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Coordinating the movements of a robotic fleet using consensus-based
techniques is an important problem in achieving the desired goal of a
specific task. Although most available techniques developed for consensus-
based control ignore the collision of robots in the transient phase, they are
either computationally expensive or cannot be applied in environments with
dynamic obstacles. Therefore, we propose a new distributed collision-free
formation tracking control scheme for multiquadcopter systems by exploiting
the properties of the barrier Lyapunov function (BLF). Accordingly, the problem
is formulated in a backstepping setting, and a distributed control law that
guarantees collision-free formation tracking of the quads is derived. In other
words, the problems of both tracking and interagent collision avoidance with
a predefined accuracy are formulated using the proposed BLF for position
subsystems, and the controllers are designed through augmentation of a
quadratic Lyapunov function. Owing to the underactuated nature of the
quadcopter system, virtual control inputs are considered for the translational
(x and y axes) subsystems that are then used to generate the desired values
for the roll and pitch angles for the attitude control subsystem. This provides
a hierarchical controller structure for each quadcopter. The attitude controller
is designed for each quadcopter locally by taking into account a predetermined
error limit by another BLF. Finally, simulation results from the MATLAB-Simulink
environment are provided to show the accuracy of the proposed method. A
numerical comparison with an optimization-based technique is also provided
to prove the superiority of the proposed method in terms of the computational
cost, steady-state error, and response time.

KEYWORDS

multiagent systems, formation control, intervehicle collision avoidance, barrier
Lyapunov function (BLF), formation tracking control, backstepping controller

1 Introduction

Quadcopters are one of the most important categories of multirotor drones and
consist of four arms, four motors, and four propellers. The control and navigation
of quadcopters in a single or cooperative form have been the subject of various
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studies to enhance their capabilities for various applications
(Montazeri et al., 2021; Sadeghzadeh-Nokhodberiz et al., 2023,
2021). A multiquadcopter system is a form of multiagent
system that is used in various extreme environment applications,
including nuclear decommissioning (Martin et al., 2016; Allahyar
and Koubaa, 2023), volcanology (James et al., 2020), wildfire
monitoring (Julian and Kochenderfer, 2019), and underground
mining (Neumann et al., 2014). A multiagent system consists
of several interacting intelligent agents that can cooperate their
movements, sensing, and computations to achieve a common
goal. Multiquadcopter systems are ideal solutions for different
challenges imposed by humans working in extreme environments
(Burrell et al., 2018); for example, using multiple quadcopters
improves the performances, time and energy efficiencies, coverage
areas, and redundancies of multiple robots performing the same
task (Mansfield and Montazeri, 2024).

One of the most important issues in controlling a multiagent
system is formation control to achieve consensus. Formation control
is an important consideration in coordinating the control of a
group of unmanned robots or quadcopters in the present study.
It is assumed that each drone can fly and share information with
the other robots in its neighborhood. Formation control is used
in many applications relevant to environmental monitoring, such
as coverage, patrolling, autonomous exploration, search and rescue,
source seeking, and boundary tracking (Mansfield and Montazeri,
2024). In Liu and Bucknall (2018), the problem of formation control
and cooperative motion planning of multiple unmanned vehicles
was investigated and various approaches were reviewed; this work
provides good insights into the challenges and techniques available
for cooperative path planning and formation control.

One of the most investigated techniques to address the
formation control problem is consensus-based formation control
(Peng et al., 2020; Patil and Shah, 2021). Consensus is a
displacement-based control mechanism, meaning that the agents
simply need to know the relative locations (displacements) of their
neighbors in a local reference system linked to a global system
to achieve the desired formation. Displacement-based formation
control is typically divided into three primary strategies: virtual
structure (VS), behavior based (BB), and leader-follower (LF). The
basic idea of consensus is that each vehicle updates its information
state based on the information states of its local (time-varying)
neighbors such that the final information state of each vehicle
converges to a common value. The main purpose of a distributed
formation control technique is to derive appropriate control
commands for each agent based on the information provided by
the agents that are only in the neighborhood of that agent. Here, the
aim is that the team of robots should maintain a specific geometric
shape while closely tracking the desired trajectory defined for the
leader in the LF configuration or virtual leader in the formation
control setting (Can et al., 2022; Imran and Montazeri, 2022). In
such scenarios, the desired trajectory of each robot in a robotic fleet
is not defined separately; instead, the trajectory should be defined,
for example, for the center of the quad formation shape, under the
connectivity assumption of the system graph that all agents can
coordinate with the leader. Although this is a fully decentralized
configuration, less centralized scenarios have also been reported in
literature (Lizzio et al., 2022), in which the navigation was carried
out at the ground control station and the desired trajectory was then

transmitted to each drone that communicates with the neighboring
agents to share their position and run the distributed on-board
control algorithm to attain the desired trajectories. We adopted one
such configuration in our investigation in this work.

The basic form of a formation control algorithm does not
take into account the possibility of agent collisions while the
agents attempt to reach their intended positions. For this reason,
formation approaches considering interagent collision and/or
obstacle avoidance have been the subject of investigations by some
researchers. A comprehensive review comparing various collision
avoidance strategies for unmanned aerial vehicle (UAV) applications
can be found in Yasin et al. (2020). In the context of consensus-
based formation control, similar collision avoidance strategies were
surveyed and discussed by Sadeghzadeh-Nokhodberiz et al. (2023).
When two drones generate a formation, they may collide with
each other and obstacles in the transient phase as well as when
reaching their desired positions and orientations. The consensus-
based collision-free methods reviewed in both Lizzio et al. (2022)
and Sadeghzadeh-Nokhodberiz et al. (2023) can be grouped under
four main categories: (i) optimization-based techniques, (ii) force-
field or artificial potential field (APF) techniques, (iii) geometric
approaches, and (iv) sense-and-avoid approaches. As reviewed
in Sadeghzadeh-Nokhodberiz et al. (2023), each of these approaches
has its advantages/disadvantages for application to real life.
Operationally speaking, static situations wherein obstacles are
known ahead of time or are picked up on by the entire formation
are more suited for optimization-based techniques. Although the
force-field and geometric approaches aremore effective for handling
dynamic settings, the former may result in local minima due
to cancellation of several APFs. Furthermore, the computational
burden of a geometric technique in a busy dynamic environment
may be very high when computing the collision-free trajectories.
In terms of the operational requirements, optimization-based
techniques are typically utilized in situations when the swarm must
adhere to a predetermined reference trajectory. Depending on the
algorithm chosen, each drone in the swarm either has a preloaded
path or is aware of all the other reference trajectories. Nonetheless,
the force-field and geometric techniques typically depend more on
relative sensing or interagent communications.

