether a more sophisticated approach could enhance navigation
performance, we introduced a mixed exploration strategy by
incorporating a novelty-based factor into the random steps.

In this mixed strategy, we defined a commonly used
novelty metric (Tao et al., 2020), as follows:

ρ̂ (x) =
k

∑
i=1

dEu (x,ni) . (4)

The metric of Eq. 4 quantified the Euclidean distance dEu
between a location x and its k nearest neighbors ni in the set of
previously visited locations. In our experiments, we set k to 5. Instead
of selecting actions entirely at random, the exploration strategy
prioritized actions thatmoved the agent to locations thatmaximized
this novelty metric, aiming to emphasize visits to new, unseen parts
of the environment.

However, the balance between the novelty-driven visitation
of unseen locations and the effective learning of local navigation
dynamics from the random exploration strategy is crucial. To
preserve this balance, we gradually diminished the impact of
the novelty-based factor in the first Nexpl exploratory walks,
transitioning to a purely random strategy in the latter walks. To
balance the two strategies in the first Ne walks, we defined an
exploration threshold texpl as follows:

texpl =
{
{
{

1− (1/Nexpl) ∗ i i ≤ Nexpl

0 i > Nexpl

(5)

and chose the agent’s action at each timestep by comparing it
with s ∼ U(0,1). If the sampled value s fell below the threshold
texpl, the following action was chosen based on the novelty metric;
otherwise, the agent selected an action randomly. As the exploration
threshold decreased to zero after the initial Nexpl walks, a purely
random strategy was employed during the remaining walks. In
our experiments, we set Nexpl to 0.3 of the total number of 100
exploratory walks.

We designed this mixed exploration strategy to guide the agent
through a progression—from a purely novelty-based first walk
(Figure 2C), gradually incorporating random actions during the
first Nexpl trials, to concluding with a purely random strategy for
the remaining walks (Figure 2D). This approach aimed to initially
encourage exploring novel, remote locations before focusing on
learning efficient local navigation by repeating actions at previously
visited locations.

2.3 Reinforcement Learning baseline

In order to compare our approach against the state-of-the-art, we
implemented a RL baseline to tackle the same navigation task. We
evaluated their respective training requirements, parameter count,
and navigation performance.

Given the discrete nature of our action space, we opted for a
DQN architecture (Mnih et al., 2013) to learn the policy required
for the navigation task. Our selection comprised the smallest
effective fully connected architecture featuring two hidden layers
with Nh1 = Nh2 = 64 neurons each. Two neurons in the input layer
received the agent’s coordinates ot as input to encode its position
in the 2D grid, while the output layer comprised eight neurons
representing all the possible actions αt .

To define the optimization objective for the RL method, we
initially set the agent’s cumulative reward during each training
episode as follows:

Rsimp =
Tepis

∑
t=1
−|pgoal − p (t) |, (6)

where pgoal is the goal location, p(t) is the location of the agent
at timestep t, and Tepis is the number of timesteps per episode.
Throughout our experiments we clipped Tepis to 100.

The DQN, driven by this reward, aimed to bring the agent
closer to the goal location. However, this simplified reward structure
exhibited two drawbacks. Firstly, it approached its maximum value
even when the agent was close but not precisely at the goal,
compromising precision in reaching exact goal locations. Secondly,
it assigned the same reward for reaching the same final location via
two paths of different lengths, disregarding the number of actions
taken and thereby promoting sub-optimal solutions. To mitigate
these limitations, we modified the reward as follows:

Rtail =
Tepis

∑
t=1
{−|pgoal − p (t) |} +Rgoal −Rpath,

Rpath =max{t− dCh (pinit,pgoal) ,0} , (7)

where Rgoal is an additional factor that increased the reward when
the agent reached the actual goal location (we arbitrarily set it
to 100), and Rpath is a penalty factor that reduced the reward
when the agent took more steps than the minimum required to
reach the goal location. The factor Rpath was set to zero when the
number of actions taken was less than or equal to the minimum
required (t < dCh(pinit ,pgoal)), while it became positive when more
actions were taken (t ≥ dCh(pinit ,pgoal)). The amount dCh(pinit ,pgoal)
denotes the Chebyshev distance between the initial location pinit
and the goal location pgoal and quantified the minimum number of
required actions to take the agent from the starting location to the
goal location.

This refined reward structure addressed precision issues near
the goal and incentivized the RL model to discover more efficient
paths, improving the overall navigation performance. However,
this required additional training. While we trained the DQN
with the simplified reward for 100,000 timesteps to allow for
convergence, the tailored reward required 200,000 total timesteps
(Figure 4A). For all other parameters, we followed the already tuned
implementation from (Hill et al., 2018).

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

FIGURE 2
Visualization of two exploration walks in the environment with two different strategies. (A) Visualization of the 1st walk with a purely random
exploration strategy. (B) Visualization of the 31st walk with the strategy being consistently purely random. (C) Visualization of the 1st walk with a mixed
exploration strategy. The walk is purely novelty-driven. (D) Visualization of the 31st walk with a mixed exploration strategy. The walk is now purely
random as the novelty-based effect has completely faded (Eq. 5).

