
TYPE Original Research
PUBLISHED 02 August 2024
DOI 10.3389/frobt.2024.1363281

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Federico Ciccozzi,
Mälardalen University, Sweden
Michel Albonico,
Federal University of Technology, Brazil

*CORRESPONDENCE

Argentina Ortega ,
argentina.ortega@uni-bremen.de

†These authors have contributed equally to

this work and share first authorship

RECEIVED 30 December 2023
ACCEPTED 04 July 2024
PUBLISHED 02 August 2024

CITATION

Ortega A, Parra S, Schneider S and
Hochgeschwender N (2024), Composable
and executable scenarios for
simulation-based testing of mobile robots.
Front. Robot. AI 11:1363281.
doi: 10.3389/frobt.2024.1363281

COPYRIGHT

© 2024 Ortega, Parra, Schneider and
Hochgeschwender. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Composable and executable
scenarios for simulation-based
testing of mobile robots

Argentina Ortega1,2*†, Samuel Parra3†, Sven Schneider3 and
Nico Hochgeschwender1

1SECORO Group, Department of Computer Science, University of Bremen, Bremen, Germany,
2Intelligent Software Systems Engineering Lab (ISSELab), Department of Computer Science, Ruhr
University Bochum, Bochum, Germany, 3Institute for AI and Autonomous Systems, Department of
Computer Science, Hochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany

Few mobile robot developers already test their software on simulated robots
in virtual environments or sceneries. However, the majority still shy away from
simulation-based test campaigns because it remains challenging to specify and
execute suitable testing scenarios, that is, models of the environment and the
robots’ tasks. Through developer interviews, we identified that managing the
enormous variability of testing scenarios is a major barrier to the application
of simulation-based testing in robotics. Furthermore, traditional CAD or 3D-
modelling tools such as SolidWorks, 3ds Max, or Blender are not suitable for
specifying sceneries that vary significantly and serve different testing objectives.
For some testing campaigns, it is required that the scenery replicates the
dynamic (e.g., opening doors) and static features of real-world environments,
whereas for others, simplified scenery is sufficient. Similarly, the task andmission
specifications used for simulation-based testing range from simple point-to-
point navigation tasks tomore elaborate tasks that require advanced deliberation
and decision-making. We propose the concept of composable and executable
scenarios and associated tooling to support developers in specifying, reusing,
and executing scenarios for the simulation-based testing of robotic systems.
Our approach differs from traditional approaches in that it offers a means of
creating scenarios that allow the addition of new semantics (e.g., dynamic
elements such as doors or varying task specifications) to existingmodels without
altering them. Thus, we can systematically construct richer scenarios that remain
manageable. We evaluated our approach in a small simulation-based testing
campaign, with scenarios defined around the navigation stack of a mobile
robot. The scenarios gradually increased in complexity, composing new features
into the scenery of previous scenarios. Our evaluation demonstrated how our
approach can facilitate the reuse of models and revealed the presence of errors
in the configuration of the publicly available navigation stack of our SUT, which
had gone unnoticed despite its frequent use.

KEYWORDS

verification and validation, software testing, simulation-based testing, scenario-
based testing, robot software engineering, model-based development, mobile robot,
navigation

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363281
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363281&domain=pdf&date_stamp=2024-07-31
mailto:argentina.ortega@uni-bremen.de
mailto:argentina.ortega@uni-bremen.de
https://doi.org/10.3389/frobt.2024.1363281
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

1 Introduction

The responsible deployment of autonomous mobile robots in
everyday environments (e.g., warehouses, hospitals, and museums)
relies on extensive testing to ensure that robots achieve their
expected performance and can copewith failures to avoid safety risks
during their operational lifetime. The two major types of testing–in
simulations and the real world–have complementary properties.The
former allows robots to be exposed to a wide range of situations
early in the development cycle at a limited cost (Sotiropoulos et al.,
2017; Timperley et al., 2018), whereas the latter offers more realistic
situations and failure cases in later stages of the development cycle.
Often, developers forego simulation-based testing, even if they are
aware of its benefits, and expose their robots exclusively to the
real world (Ortega et al., 2022). This often requires more time to set
up than a simulator, and reduces coverage because it is difficult to
change the real world, for example, by deliberately injecting failure-
inducing situations. Both approaches can be employed for black-
and white-box testing at various levels of abstraction (e.g., system
vs. component tests).