Among the APF approaches reported for collision-free
formation control, the method proposed by Yan et al. (2017) is
notable because it causes the control signal to be limited and
affected by the type of the potential field. Liang et al. (2020) studied
a network of swarm drones, in which they followed a collision-
free path by considering the system uncertainty in the presence of
network constraints; the APF method was adopted here to address
possible collisions between the UAVs, leading to a limited control
signal. An example of an optimization-based technique used to
design a collision-free formation control was reported by Kuriki
and Namerikawa (2015); here, the problem was studied through the
design of a consensus-based model predictive controller (MPC) by
assuming that each UAV was located in a safe space and that the
control input was updated as needed.The asymptotic stability of the
proposed control method was also studied in detail. However, this
method relied on the linear model of the system where the control
system fails if the communication with the leader fails. Moreover,
the collision avoidance strategy was considered only in the vertical
direction. Jin et al. (2021) proposed a new framework to address the
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formation control of multiple robots; here, two types of problems
were studied, namely the performance issues as well as feasibility of
implementing the constraints when their requirements were in the
tracking errors and distances between the paths.

Recently, reinforcement learning (RL) and deep reinforcement
learning (DRL) techniques have been proven to be effective for
decision-making and operation of cooperative robots in complex
environments under time-varying and uncertain conditions. For
example, Mansfield and Montazeri (2024) reviewed different
multiagent RL (MARL) techniques used as advanced tools in the
design of optimal cooperative trajectories for multirobot systems
in environmental monitoring applications by optimizing not only
the individual rewards of each of the robots but also their collective
reward; although the focus of this was control and not desired
trajectory design for quads operating in uncertain and complex
environments, it was assumed that the target trajectory of each robot
was designed and made available using the techniques of Liu and
Bucknall (2018) or Mansfield and Montazeri (2024). Further, as
mentioned inMansfield andMontazeri (2024), the RL technique can
be used to avoid interagent collisions and obstacles.

The above works do not use the barrier Lyapunov function
(BLF) as an effective tool for collision-free formation tracking
of quadcopters. More recently, Sadeghzadeh-Nokhodberiz and
Meskin (2023) presented the problem of consensus-based formation
tracking of multiquadcopter systems using logarithmic BLFs;
however, the problem of collision avoidance was not considered.
Instead, the method involved the use of a centralized approach
that was then transformed to distributed control using highpass
consensus filters. Although the performance of the proposed
distributed method asymptotically converged to that of the
centralized one, the convergence time was rather large. Therefore,
the problem of collision-free formation tracking control of
multiquadcopter systems is derived from scratch in a distributed
manner in the present work.

Generally, the BLF is used to prevent the states from violating
the constraints. Therefore, the BLF can be used to ensure safety
and collision avoidance while guaranteeing convergence with a
predefined accuracy. The BLF is a positive-definite function that
grows to infinity when its arguments approach certain limits. Kumar
and Kumar (2022) discussed the three-dimensional trajectory
tracking problem of an unmanned vehicle with restrictions on
the flight path during operations; to ensure that the quadrotor
followed the desired trajectory while satisfying the imposed motion
constraints, a BLF approach was proposed. Moreover, a six-degrees-
of-freedom dynamic model of the system was considered to achieve
high-accuracy tracking performance; this controller could avoid
singularities in the attitude subsystem. Tang et al. (2013) proposed
a single-input single-output non-linear control system using the
BLF to avoid deviating from the safety range. Tee and Ge (2011)
presented a feedback control system design with constraints on
the states. Chen et al. (2020) studied the problem of obstacle
avoidance for a system with multiple agents avoiding obstacles in
the environment; in this method, a hybrid decentralizedmonitoring
controller that guarantees collision avoidance was proposed. The
method is scalable and can be applied to general non-linear robot
dynamics. Recently, advanced model-based and uncertain optimal
control laws have been developed and implemented in real time
for impaired UAVs (Ahmadi et al., 2023). Ganguly (2022) used the

BLF technique to design a controller for an N-degrees-of-freedom
Euler–Lagrange system and numerically evaluated its effectiveness;
this method was recently used for multirobot applications for
interagent collision avoidance and tracking using second-order
kinematics in two-dimensional cases (Jin et al., 2021). It is worth
mentioning that Khadhraoui et al. (2023) andMughees and Ahmad
(2023) used BLFs for single quadcopter systems, in addition
to Sadeghzadeh-Nokhodberiz and Meskin (2023), who recently
employed BLFs for formation tracking of multiquadcopter systems
without considering the collision avoidance problem.

Based on the above literature, a decentralized (distributed)
collision-free formation tracking control method is proposed in
this work for cooperative control of quadcopter systems. The
proposed method is used for interagent collision avoidance and
trajectory tracking with a predefined accuracy. Compared to
the aforementioned works, the proposed method has a lower
computational burden, is easily scalable, and can be used in
dynamic environments. Further, contrary to the APF approaches,
the proposed method does not limit the control signal for collision
avoidance. The major contribution of the present study is that the
barrier Lyapunov method is used to derive a distributed collision-
free formation tracking control in which both formation tracking
and interagent collision avoidance are considered simultaneously.
Accordingly, BLFs are first proposed for the position subsystems
(x, y, and z axes) and controllers are designed by augmenting a
quadratic Lyapunov function, leading to a backstepping procedure.
Owing to the underactuated nature of the quadcopter system,
virtual inputs are considered for the translational (x and y
axes) subsystems that are then used to generate the desired
values for the roll and pitch angles for the attitude control
subsystem.This provides a hierarchical controller structure for each
quadcopter.