2.4 Experiments and data analysis

2.4.1 Performance evaluation metrics
To compare the performance of the CML method

against the DQN baseline, we employed two metrics.
Firstly, we evaluated the final position error epos of each
method during planning, represented by the Euclidean
distance between the agent’s final position pfinal when
driven by each planning method and the designated goal
position pgoal:

epos = ‖pgoal − pfinal‖2 (8)

The metric of Eq. 8 provided insights into the accuracy and
precision of the planned trajectories in reaching the specified goal
locations.

Secondly, we quantified the path overhead ratio λ for each
planning method, as follows:

λ =
Si (pinit,pgoal)

dCh (pinit,pgoal)
, i ∈ {CML,DQN} , (9)

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

where Si(pinit ,pgoal) denotes the number of steps taken by method i
when planning the navigation from pinit to pgoal, and dCh(pinit ,pgoal)
denotes theChebyshev distance between the two locations on the 2D
grid, which is also theminimumnumber of steps required to go from
pinit to pgoal.Thismetricmeasured the additional steps each planning
method took compared to the optimal path required to reach a goal
location from an initial position. The path overhead ratio offered a
measure of efficiency, indicating the extent to which each planning
method deviated from the most direct and optimal route.

2.4.2 Hyper-parameter evaluation
To assess the impact of hyper-parameter choices on the

navigation performance of the CML method, we conducted a series
of experiments with varying values. Specifically, we manipulated the
training parameters of theCMLby altering the total number ofwalks
and the number of steps per walk. In the first set of experiments,
we fixed the number of walks at 100 and varied the number of
steps per walk between 900, 600, 300, and 100. Subsequently, we
set the number of steps per walk to 900 and adjusted the number
of walks from 100 to 75, 50, and 25. The results of different hyper-
parameter choices on the navigation performance of the CML are
elaborated in Section 3.2.1.

Then, we varied the environment in which we tested the CML
method. More specifically, we first examined the generalization
ability of the CML when evaluated in larger environments than the
ones in which it was trained. For this, we trained 10 CML models
in 30 × 30 m arenas, then deployed them in 60 × 60 m and 120
× 120 m arenas. We evaluated their performance using the mean
final position error and the mean path overhead ratio of the ten
models (Section 3.3). Second, we examined the ability of the CML
method to adapt to dynamic environments by training the agent in
an initially empty 30 × 30 m arena and then adding an increasing
number of obstacles during planning. For this, we trained ten CML
models in the empty arena and gradually added 100, 200, 300, and
400 obstacles blocking locations the agent could initially reach. We
evaluated the performance of the ten models by averaging their final
position error (Section 3.4). In this case, we did not evaluate the path
overhead ratio as the primary goal was to find any path to the goal,
even if it was sub-optimal.

2.4.3 Parameter and FLOPs quantification
To compare the number of parameters of our model against

the baseline, we first counted the DQN parameters. Given the
dimension of the observation space Ni, which provided the
input to the network, the dimension of the action space Nα
that matched the network’s output, and our choice of Nh1 and
Nh2 neurons in each of the 2 hidden layers, the 4-layer, fully-
connected architecture resulted in a total parameter count of
(Ni ×Nh1 + 1 ×Ni)+(Nh1 ×Nh2 + (Nh1 +Nh2)) + (Nh2 ×Nα + 1×Nα)
= (Ni ×Nh1 +Nh1 ×Nh2 +Nh2 ×NαNi +Nh1 +Nh2 +Nα) weights
and biases. Our CML model is fully described by the three matrices
Wq ∈ ℝ

Ns×Ni ,Wk ∈ ℝ
Nα×Ns , andWv ∈ ℝ

Ns×Nα , and, therefore, its total
parameter count is (Ni + 2Nα) ×Ns.

To compare our model against the baseline based on the
number of floating point operations (FLOPs) for one inference,
we first counted the DQN FLOPs. Given the 4-layer, fully
connected DQN architecture described above and the requirement
for 2×Nx ×Ny FLOPs for a fully-connected layer with Nx input

FIGURE 3
Possible directions of the robot motion constituting its discrete action
space as a function of its wheels rotational velocities. The pairs of
wheels rotational velocities that give rise to the respective numbered
actions are given in Table 1.

and Ny output units, the total FLOPs of the DQN per inference
were 2×Ni ×Nh1 + 2×Nh1 ×Nh2 + 2×Nh2 ×Nα. To calculate the
FLOPs during an inference step of our CML model, we note
that the multiplication of an n× p and a p×m matrices requires
nm(2p− 1) FLOPs. Therefore, the embedding of the observed (ot)
and the desired (o∗t) positions into the vector dt through Wq
requires (2Ni + 1)Ns FLOPs. Additionally, calculating the affordance
scores g for the current position using Wk requires (2Ns − 1)Nα
FLOPs. Moreover, the calculation of the utility scores for the
current affordable actions through Wv also requires (2Ns − 1)Nα
FLOPs. Lastly, the calculation of the most useful affordable
actions requires Nα FLOPs. Therefore, one inference step requires
(2Ni + 4Nα + 1)Ns −Nα FLOPs in total.