The distributed formation tracking controller derived herein not
only guarantees convergence of the formation tracking error with a
predefined accuracy but also avoids interagent collisions during the
transient responses of the formation.Thus, both collision avoidance
and trajectory tracking with a predefined bound on the tracking
error are achieved in a distributed manner. The novelty of this work
is briefly summarized as follows:

• Formulating multiple problems, including trajectory tracking,
formation tracking control, and interagent collision avoidance,
of a multiquadcopter system using the proposed BLF.

• Deriving decentralized (distributed) hierarchical control laws
for collision-free formation tracking control of the altitude as
well as translational x and y axes subsystems using virtual inputs
in a backstepping framework.

• Designing attitude control laws separately for each agent
using desired signals generated via BLFs while considering a
predefined accuracy.

The remainder of this article is organized as follows. Section 2
details the problem formulation and preliminaries. Section 3
presents a decentralized collision-free formation tracking controller
design for a multiquadcopter system using BLFs. Section 4 presents
the simulation results, and Section 5 contains a summary of the
conclusions.
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2 Preliminaries and problem
formulation

This section presents some preliminaries on the required
theoretical materials.

2.1 Graph theory

Consider the graphG = {V,ξ,W} containingN nodes, whereV =
{1,2,…,N} is the set of nodes and ξ is the set of all the edges of the
graph. It is assumed that the edge (i, j) between nodes i and j exists,
where i and j are adjacent to each other, such that ξ = (i, j) ∈ V×
V. If (i, j) ∈ ξ⇔ (j, i) ∈ ξ, then the graph is undirected. Matrix A =
[aij] is the adjacency matrix such that if there is a path from i
to j in the system graph, then aij = aji = 1. A path from i to j is a
sequence of distinct nodes starting at i and ending at j, such that
each pair of consecutive nodes is adjacent. If there is a path from
i to j, then the nodes are connected. If all the paths of a graph are
connected, then the graph is connected.Thedegreematrix of a graph
D is a diagonal matrix with elements di that are equal to the set
of neighboring nodes. Ni = {j ∈ V:(i, j) ∈ ξ}, where Ni is the set of
neighbors surrounding i. Thematrix L is the Laplacian matrix of the
graph that is equal to L = D−A, and the sum of it rows is equal to
zero (Hu et al., 2021).

2.2 Barrier Lyapunov theory

Consider the non-linear system given by Eq. (1) as follows:

ẋ1(t) = f1(x1(t)) + g1(x1(t))x2(t),

ẋ2(t) = f2(x1(t),x2(t)) + g1(x1(t),x2(t))u(t),
(1)

where x1(t) ∈ ℝ
n1 andx2(t) ∈ ℝ

n2 are system states, u(t) ∈ ℝn2 is
the system input, and vector functions f1, f2,g1, and g2 are assumed
to be smooth.The goal here is to design the control law u(t) such that
x1(t) follows the desired trajectory x1d(t)with a predefined accuracy.
In other words, if e1(t): = x1(t) − x1d(t), the control objective is
to ensure that the tracking error remains within a compact set
defined by D1 = { e1(t) ∈ ℝn1|d1(t) = ‖e1(t)‖ <Ω1, t ≥ 0}, where Ω1 is
a predefined positive scalar. Next, the idea of using the BLF in a
backstepping procedure (Tee et al., 2009; Ngo et al., 2005; Tee et al.,
2008) is extended to the vector form case. Therefore, assuming
that the BLF V1(t) is defined as in Eq. (2), the Lyapunov candidate
function V(t) is defined by augmenting V2(t) to V1(t) as follows:

V1(t) =
1
2
η21(t),

V(t) = V1(t) +V2(t),
(2)

where η1(t) =
Ω1d1(t)
Ω1−d1(t)

andV2 =
1
2
z2

Tz2 with z2(t) = x2(t) − α(t) is
defined as an auxiliary tracking error for the virtual control input;
α(t) is a stabilizing vector function thatmust be designed. According
to Tee et al. (2009) and Lemma 1 therein, if the inequality V̇(t) ≤ 0
holds ∀t ≥ 0, it can be concluded that e1(t) ∈ D1 if e1(0) ∈ D1.

2.3 Quadcopter model

Assume we have a group of quadcopters consisting of N agents
communicating with each other. The dynamic of the attitude
subsystem of the ith quadcopter (assuming a small Euler angle) for
i = 1, ...,N can be written as follows:

ϕ̈i(t) =
Iyyi − Izzi

Ixxi
θ̇i(t)ψ̇i(t) − IriΩri

θ̇i(t)
Ixxi
+
u2i(t)
Ixxi
,

̈θi(t) =
Izzi − Ixxi

Iyyi
ϕ̇i(t)ψ̇i(t) + IriΩri

ϕ̇i(t)
Iyyi
+
u3i(t)
Iyyi
,

ψ̈i(t) =
Izzi − Ixxi

Iyyi
ϕ̇i(t)θ̇i(t) +

u4i(t)
Izzi
.

(3)

where the roll angle ϕi(t), pitch angle θi(t), and yaw angle ψi(t)
represent the rotations about the x, y, and z axes in the inertial frame,
respectively. The input signals u2i(t), u3i(t), and u4i(t) represent
torques in the corresponding directions for the ith quadcopter in
the body frame. Ixxi , Iyyi , and Izzi are the inertia tensors, and Iri is the
inertia of the propellers. Further, Ωri describes the relative speed of
the propeller.