2.5 Simulation environment

While our method demonstrated effectiveness in the discretized
grid scenario, our objective was to assess its performance in a
continuous task, evaluating its capacity to manage the variability
associated with real-valued location encoding. To do so, we opted
for the navigation task involving a wheeled robot agent navigating a
planar arena environment.

To align with the discrete, 8-dimensional action space employed
by the agent in the original 2D grid (Figure 3), we chose a set of
eight pairs of wheel rotational velocities (Table 1) that drove the
robot’s movement in the eight possible directions, similarly to the
discrete case. After each action selection by the CML at the end of
an episode step, the wheel velocity pair was applied to the robot for
64 simulation steps in Webots to move the robot.

We used the Webots framework (Michel, 2004) for our
simulations, an open-source mobile robot simulation software
developed by Cyberbotics Ltd. We chose this platform because it has
been successfully used by other research groups in prior work for
simulating wheeled mobile robots (Tan et al., 2002; Almasri et al.,

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

TABLE 1 Wheel rotational velocities as a function of the maximum
rotational velocity ωmax =5π.

Action # ωℓ/ωmax ωr/ωmax

1 0.5 0.75

2 0.5 0.5

3 0.75 0.5

4 0.2 0.9

5 0.9 0.2

6 −0.75 −0.5

7 −0.5 −0.5

8 0.75 0.5

2015; Almasri et al., 2016).We chose iRobot’s Create robot prototype
as our agent and a simple planar, 30 × 30 marena as the environment,
both included in this software package (Figure 9).

3 Results

3.1 Computational efficiency comparison
against RL baseline

To compare the computational complexity of the CML against
that of the DQN (see Table 2), we first quantified the number of
training steps each of them requires to solve the navigation problem.
Employing a simplified reward (Eq. 6), the DQN converged to
a maximum after approximately 60 K episode steps (Figure 4A,
red), revealing the inherent complexity of the navigation task, i.e.,
the computational effort (number of steps) required to come up
with a solution for the problem. Introducing a tailored reward
(Eq. 7) increased this complexity, requiring about 130 K steps for
convergence to account for the additional objective of the shortest
path (Figure 4A, blue). In the case of the CML, the training error,
measured as the difference between the internal estimate ̂st+1 and
the actual value of the next state st+1, kept decreasing even after 90 K
steps (Figure 4B, dark green). However, the planning error, defined
as the distance between the final position and the goal position
during planning, converged after about 20 K steps (Figure 4B, light
green), indicating that the CML can solve the problem at least as
rapidly as the RL baseline.

As a secondary comparison metric, we quantified each
architecture’s required parameters (see Section 2.4.3). Setting the
size of the hidden layers to Nh1 = Nh2 = 64, the DQN network
required 4874 parameters, while by setting the size of the embedding
spaceNs to 256 in theCML architecture, we constrained the required
parameters to 4608. We chose the value of the hyperparameter
Ns so that the total parameter count of our method matched that
one of the RL baseline as closely as possible. Consequently, the
CML demonstrated the ability to solve the navigation task without
requiring more parameters than the DQN.

Finally, to compare the inference complexity of the twomethods,
we computed the number of floating point operations (FLOPs) per
planning step. In our experiments, we set Ni to 2 and Nα to 8 for
both networks. For the DQN, we used againNh1 = Nh2 = 64 neurons
per hidden layer, which resulted in requiring 9472 FLOPs per action
selection. For the CML we set Ns to 256, resulting in a total number
of 9464 FLOPs. This implies comparable efficiency between the two
methods during planning.These comparisons suggest that the DQN
and CML methods had similar computational complexity during
training and planning for the navigation task.

To quantify the runtime requirements of our code (Table 3), we
measured the average time required for the completion of one step
during the exploration walks (training step) and one step during the
goal-reaching task (inference step). We ran 100 exploration walks
consisting of 900 steps each and averaged the step duration across
them. We then ran 50 goal-reaching trials whose number of steps
varied based on the distance between the randomly selected starting
and goal positions and averaged the step duration across them too.
We did this for both the random and the mixed exploration policy.
All the experiments were performed on a 16-core AMD-Ryzen
Threadripper PRO 3955WX CPU running at 2.2 GHz.

Notably, the local learning rule utilized by theCMLmodel allows
for in-place updates of the three parametermatrices during training.
As a result, our method alleviates the need for the construction
and storage of a computational graph for the model, decreasing the
overall memory footprint.

3.2 Performance comparison against RL
baseline

3.2.1 Hyper-parameter evaluation
To assess the impact of different hyper-parameter choices on the

performance of the CML in the navigation task, we conducted a
systematic exploration by varying the number of exploration walks
and the number of steps per walk.