The translational dynamics of the ith quadcopter can be
presented as follows:

̈xi(t) =
u1i(t)
mi
(cos(ψi(t)) sin(θi(t))cos(ϕi(t)) + sin(ψi(t)) sin(ϕi(t))),

̈yi(t) =
u1i(t)
mi
(sin(ψi(t)) sin(θi(t))cos(ϕi(t)) − cos(ψi(t)) sin(ϕi(t))),

̈zi(t) = −g+
u1i(t)
mi

cos(ϕi(t))cos(θi(t)),

(4)

where [xi(t) yi(t) zi(t)]T represents the position of ith
quadcopter in the inertial frame, u1i(t) defines the main thrust
created by the combined forces of the rotors, g is the gravitational
constant, and mi refers to the mass of the ith quadcopter
(Sadeghzadeh-Nokhodberiz et al., 2021).

The above dynamic system can be represented in the state-space
form, and the system is divided into three subsystems for simplicity
as altitude, translational, and attitude subsystems (Sadeghzadeh-
Nokhodberiz et al., 2021).

The altitude subsystem can be decomposed as follows:

ẋ1i(t) = x2i(t),

ẋ2i(t) = −g+ g2i(t)u1i(t),
(5)

where x1i(t) ≡ zi(t) and x2i(t) ≡ ̇zi(t) refer to the altitude and
velocity of the ith quadcopter in the z direction, respectively; u1i(t)
is the control input indicating the thrust force applied to the ith
quadcopter in the z direction; g2i(t) =

1
mi
cos(θi(t))cos(ϕi(t)) is an

auxiliary variable defined to convert the last expression in Eq. (4) to
a more compact form.

The translational subsystem is defined as follows:

ẋ3i(t) = x4i(t),

ẋ4i(t) = g4i(t)uiv3(t),

ẋ5i(t) = x6i(t),

ẋ6i(t) = g6i(t)uiv5(t),

(6)
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where x3i(t) ≡ xi(t) and x4i(t) ≡ ẋi(t) refer to the position and
velocity of the ith quadcopter in the x direction, and x5i(t) ≡ yi(t) and
x6i(t) ≡ ẏi(t) refer to the position and velocity of the ith quadcopter
in the y direction, respectively; g4i(t) = g6i(t) =

u1i(t)
mi

are auxiliary
variables defined to convert the last expression in Eq. (4) to a more
compact form. Moreover, uiv3(t) and uiv5(t) are virtual controller
inputs to enable control of the underactuated position subsystem
and are defined as follows:

uiv3(t) = cos(ψi(t)) sin(θi(t))cos(ϕi(t)) + sin(ψi(t))cos(ϕi(t)) (7)

uiv5(t) = sin(ψi(t)) sin(θi(t))cos(ϕi(t)) − cos(ψi(t)) sin(ϕi(t)) (8)

Finally, the attitude subsystem can be defined using Eq. (3) by
assuming that Iri is very small:

ẋ7i(t) = x8i(t),

ẋ8i(t) = f2i(t) +G8iui(t),
(9)

where x7i(t) ≡ [ϕi(t) θi(t) ψi(t)]
T and x8i(t) ≡

[ϕ̇i(t) θ̇i(t) ψ̇i(t)]
T are the respective attitude and

angular velocity vectors in the inertial frame; ui(t) =
[u2i(t) u3i(t) u4i(t)]T is the control input vector including the
torques in the corresponding directions for the ith quadcopter in
the body frame; f2i(t) = [a1iθ̇i(t)ψ̇i(t) a3iϕ̇i(t)ψ̇i(t) a5iϕ̇i(t)θ̇i(t)]

T

is an auxiliary vector with auxiliary variables defined by a1i =
Iyyi−Izzi
Ixxi

,

a3i =
Izzi−Ixxi
Iyyi

, and a5i =
Izzi−Ixxi
Iyyi

; G8i =
[[[[

[

b1i 0 0

0 b3i 0

0 0 b5i

]]]]

]

is an auxiliary

matrix with auxiliary variables b1i =
1
Ixxi

, b3i =
1
Iyyi

, and b5i =
1
Izzi

defined to ensure that the attitude dynamics defined in Eq. (3) are
in a compact form.

Now, the following problems are considered in this work:
Problem 1: Formulating multiple problems, including trajectory
tracking, formation tracking control, and interagent collision
avoidance, for a multiquadcopter system such that the proposed
barrier Lyapunov theory can be applied.
Problem 2: Deriving the decentralized (distributed) hierarchical
control laws for collision-free formation tracking control for the
altitude subsystem as well as translational x and y subsystems with
virtual inputs in a backstepping framework.
Problem 3: Designing the attitude control laws separately for each
agent using the desired signals generated via BLFs while considering
a predefined accuracy.

3 Control objectives

Problem 1 is considered in this section. In this work, the goal is
to design controllers u1i(t), ...,u4i(t) such that the control objectives
are achieved.The control objective in this study is formation tracking
control, which consists of two parts. First, each quadcopter should
follow its specified desired trajectory with a predefined accuracy
for position and orientation. Second, interagent collisions should
be avoided based on specified bounds regarding how close the
quadcopters can be.

3.1 Trajectory tracking error

Let x1id(t), i = 1,2,…,N (where N indicates the number of
quadcopters) be the desired altitude trajectory for the ith quadcopter
that is continuous in time and has finite first- and second-order
derivatives. Further, we define the altitude tracking error for the ith
quadcopter as e1i(t) = x1i(t) − x1id(t). The first control objective here
is to ensure that the altitude of the ith quadcopter tracks the desired
trajectory x1id(t) with a predefined accuracy; this can be formulated
by ensuring that the altitude tracking error for the ith quadcopter
remains with a compact set defined as follows:

D1ie = { e1i(t) ∈ ℝ|d1ie(t) = |e1i(t)| <Ω1idH, t ≥ 0}, (10)

where Ω1idH is a positive scalar defined for the ith quadcopter
with an upper bound for the tracking error.

Similar to the altitude, x3id(t) and x5id(t) are the desired
translational trajectories for the ith quadcopter in the x and y
directions, respectively. It is assumed that these desired trajectories
are continuous in time and have limited first- and second-order
derivatives. Further, e3i(t) = x3i(t) − x3id(t) and e5i(t) = x5i(t) − x5id(t)
represent the tracking errors in the x and y directions for the
ith quadcopter, respectively. The control objective here is to track
the desired translational trajectories x3id(t) and x5id(t) with a
predetermined accuracy; this can be formulated by ensuring that the
translational tracking error for the ith quadcopter remains within a
compact set defined as follows:

D3ie = { e3i(t) ∈ ℝ|d3ie(t) = |e3i(t)| <Ω3idH, t ≥ 0},

D5ie = { e5i(t) ∈ ℝ|d5ie(t) = |e5i(t)| <Ω5idH, t ≥ 0},
(11)

where Ω3idH and Ω5idH are two separate positive scalars defined
for the ith quadcopter in the x and y directions, respectively, with
upper bounds for the tracking errors.

Finally, for the attitude subsystem, x7id(t) is considered as the
desired trajectory vector for the ith quadcopter and assumed to be
continuous in time with limited first- and second-order derivatives.
Further, e7i(t) = x7i(t) − x7id(t) represents the attitude tracking error
vector. The control objective here is to track the desired trajectory
vector x7id(t) with a predefined accuracy; this can be formulated
by ensuring that the attitude tracking error for the ith quadcopter
remains within the compact set defined as follows:

D7ie = { e7i(t) ∈ ℝ
3|d7ie(t) = ‖e7i(t)‖ <Ω7idH, t ≥ 0}, (12)

where Ω7idH is a predefined positive scalar with an upper bound
for the tracking error, and ‖.‖ is the 2-norm of the vector.

3.2 Collision avoidance and formation
control

As introduced earlier, x1i(t) is the altitude of the ith quadcopter
with x1j(t), j ∈ Ni being the altitudes of its neighboring agents. The
goal here is that the distances of the real altitudes of each of the agents
with their neighbors, i.e., d1ij(t) ≜ |x1i(t) − x1j(t)|, j ∈ Ni, will track
the desired distances, i.e., L1ij(t) ≜ |x1id(t) − x1jd(t)|, j ∈ Ni, which
are expressed by d′1ije(t) ≜ |d1ij(t) − L1ij(t)|, j ∈ Ni with a predefined
accuracy.Thus, formation control and interagent collision avoidance
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FIGURE 1
General framework of the proposed controller for the ith agent.

FIGURE 2
Interconnections between the agents in the simulation.

in the z direction are both guaranteed. This is achieved by ensuring
that the error d′1ije(t) for the ith quadcopter remains within the
compact set defined as follows:

D1ijH = {x1i(t) ∈ ℝ|d
′
1ije(t) <Ω1ijH, j ∈ Ni, t ≥ 0}, (13)

where Ω1ijH is a positive predefined scalar with an upper bound
for formation tracking and a collision avoidance bound.

The real distance of the ith quadcopter from its neighboring
agents in the x direction is given by d3ij(t) ≜ |x3i(t) − x3j(t)|, j ∈
Ni, while the desired distance is represented by L3ij(t) ≜
|x3id(t) − x3jd(t)|, j ∈ Ni. Then, the goals of formation control and
interagent collision avoidance in the x direction for the ith
quadcopter are guaranteed with a predefined accuracy if d′3ije(t) ≜
|d3ij(t) − L3ij(t)|, j ∈ Ni remains within the compact set defined as
follows:

D3ijH = {x3i(t) ∈ ℝ|d
′
3ije(t) <Ω3ijH, j ∈ Ni, t ≥ 0}, (14)

where Ω3ijH is a positive predefined scalar with an upper bound
for formation tracking and a collision avoidance bound.

Similarly, the real distance of the ith quadcopter from its
neighboring agents in the y direction is given by d5ij(t) ≜
|x5i(t) − x5j(t)|, j ∈ Ni, while the desired distance is represented
by L5ij(t) ≜ |x5id(t) − x5jd(t)|, j ∈ Ni. Then, the goals of formation
control and interagent collision avoidance in the y direction for ith
quadcopter are guaranteed with a predefined accuracy if d′5ije(t) ≜
|d5ij(t) − L5ij(t)|, j ∈ Ni remains within the compact set defined as
follows:

D5ijH = {x5i(t) ∈ ℝ|d
′
5ije(t) <Ω5ijH, j ∈ Ni, t ≥ 0}, (15)
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FIGURE 3
Distances between the agents in the simulation.

where Ω5ijH is a positive predefined scalar with an upper bound
for formation tracking and a collision avoidance bound.

Remark 1: It is worth noting that the problem considered here is
neither LF control nor formation producing with/without a virtual
leader. However, the shape of the formation is imposed on the
method by appropriate design of the desired trajectory for each
quadcopter.

4 Proposed distributed collision-free
formation tracking control

Problem 2 is considered in this section, and the decentralized
(distributed) hierarchical control laws for collision-free formation
tracking control for the altitude and translational x and y subsystems
with virtual inputs are designed in a backstepping framework
for the multiquadcopter system. As mentioned earlier, because of
the underactuated nature of the quadcopter system, a hierarchical
procedure is employed. As the first step, the altitude controller is
designed, and its result is used to design the controller for the
translational subsystems along with virtual control inputs.

4.1 Altitude subsystem

Theorem 1: Assume that the altitude subsystem of the ith
quadcopter in a fleet of N quadcopters is described by Eq. (5).