Initially, we trained the CML models with 100 random walks
during exploration, with the number of steps per walk set to either
900 to 600, 300, or 100 (Figure 5A). We evaluated our models with
respect to the final position error during planning. Intriguingly,
an increase in the number of steps per walk did not consistently
decrease the final position error, indicating a degree of overfitting.
Notably, 300-step randomwalks demonstrated the best performance
after 30 K training steps. Subsequently, we assessed the models with
respect to the path overhead ratio, comparing the length of resulting
navigation paths against optimal ones. Similar to the final position
error, increasing the number of steps per walk did not consistently
reduce the path length, with 600-step walks providing the best
performance after 60 K total steps.

We then set the number of steps per walk to 900 and varied
the total number of exploration walks, ranging from 100 to 75,
50, and 25 (Figure 5B). Evaluation based on the final position error
during planning revealed that, again, a larger number of walks did
not monotonically decrease the final position error, confirming the
presence of possible overfitting.Themodels taking 50 randomwalks
during exploration (45 K total training steps) achieved the best
performance, a trend similarly observed in the path overhead ratio.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

TABLE 2 Comparison of the computational efficiency between the baseline DQNmodel and our CML.

Model DQN CML

Convergence (Number of steps)
∼60 K (Simplified reward) ∼90 K (Training error)

∼130 K (Tailored reward) ∼20 K (Validation error)

Parameters 4874 4608

Inference FLOPs 9472 9464

TABLE 3 Quantification of the computational complexity of the proposed method by evaluating its training and inference time.

Exploration strategy Training step time (μs) Inference step time (μs)

Random 99.776 ± 1.127 69.557 ± 2.773

Mixed 731.309 ± 336.876 71.835 ± 4.236

FIGURE 4
Comparison of the CML against the DQN baseline in terms of training speed. (A) While a simplified reward (equation 6) converges to a solution after
about 60 K steps, a more sophisticated reward requires about 130 K. (B) The training error for the CML keeps decreasing after 90 K steps, but the
validation error converges much faster (20 K steps), comparable to the RL baseline. Shaded regions show the variance of the training error over 10
different training seeds for the RL and the CML methods. For the validation error, the shaded region shows the mean final position error over 100 trials
for 10 different seeds.

In conclusion, our results indicate the existence of a performance
sweet spot, reached after approximately 45 K total training steps,
suggesting that the hyper-parameter choice can affect the resulting
performance.

3.2.2 Mixed exploration strategy evaluation
To investigate the potential enhancement in navigation

performance through amore sophisticated exploration, we extended
the previous method with a mixed exploration strategy that
combined novelty-based and random incentives. Specifically, we
set the total number of walks to 100, with the last 70 being entirely
random. In contrast, the first 30 walks were driven by a novelty-
based incentive, encouraging the agent to explore unvisited locations
within the environment. The impact of the novelty-based incentive

gradually diminished through the 30 first walks (as per Eq. 5),
incorporating random actions to revisit previously seen locations.
After this novelty-driven exploration period, the strategy was
entirely random.

The mixed and random exploration strategies provided similar
navigation performance, comparable with theDQNbaseline (Figure
6). Trajectories generated by both methods exhibited some
variability but effectively guided the agent from the initial (cross) to
the goal (star) locations. Although the mixed exploration strategy
yielded a slightly better final position error than the random strategy,
both were comparable to that of the DQN with a simplified reward.
As expected, the DQN with the tailored reward outperformed
other methods, partly attributed to its extended training session.
The benefit of the mixed exploration strategy emerged when

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

FIGURE 5
Exploring the effects of hyper-parameter choice. (A) Effect of decreasing the number of steps per random walk during training on final position error
and path overhead ratio (Eq. 9) during planning. (B) Effect of decreasing the number of random walks during training on the planning position error and
path overhead.

evaluating the path overhead ratio. Following training with the
mixed exploration strategy, CMLmodels not only outperformed the
DQN using the simplified reward but also performed comparably
to the DQN with the tailored reward without requiring prolonged
training sessions. Consequently, our results suggest that the novelty-
based exploration factor, fostering the exploration of new locations
during training, enables the method to identify shorter paths
between initial and goal locations, providing some performance
improvement without additional training.

3.3 Generalization to larger environments

To investigate the potential benefits beyond path length
improvement, we hypothesized that the more thorough coverage
of the environment promoted by novelty-based exploration could
enhance the generalization of the method, especially when dealing
with larger environments where previously unvisited locations arise
often. To test this hypothesis, we trained CML models utilizing
both random and mixed exploration strategies within a 30 × 30 m
arena. Subsequently, we evaluated the trainedmodels not only in the
training arena but also in larger environments of 60 × 60 m and 120
× 120 m.

The models trained with the mixed exploration strategy
exhibited superior navigation performance compared to those
trained with the random strategy (Figure 7). This improvement
was reflected in the lower median values for both the final
position error and the path overhead ratio when employing
the mixed navigation strategy. These results support our
hypothesis that the more extensive exploration facilitated by
the mixed strategy contributes to enhanced generalization,
particularly in larger environments where novel locations are
more frequent.