Then, the altitude control input for the ith quadcopter u1i(t) can be
designed as

u1i(t) = g−12i (t)[g+ α̇1i(t) −A1i(t) − k2iz2i(t)]; (16)

where

α1i(t) = ẋ1id(t) +
−k1ie

2
1i(t)

D1i(t)e1i(t) − 2∑
j∈Ni

B1ij(t)e1j(t)
,

A1i(t) = D1i(t)e1i(t) − 2∑
j∈Ni

B1ij(t)e1j(t),

D1i(t) = B1i(t) + 2∑
j∈Ni

B1ij(t), (17)

withB1i =
Ω3

1idH

(Ω1idH−d1ie(t))
3 ,B1ij =

Ω3
1ijH

(Ω1ijH−d′1ije(t))
3 , Ω1ijH > 0,Ω1idH > 0,

and k1i,k2i > 0. Then, the altitude tracking error and interagent
collision avoidance conditions are guaranteed by remaining within
the sets defined by Eqs. (10) and (13) if the quadcopter starts
with the initial conditions such that the tracking errors remain
within the same sets, i.e., d1ie(0) <Ω1idH and d′1ije(0) <Ω1ijH,
respectively.

Proof: We choose the following BLF candidate that contains the
BLFs for each of the agents (V1ie(t)) as well as those related to the
interagents (V1ij(t)):

V1i(t) =
N

∑
i=1
(V1ie(t) +

N

∑
j=1,j≠i

aijV1ij(t)), (18)
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FIGURE 4
Comparison of the reference and actual trajectory states for the attitude subsystem.

where V1ie(t) =
1
2
η21ie(t) and V1ij(t) =

1
2
η21ij(t), with η1ie(t) =

Ω1idHd1ie(t)
Ω1idH−d1ie(t)

and η1ij(t) =
Ω1ijHd

′
1ije(t)

Ω1ijH−d
′
1ije(t)

according to Eq. (2).
It is obvious fromEq. (18) thatV1i is a positive-definite function.

Therefore,

V̇1i(t) =
N
∑
i=1
(V̇1ie(t) +

N
∑

j=1,j≠i
aijV̇1ij(t))

=
N
∑
i=1
(η1ie(t)η̇1ie(t) +

N
∑

j=1,j≠i
aijη1ij(t)η̇1ij(t)),

(19)

where V̇1ie(t) = η1ie(t)η̇1ie(t) =
Ω3

1idH

(Ω1idH−d1ie(t))
3 d1ie(t)ḋ1ie(t); further, by

letting B1i(t) =
Ω3

1idH

(Ω1idH−d1ie(t))
3 , it can be concluded that V̇1ie(t) =

B1i(t)d1ie(t)ḋ1ie(t). Since d1ie = |e1i|, we have

V̇1ie(t) = B1i(t)|e1i(t)|
d
dt |e1i(t)|

= B1i(t)|e1i(t)|sgn(e1i(t)) ̇e1i(t)

= B1i(t)e1i(t) ̇e1i(t).

(20)

Moreover, V̇1ij(t) = η1ij(t)η̇1ij(t) =
Ω3

1ijH

(Ω1ijH−d′1ije(t))
3 d′1ije(t)ḋ

′
1ije(t). Now,

by letting B1ij(t) =
Ω3

1ijH

(Ω1ijH−d′1ije(t))
3 , it is concluded that

V̇ij(t) = B1ij(t)d
′
ije(t)ḋ
′
ije(t)

= B1ij(t)(e1i(t) − e1j(t))( ̇e1i(t) − ̇e1j(t)).
(21)

Finally, by replacing Eqs. (20) and (21) in Eq. (19), we obtain

V̇1i(t) =
N

∑
i=1
(B1i(t)e1i(t) ̇e1i(t) +

N

∑
j=1,j≠i

aijB1ij(t)(e1i(t) − e1j(t))( ̇e1i(t) − ̇e1j(t))).

(22)

By rearranging Eq. (22), we have

V̇1i(t) =
N
∑
i=1

B1i(t)e1i(t) ̇e1i(t) +
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1i(t)

−
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1j(t).

(23)

Using the summation properties and the fact that aij = aji and

B1ij(t) = B1ji(t), it is concluded that −
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1j
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FIGURE 5
Position tracking errors of the agents in the x, y, and z axes.

(t) =
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1i(t); hence, Eq. (23) can be

rewritten as

V̇1i(t) =
N

∑
i=1
(B1i(t)e1i(t) + 2

N

∑
j=1

aijB1ij(t)(e1i(t) − e1j(t))) ̇e1i(t). (24)

Assuming that z2i(t) = x2i(t) − α1i(t), we have x2i(t) = z2i(t) +
α1i(t). Since ̇e1i(t) = x2i(t) − ẋ1id(t), the expression can be rewritten
as ̇e1i(t) = z2i(t) + α1i(t) − ẋ1id(t). Now, substituting this into Eq. (24),
the stabilizing function α1i is derived as in Eq. (17). Therefore,

Eq. (24) can be rewritten as V̇1i(t) =
N
∑
i=1
[A1i(t)z2i − k1ie

2
1i(t)]. By

defining a backstepping-type Lyapunov function candidate and
adding a quadratic function to V1i(t), we have V2i(t) = V1i(t) +
1
2

N
∑
i=1

z22i(t). Taking the derivative of the Lyapunov function gives

V̇2i(t) = V̇1i(t) +
N
∑
i=1

z2i(t) ̇z2i(t)

= V̇1i(t) +
N
∑
i=1

z2i(t)(−g+ g4i(t)u1i(t) − α̇1i(t)).
(25)

Replacing u1i(t) from Eq. 16 into 25 gives

V̇2i(t) = −
N
∑
i=1

k1ie
2
1i(t) +

N
∑
i=1

A1i(t)z2i(t)

+
N
∑
i=1

z2i(t)(−g− α̇1i(t) + g+ α̇1i(t) −A1i(t) − k2iz2i(t))

= −
N
∑
i=1

k1iz
2
1i(t) −

N
∑
i=1

k2iz
2
2i(t).