3.4 Generalization to unknown cluttered
environments

The ability of the CML models to navigate larger, unseen
environments made us wonder whether they could handle other
types of variability in the environment during planning. For
this, we examined whether our CML models could navigate
through environments cluttered with obstacles that had not been
experienced during training (Figure 8). We first trained CML
models in a 30 × 30 m arena using a random exploration
strategy. Subsequently, we assessed the models’ performance in
navigating from an initial (cross) to a goal (star) location in
an environment of the same dimensions but with an increasing
number of obstacles (Figures 8B, C). Specifically, we introduced
100, 200, 300, and 400 point-obstacles randomly placed in the
environment, rendering specific locations impassable for the robot.
Since the task involved finding any path between the initial and
goal locations, optimizing path length by the mixed exploration
strategy was not deemed crucial. Considering the additional
computational complexity the mixed exploration policy introduces,
we opted to train our CML models using only the random
exploration strategy.

The trained CML models successfully navigated environments
with 100 and 200 obstacles, as evidenced by the small final
position errors (Figure 8A). However, challenges arose as the
complexity of the environment increased with 300 or 400 obstacles.
The final position error increased with the number of obstacles,
attributed to failure cases where the agent approached the
goal positions but halted without reaching them (Figure 8C,
bottom). This behavior demonstrated the model’s limitations in
handling complex scenarios with increased obstacle density, which
is characteristic of local planners lacking global knowledge of
the environment.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

FIGURE 6
Effect of mixed exploration strategy (novelty-based and random) on the navigation performance. (A) Example trajectories from starting (cross) to initial
(star) locations driven by the DQN. (B) Trajectories for the same starting-goal location pairs driven by the CML. (C) Comparison of the DQN (simplified
and tailored reward) against the CML (random and mixed exploration strategy) based on final position error. (D) Similar comparison based on the path
overhead ratio.

3.5 Application to continuous spaces

Lastly, we examined the applicability of our method to
real-world navigation tasks within continuous 2D spaces.
For this, we simulated a wheeled robot within a square
30 × 30 m arena and trained a CML model to govern its
navigation. Throughout the training, the robot employed the
random exploration strategy, engaging in exploratory walks

throughout the arena. Then, the trained model planned the
robot’s navigation.

During planning, we set the initial position of the robot without
loss of generality to an arbitrary base location (Figure 9A, bottom
left) and generated random goal locations 9, A, exit sign) on the
2D plane of the arena. Considering the continuous nature of the
2D locations, the simulation halted either when the robot’s position
was within a circle with a radius of 0.25m around the goal location

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

FIGURE 7
Effect of mixed exploration strategy (novelty-based and random walks) on the navigation in unknown environments larger than the training arena.
(A) Final position error in arenas of increasing size. (B) Path overhead ratio in arenas of increasing size.

or after a maximum of 100 actions had been taken. An illustrative
trajectory of the robot navigating the arena is presented in Figure 9.
As it becomes evident from the trajectories shown in Figure 9B,
the paths taken during different iterations did not precisely follow
straight lines from the initial to the goal locations.

Consequently, while the CML introduced some sub-optimality
in the path planning, it consistently demonstrated successful
navigation in the 2D space. Despite the deviations from optimal
paths, the CML showcased its adaptability to real-world scenarios,
emphasizing its robustness in handling continuous and dynamic 2D
navigation tasks.

4 Discussion

In this work, we focused on expanding the brain-inspired
planning method of Cognitive Map Learners (CML) (Stöckl et al.,
2022) to address the 2D navigation of mobile agents at the
edge. Overall, our findings underscore the potential of embodied
neuromorphic agents, showcasing robust performance with
minimal resource utilization at the edge.

In terms of computational complexity for both training and
inference, our proposed CML was directly comparable to the DQN
baseline. The CML exhibited convergence to a network architecture
capable of guiding the robot from any initial to a goal location at
least as fast as the DQN baseline. Interestingly, a DQNwith a reward
tailored to the optimal solution of the task demanded additional
training episodes, while its performance was challenged by the
same CML architecture extended with a more elegant, novelty-
driven exploration strategy. Both models had similar numbers of

variable parameters and required comparable numbers of FLOPs per
inference step. However, the CMLmodel allowed for in-place weight
updates and did not necessitate additional computational graphs
during training (for error backpropagation), resulting in a reduced
memory footprint.

The self-supervised nature of themethod is a critical feature that
simplifies the training of agents at the edge, in contrast to the well-
established RL methods that require intricate rewards that are well-
tuned and carefully tailored to specific tasks. Using the deviation
between the estimated and the actual next state, the CML uses only
an internal state to improve its performance without focusing on
externally provided rewards. While this simplifies the training, it
requires a clear definition of the task objective in the agent’s state;
otherwise, it may lead to suboptimal solutions. For example, in our
case, the lack of encoding of the path length in the agent’s state
resulted in deviation from the shortest ones. However, the simplicity
of the method that allows for its seamless application to any state-
defined agent operating in discrete action spaces can be preserved,
while improving the optimality of the planning with more elegant
exploration strategies.

More specifically, the exploration strategies employed in our
method that expanded the simplistic random walks of the original
approach with a novelty-driven factor contribute to a closer-to-
optimal planning performance.These strategies introduce inevitable
computational requirements, such as the nearest-neighbor storage
and selection during novelty-based exploration, without affecting
the baseline performance of the method. As a result, they
introduce a balance between performance optimality and resource
efficiency that can be adapted based on the task and the
available resources.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

FIGURE 8
Effect of uncharted obstacles on the navigation performance. (A) Final position error as a function of the number of obstacles (blocked nodes) in the
action space. (B) Successful case: CML leading from starting (cross) to final (star) positions as the number of obstacles increases from 100 (top panel) to
400 (bottom panel). (C) Failure case: CML successfully leading from initial (cross) to goal (star) positions with 100, 200, and 300 obstacles, but halting in
the presence of 400 (bottom panel).

FIGURE 9
Example trajectories of the wheeled robot when navigating in the continuous 2D arena from an initial base position (bottom left) to random goal
locations. (A) Intermediate positions of the robot while navigating from the initial position (bottom left) to the goal location (exit sign). (B) Multiple
trajectories like the one shown in A demonstrate the paths chosen by the CML.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

With this primary objective of resource efficiency, we also
extended the method and validated it in dynamic environments
featuring unmapped obstacles. To do so, we deliberately did not
integrate distance sensor readouts in the embedding space. Instead,
when the agent planned a movement into a prohibited location
corresponding to an obstacle, wemarked this action as not affordable
and modified the decision of the model. The CML did not aim to
encode the obstacle locations and memorize how to avoid them
but encountered them during planning and tried to find alternative
paths reactively. This design choice reduced the dimensionality
of our model and allowed our algorithm to readily adapt to
different obstacle placements during planning.Theperformancewas
competitivewhile utilizingminimal resource requirements, a crucial
aspect for edge applications. However, being only a local planner,
our method did give rise to halting scenarios, where the agent gets
trapped in between obstacles and cannot find a path to the goal
location although such may exist if additional steps are taken to
bypass the prohibited locations.

5 Limitations and future work

While the performance of our method is competitive, it
still demonstrates some crucial limitations that leave room for
future work.

First, our adaptation of the CML architecture to the 2D
planning task leads naturally to the possibility of expanding to
three dimensions. Practically, the proposed method can directly
scale up to three dimensions to address the planning of actions for
agents with such capabilities. The resource requirements of such
an upscaling would increase proportionally to with the number of
dimensions to encode the new dimension into the state embedding.
However, the efficiency of the method would be even more crucial
for agents planning in three dimensions, such as drones with
minimal onboard resources.

A second limitation emanating from the size of the embedding
space affects planning in cluttered environments. In our model,
we deliberately did not integrate distance sensor readouts in the
embedding space. Despite the competitive performance of the
presented method, we would like to explore in future work whether
this extension could address the halting cases when the number of
environmental obstacles increases.

A third limitation emerges due to the nature of the action space.
Similarly to the original CML model, we focused only on discrete
sets of possible actions. In future work, we aim to address this
limitation in two ways. First, we want to combine a CML acting as a
high-level planner with one or more low-level planners. Such could
be bioinspired controllers that require no or minimal training to
drive the low-level behaviors through multiple degrees of freedom
(Ijspeert et al., 2007; Polykretis et al., 2020; Polykretis et al., 2023).
In the long term, we would also like to explore the extension of the
CML to continuous action spaces to address different sets of tasks.

Lastly, while we designed our method with the requirements
of edge hardware in mind, an implementation on such a device
is missing. Unlike many existing methods that are trained offline

and allow for inference on neuromorphic hardware (Tang et al.,
2020; Taunyazov et al., 2020; Stewart et al., 2023), local learning
rules theoretically extend their applicability to neuromorphic
processors during the training phase. The local learning rule that
alleviates the need for backpropagation renders CML compatible
with on-chip training while introducing a minimal memory
footprint since weight updates can be done in-place. Promising
intermediate results have already been presented for Intel’s Loihi2,
but memristive crossbar arrays (Strukov et al., 2008), capable of
performing matrix-vector multiplications at constant complexity
(Truong and Min, 2014; Assaf et al., 2018) are an even more
promising fit for such an implementation, guiding us to our
next steps.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

IP: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. AD:
Conceptualization, Funding acquisition, Methodology, Project
administration, Resources, Supervision, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The study
was supported by internal funds. The funder was not involved in the
study design, collection, analysis, interpretation of data, the writing
of this article, or the decision to submit it for publication.

Conflict of interest

Authors IP and AD were employed by Accenture Labs for the
company Accenture LLB.

Publisher’s note

All claims expressed in this article are solely those of
the authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors
and the reviewers. Any product that may be evaluated in this
article, or claim that may be made by its manufacturer, is not
guaranteed or endorsed by the publisher.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Polykretis and Danielescu 10.3389/frobt.2024.1372375

References

Almasri, M., Elleithy, K., and Alajlan, A. (2015). Sensor fusion based model for
collision free mobile robot navigation. Sensors 16, 24. doi:10.3390/s16010024

Almasri, M. M., Alajlan, A. M., and Elleithy, K. M. (2016). Trajectory planning and
collision avoidance algorithm formobile robotics system. IEEE Sensors J. 16, 5021–5028.
doi:10.1109/jsen.2016.2553126

Assaf, H., Savaria, Y., and Sawan, M. (2018). “Vector matrix multiplication using
crossbar arrays: a comparative analysis,” in 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS) (IEEE), Bordeaux,; France, 9-12 December
2018, 609–612.