(26)

Therefore, one can conclude from Eq. (26) that V̇2i(t) < 0, which
completes the proof.

4.2 Translational subsystems

Herein, the virtual controllers for the translational subsystems
presented in Eq. (6) for the x and y coordinates are formulated in
accordance withTheorem 2.

Theorem 2: Assume that the translational subsystems of the
ith quadcopter in a fleet of N quadcopters can be described
by Eq. (6) in the x and y directions using the virtual control
inputs defined in Eqs. (7) and (8). Then, the virtual control
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FIGURE 6
Control signals of the attitude subsystem.

inputs uiv3(t) and uiv5(t) for the ith quadcopter can be
designed as

uiv3(t) = g−14i (t)[α̇3i(t) −A3i(t) − k4iz4i(t)],

uiv5(t) = g−16i [α̇5i(t) −A5i(t) − k6iz6i(t)],
(27)

where

α3i(t) = ẋ3id(t) +
−k3ie23i(t)

D3i(t)e3i(t) − 2
N

∑
j∈Ni

B3ij(t)e3j(t)

,

A3i(t) = D3i(t)e3i(t) − 2
N

∑
j∈Ni

B3ij(t)e3j(t),

D3i(t) = B3i(t) + 2
N

∑
j∈Ni

B3ij(t),

(28)

α5i(t) = ẋ5id(t) +
−k5ie25i(t)

D5i(t)e5i(t) − 2
N

∑
j∈Ni

B5ij(t)e5j(t)

,

A5i(t) = D5i(t)e5i(t) − 2
N

∑
j∈Ni

B5ij(t)e5j(t),

D5i(t) = B5i(t) + 2
N

∑
j∈Ni

B5ij(t),

with B3i(t) =
Ω3

3idH

(Ω3idH−d3ie(t))
3 , B3ij(t) =

Ω3
3ijH

(Ω3ijH−d′3ije(t))
3 , B5i(t) =

Ω3
5idH

(Ω5idH−d5ie(t))
3 , B5ij(t) =

Ω3
5ijH

(Ω5ijH−d′5ije(t))
3 , z4i(t) = x4i(t) − α3i(t), z6i(t) =

x6i(t) − α5i(t), k3i > 0,k4i > 0, k5i > 0, k6i > 0, Ω1ijH > 0, and
Ω1idH > 0.

Then, the translational tracking error and interagent
collision avoidance conditions are guaranteed by remaining
within the sets defined by Eqs. (11), (14), and (15) if the
quadcopter starts with the initial conditions such that the
tracking errors remain within the same sets, i.e., d3ie(0) <
Ω3idH, d5ie(0) <Ω5idH, d′3ije(0) <Ω3ijH, and d′5ije(0) <Ω5ijH,
respectively.

Proof: A proof similar to that of Theorem 1 can be considered
here and has been omitted for brevity.

5 Proposed attitude control system

Problem 3 is considered in this section, and a BLF-based
controller is designed for the attitude subsystem with the dynamics
presented in Eq. (9). First, according to Eqs. (7) and (8) as well as
the virtual controllers designed for the translational subsystems in
Eqs (27) and (28) the desired angles for the roll (ϕid(t)) and pitch
(θdi(t)) are computed in Eq. (29) as follows:
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FIGURE 7
Actual and desired 3D positions of the quadcopters.

sin(ϕid(t)) = uiv3(t) sin(ψi(t)) − uiv5(t)cos(ψi(t))

sin(θdi(t)) =
uiv3(t)cos(ψi(t)) + uiv5(t) sin(ψi(t))

cos(ϕid(t))

(29)

The desired yaw angle (ψid(t)) can be set freely.

Theorem 3: Assume that the attitude subsystem of the ith
quadcopter in a fleet of N quadcopters can be described by Eq. (9);
then, the control input vector ui(t) for the ith quadcopter can be
designed as

ui(t) = G−18i (− f2i(t) + α̇7i(t) −B7i(t)e7i(t) − k8iz8i(t)), (30)

where z8i(t) = x8i(t) − α8i(t) and α8i(t) = ẋ7id − (k7ie7i(t)/B7i(t)),
with B7i =

Ω3
7idH

(Ω7idH−d7ie)
3 and k7i, k8i, and Ω7idH being scalar positive

constants.
Then, the attitude tracking error is guaranteed by remaining

within the set defined in Eq. (12) if the quad starts from the initial

conditions such that the tracking errors remain within the same sets,
i.e., d7ie(0) = ‖e7i(0)‖ <Ω7idH .

Proof: We consider the BLF V7i(t) =
1
2
η27ie(t) with η7ie(t) =

Ω7idHd7ie(t)
Ω7idH−d7ie(t)

; therefore,

V̇7i(t) =
Ω3

7idH
(Ω7idH − d7i(t))

3 e
T
7i(t) ̇e7i(t)

= B7i(t)eT7i(t) ̇e7i(t).
(31)

Since ̇e7i(t) = x8(t) − ẋ7id(t) = z8i(t) + α8i(t) − ẋ7id(t), if we
select α8i(t) = ẋ7id − (k7ie7i(t)/B7i(t)),we obtain V̇7i(t) =
B7i(t)eT7i(t)z8i(t) − k7ie

T
7i(t)e7i(t). Now, a Lyapunov function

is chosen by adding a quadratic function to V7i
as follows:

V8i(t) = V7i(t) +
1
2
zT8i(t)z8i(t). (32)

Therefore, using Eq. (32) one can conclude Eq. (33) as follows:
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V̇8i(t) = V̇7i(t) + zT8i(t) ̇z8i(t)

= B7i(t)eT7i(t)z8i(t) − k7ie
T
7i(t)e7i(t)

+zT8i(t)(ẋ8i(t) − α̇8i(t)).

(33)

Now, according to Eq. (9), by selecting ui(t) as Eq. (30) and using
Eq. (31) it is concluded that V̇8i(t) = − k7ieT7i(t)e7i(t) − k8iz

T
8i(t)z8i(t) <

0. Therefore, the attitude tracking objective in Eq. (12) is satisfied if
d7ie(0) = ‖e7i(0)‖ <Ω7idH, hence completing the proof.

Figure 1 depicts the general structure of the proposed controller
for the ith agent. The overall quadcopter system has three
subsystems. The design of u1i(t) starts from the altitude subsystem.
Then, this controller is used to design the virtual controllers
in the translational subsystems. Finally, the control inputs of
the attitude subsystem are designed to meet the desired control
objectives. Owing to the fact that the graph topology of the
quadcopter system is connected, the neighboring information
is used to achieve safety, collision avoidance, and stability.

6 Simulation results

In this section, simulation results are provided to demonstrate
the efficiency of the proposed method. Figure 2 depicts the
interconnection of three quadcopters considered for the simulation.

The initial conditions are considered as follows: x11(0) =
0,x12(0) = 0.5,x13(0) = 1, x21(0) = x22(0) = x23(0) = − 0.08, x31(0) =
x32(0) = x33(0) = 0, x41(0) = x42(0) = x43(0) = 1.5, x51(0) = x52(0) =
x53(0) = 3.9, x61(0) = x62(0) = x63(0) = 0, x7i(0) = [0 0 0], i =
1,2,3, and x8i(0) = [0 0 0], i = 1,2,3. The physical parameters
of the quadcopters are as follows: mi = 1.47kg, Ixxi = Iyyi =
0.01152kgm2, Izzi = 0.0218kgm

2, and Li = 0.28, i = 1,2,3. The
reference trajectory for the movement of the quadcopters is given in
Eq. (34) as follows:

z1d(t) = −0.1t,z2d(t) = −0.1t+ 0.5,z3d(t) = −0.1t+ 1

x1d(t) = x2d(t) = x3d(t) = 4 sin (0.5t)

y1d(t) = y2d(t) = y3d(t) = 4 cos (0.5t).

(34)

As mentioned previously, the values Ω1idH > 0 to Ω1=7idH > 0 are
theupper limits fordistance trackingerrorsd1ie tod7ie,whileΩ1ijH > 0 ,
Ω3ijH > 0, andΩ5ijH > 0 are the respective upper limits for the distance
tracking errors d′1ije, d

′
3ije, and d′5ije. These two sets of parameters

determine the safe sets for the movements of the quadcopters. If
these values are selected to be large, although the safety set will be
larger, it may cause problems for the system in terms of safety as
a wider range of errors would be considered acceptable. If these
values are too small, then the safe set will be too small and forces
the selection of the initial values to be very close to the real ones,
which is unrealistic and may force the algorithm to be very sensitive
to small deviations of the errors. Therefore, the selection of these
two sets of parameters is very important. In the simulations, they are
selected as follows: Ω7idH = 1.5, Ω1idH =Ω1ijH = 0.1, Ω3idH =Ω3ijH =
0.49,and Ω5idH =Ω5ijH = 0.25.The simulation results are as follows.

Figure 3 shows the distances between the agents, indicating that
the agents are collision-free and maintain distances specified by the
reference trajectories between the quadcopters during movement.

FIGURE 8
Three-dimensional formation tracking control and formation shape.

According to Figure 4, it is clear that the attitude control subsystem
is well designed as the states (ϕ,θ,ψ) follow the desired trajectories.
The position tracking errors of the agents in the x, y, and z axes are
depicted in Figure 5, according towhich the error is less than 0.03; this
shows that the controller is well designed and that the tracking error is
acceptable. It is clear from Figure 6 that the value of the control signal
u1i, i = 1,2,3 converges approximately to 14.48 N and that the values
of the control signals for the attitude subsystem converge to 0 N∙m.

Figure 7 depicts that each quadcopter follows its desired path;
thus, each quadcopter tracks its desired trajectory successfully
during flight. The results of formation tracking as well as the
formation shape are depicted in Figure 8; it is obvious from the
figure that the quadcopters follow their trajectories in formation
without any collisions and that the desired distances between them
are maintained. Figure 9 shows that the error value converges to a
constant equal to 0.0083, with a settling time of 50 s.

The method proposed in this work is compared with that of
Kuriki and Namerikawa (2015) in Table 1, from which it is obvious
that the proposedmethod is significantly superior based on different
aspects.The root mean-squared error (RMSE) as well as steady-state
error values for the proposed method are considerably lower, and
our method is significantly faster. Although the settling time in our
method is a bit large, it still outperforms the oscillating behavior of
the method proposed by Kuriki and Namerikawa (2015).

7 Conclusion

The purpose of this work was to design a distributed collision-
free formation tracking control scheme formultiquadcopter systems
using the BLF in a backstepping procedure. The controllers were
designed in a hierarchical structure to tackle the underactuated
nature of the quadcopter system. Accordingly, the altitude controller
was designed first, followed by the translational controller with
virtual inputs. The desired Euler angles were then obtained using
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FIGURE 9
Root mean-squared error (RMSE) between the desired and actual positions of the agents.

TABLE 1 Comparison of the proposed method with the system of Kuriki and Namerikawa (2015).

Settling time (s) RMSE (m) Average calculation time (s) Steady-state error (m)

Proposed method 50 0.0083 0.000053741 0.0083

Kuriki and Namerikawa (2015) Fluctuating behavior 0.2374 0.005 0.2288

the virtual control signals and were finally employed to derive
the proposed BLF-based attitude control subsystem. Simulations
were performed to demonstrate the control objectives designed and
achieved herein, including safety (staying in a safe set) and collision
avoidance as well as formation tracking control. By adding the
uncertainty terms and noise to the dynamics of the system, the
controller can be designed such that it meets the control goals when
the specified cases occur; this can be considered as a suggestion for
future work. Formulating the problem of obstacle avoidance using
the BLF is also suggested as a future work.
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