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al.
(2017). Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.
doi:10.1080/23746149.2016.1259585

Chishti, Z., and Akin, B. (2019). “Memory system characterization of deep learning
workloads,” in Proceedings of the International Symposium on Memory Systems,
Washington, DC, USA, September 30 - October 03, 2019, 497–505.

Chowdhery, A.,Warden, P., Shlens, J., Howard, A., and Rhodes, R. (2019)Visual wake
words dataset. arXiv preprint arXiv:1906.05721.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi:10.1109/mm.2018.112130359

de Jesús Plasencia-Salgueiro, A. (2023).Deep reinforcement learning for autonomous
mobile robot navigation. Artif. Intell. Robotics Aut. Syst. Appl. 1093, 195–237.
doi:10.1007/978-3-031-28715-2_7

Ding, J., Gao, L., Liu, W., Piao, H., Pan, J., Du, Z., et al. (2022). Monocular camera-
based complex obstacle avoidance via efficient deep reinforcement learning. IEEETrans.
Circuits Syst. Video Technol. 33, 756–770. doi:10.1109/tcsvt.2022.3203974

Egenhofer, M. J. (1993). “What’s special about spatial? database requirements for
vehicle navigation in geographic space,” in Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, Washington, D.C, May 26-28, 1993,
398–402.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi:10.1109/jproc.2014.2304638

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a stochastic actor,” in
International conference on machine learning (PMLR), Stockholm Sweden, 10-15 July
2018, 1861–1870.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., et al. (2018).
Stable baselines. Available at: https://github.com/hill-a/stable-baselines.

Ijspeert, A. J., Crespi, A., Ryczko, D., andCabelguen, J.-M. (2007). From swimming to
walking with a salamander robot driven by a spinal cordmodel. science 315, 1416–1420.
doi:10.1126/science.1138353

Kahn, G., Abbeel, P., and Levine, S. (2021). Badgr: an autonomous self-supervised
learning-based navigation system. IEEE Robotics Automation Lett. 6, 1312–1319.
doi:10.1109/lra.2021.3057023

Kahn, G., Villaflor, A., Ding, B., Abbeel, P., and Levine, S. (2018). “Self-
supervised deep reinforcement learning with generalized computation graphs for robot
navigation,” in 2018 IEEE international conference on robotics and automation (ICRA)
(IEEE), Brisbane, Australia, 21-25 May 2018, 5129–5136.

McDonald, N. (2023) Modularizing and assembling cognitive map learners via
hyperdimensional computing. arXiv preprint arXiv:2304.04734.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F.,
et al. (2014). Amillion spiking-neuron integrated circuit with a scalable communication
network and interface. Science 345, 668–673. doi:10.1126/science.1254642

Meyer, J.-A., and Filliat, D. (2003).Map-based navigation inmobile robots:.Cognitive
Syst. Res. 4, 283–317. doi:10.1016/s1389-0417(03)00007-x

Michel, O. (2004).Webots: professionalmobile robot simulation. J. Adv. Robotics Syst.
1, 39–42. doi:10.5772/5618

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).
“Asynchronous methods for deep reinforcement learning,” in International conference
on machine learning (PMLR), New York, USA, 20-22 June 2016, 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., et al. (2013) Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Trans. Biomed. circuits Syst. 12, 106–122.
doi:10.1109/tbcas.2017.2759700

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven random
back-propagation: enabling neuromorphic deep learningmachines. Front. Neurosci. 11,
324. doi:10.3389/fnins.2017.00324

Niroui, F., Zhang, K., Kashino, Z., and Nejat, G. (2019). Deep reinforcement
learning robot for search and rescue applications: exploration in unknown
cluttered environments. IEEE Robotics Automation Lett. 4, 610–617.
doi:10.1109/lra.2019.2891991

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y., et al.
(2022). The brainscales-2 accelerated neuromorphic system with hybrid plasticity.
Front. Neurosci. 16, 795876. doi:10.3389/fnins.2022.795876

Polykretis, I., Supic, L., andDanielescu, A. (2023). Bioinspired smooth neuromorphic
control for robotic arms. Neuromorphic Comput. Eng. 3, 014013. doi:10.1088/2634-
4386/acc204

Polykretis, I., Tang, G., and Michmizos, K. P. (2020). “An astrocyte-modulated
neuromorphic central pattern generator for hexapod robot locomotion on intel’s loihi,”
in International Conference on Neuromorphic Systems 2020, Oak Ridge TN USA, July
28 - 30, 2020, 1–9.

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., and Sornborger, A. (2021) The
backpropagation algorithm implemented on spiking neuromorphic hardware. arXiv
preprint arXiv:2106.07030.

Rosenblatt, J., Williams, S., and Durrant-Whyte, H. (2002). A behavior-
based architecture for autonomous underwater exploration. Inf. Sci. 145, 69–87.
doi:10.1016/s0020-0255(02)00224-4

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature 323, 533–536. doi:10.1038/323533a0

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). “Trust region
policy optimization,” in International conference on machine learning (PMLR), Lille,
France, July 6 – July 11, 2015, 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017) Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Schuster, M. J., Brunner, S. G., Bussmann, K., Büttner, S., Dömel, A., Hellerer, M.,
et al. (2019). Towards autonomous planetary exploration. J. Intelligent Robotic Syst. 93,
461–494. doi:10.1007/s10846-017-0680-9

Stewart, K. M., Shea, T., Pacik-Nelson, N., Gallo, E., and Danielescu, A.
(2023). “Speech2spikes: efficient audio encoding pipeline for real-time neuromorphic
systems,” in Proceedings of the 2023 Annual Neuro-Inspired Computational Elements
Conference, New York, USA, 3 Apr 2023 - 7 Apr 2023, 71–78.

Stöckl, C., Yang, Y., and Maass, W. (2022). Local prediction-learning in high-
dimensional spaces enables neural networks to plan. Nat. Commun. 15, 2344.
doi:10.1038/s41467-024-46586-0

Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008). The missing
memristor found. nature 453, 80–83. doi:10.1038/nature06932

Tai, L., Paolo, G., and Liu, M. (2017). “Virtual-to-real deep reinforcement learning:
continuous control of mobile robots for mapless navigation,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE), Vancouver,
Canada, September 24–28, 2017, 31–36.

Tan, K., Tan, K., Lee, T., Zhao, S., and Chen, Y. (2002). “Autonomous robot navigation
based on fuzzy sensor fusion and reinforcement learning,” in Proceedings of the IEEE
Internatinal Symposium on Intelligent Control (IEEE), British Columbia, Canada,
October 27-30, 2002, 182–187.

Tang, G., Kumar, N., and Michmizos, K. P. (2020). “Reinforcement co-learning
of deep and spiking neural networks for energy-efficient mapless navigation with
neuromorphic hardware,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE), Las Vegas, Nevada, USA, 25-29 October 2020,
6090–6097.

Tao, R. Y., François-Lavet, V., and Pineau, J. (2020). Novelty search in representational
space for sample efficient exploration. Adv. Neural Inf. Process. Syst. 33, 8114–8126.

Taunyazov, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., et al. (2020) Event-
driven visual-tactile sensing and learning for robots. arXiv preprint arXiv:2009.07083.

Truong, S. N., and Min, K.-S. (2014). New memristor-based crossbar array
architecture with 50-% area reduction and 48-% power saving for matrix-vector
multiplication of analog neuromorphic computing. J. Semicond. Technol. Sci. 14,
356–363. doi:10.5573/jsts.2014.14.3.356

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., and Huerta, R. (2012).
Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B
Chem. 166, 320–329. doi:10.1016/j.snb.2012.01.074

Zenke, F., and Neftci, E. O. (2021). Brain-inspired learning on
neuromorphic substrates. Proc. IEEE 109, 935–950. doi:10.1109/
jproc.2020.3045625

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., et al.
(2017). “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in 2017 IEEE international conference on robotics
and automation (ICRA) (IEEE), Singapore, Singapore, May 29 - June 3, 2017,
3357–3364.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1372375
https://doi.org/10.3390/s16010024
https://doi.org/10.1109/jsen.2016.2553126
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1007/978-3-031-28715-2_7
https://doi.org/10.1109/tcsvt.2022.3203974
https://doi.org/10.1109/jproc.2014.2304638
https://github.com/hill-a/stable-baselines
https://doi.org/10.1126/science.1138353
https://doi.org/10.1109/lra.2021.3057023
https://doi.org/10.1126/science.1254642
https://doi.org/10.1016/s1389-0417(03)00007-x
https://doi.org/10.5772/5618
https://doi.org/10.1109/tbcas.2017.2759700
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1109/lra.2019.2891991
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1088/2634-4386/acc204
https://doi.org/10.1088/2634-4386/acc204
https://doi.org/10.1016/s0020-0255(02)00224-4
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s10846-017-0680-9
https://doi.org/10.1038/s41467-024-46586-0
https://doi.org/10.1038/nature06932
https://doi.org/10.5573/jsts.2014.14.3.356
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1109/jproc.2020.3045625
https://doi.org/10.1109/jproc.2020.3045625
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 CML network architecture
	2.2 Novelty-based exploration policy
	2.3 Reinforcement Learning baseline
	2.4 Experiments and data analysis
	2.4.1 Performance evaluation metrics
	2.4.2 Hyper-parameter evaluation
	2.4.3 Parameter and FLOPs quantification

	2.5 Simulation environment

	3 Results
	3.1 Computational efficiency comparison against RL baseline
	3.2 Performance comparison against RL baseline
	3.2.1 Hyper-parameter evaluation
	3.2.2 Mixed exploration strategy evaluation

	3.3 Generalization to larger environments
	3.4 Generalization to unknown cluttered environments
	3.5 Application to continuous spaces

	4 Discussion
	5 Limitations and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