In our previous study (Parra et al., 2023), we obtained a
better understanding of why robot software engineers opt out
of simulation-based testing by conducting in-depth interviews
with 14 domain experts in the field of mobile robot navigation
in indoor environments. One key insight we identified is that
creating scenery or virtual environments in which simulated robots
are deployed and tested remains challenging for developers. The
use of traditional Computer Aided Design (CAD) and three-
dimensional (3D) modelling tools is time-consuming because they
require an additional skill set. To make simulation-based testing
more attractive to developers, we designed and implemented
two domain-specific languages (DSLs), namely, the FloorPlan
DSL and the Variation DSL. We demonstrated how these DSLs
enable developers to specify and automatically generate varying yet
testable environments, and how testing robots in different simulated
worlds overcomes the false sense of confidence (Hauer et al., 2020).
Furthermore, our tooling helped discover real-world dormant bugs
in the well-known ROS navigation stack (Parra et al., 2023).

Even though providing tool support for specifying testing
scenery is a crucial element to make simulation-based testing
of robot software more attractive, it is not sufficient. Additional
models that express robot tasks and missions, robot capabilities,
interactions among agents, and temporal evolution of actions and
events are required to make simulation-based testing campaigns
more realistic. In the field of autonomous driving, these models
are known as scenarios (Tang et al., 2023). In the context of this
study, we broadly define scenarios entailing both mission-relevant
and mission-plausible information. On the one hand, by mission-
relevant information we refer to, among others, the environment
and its dynamics, time and events, objects (e.g., rooms) and subjects
(e.g., human operators), and their potential behaviour. On the
other hand, the mission-plausible information describes acceptance
criteria that enable the verification and validation of the robotic
requirements.

As we will show in this article, the interviews revealed that
testing scenarios are characterized by a large amount of variability
that results in varying, heterogeneousmodels expressing all too often
implicitly in an ad-hoc way the robots’ environment and task, as

well as the developers’ testing objectives, means to execute scenario
models in simulations, and hints on how to collect and interpret test
results. Therefore, simulation-based robot testing remains limited
to carefully designed testing campaigns in which developers have
control over a few scenario features and parameters, such as the
type of robot task and the characteristics of the environment.
Thus, reusing scenarios in the context of other testing campaigns
is limited and a major barrier to achieving a higher level of
test automation.

To improve this situation, we propose the concept of composable
and executable scenarios and developed associated tooling to
support robot software engineers in specifying, reusing, and
executing scenarios in (semi-)automated simulation-based testing
campaigns of robotic systems. To this end, we revisit and further
analyse the corpus obtained by in-depth interviews conducted
and briefly presented in our previous work (Parra et al., 2023),
with the objective of deriving a domain model of scenario-
based testing through simulation in robotics. As a result, we
identified the common and variable parts of simulation-based
testing and represented them in a feature model for scenarios
of mobile robots. These features are selected to design or reuse
the composable models needed for a particular scenario. Our
composable modelling approach enables the addition of new
semantics to existing scenarios, without altering them. This
approach allows the development of new extensions and tools
to support new use cases for the FloorPlan models previously
introduced. To summarize, our contributions are:

• a domain model with common and variable features for
simulation-based testing scenarios of mobile robots,
• a composable modelling approach to specify and execute

scenarios,
• a dynamic-objects extension to the FloorPlan DSL that allows

to model scenery objects and their locations using JSON-
LD and facilitates the reuse and exploitation of environment
models in simulation-based test design and semi-automated
model-based scenario generation,
• three gazebo plugins that exploit the scenery information and

integrate with the simulation to define the (initial) poses of
objects (initial pose plugin), and actuate their joints on a
time (dynamic joint plugin) or distance basis (distance-to-
trigger plugin),
• a proof-of-concept tool to exploit scenery information and

features from the FloorPlan DSL models to generate task
specifications,
• and we demonstrate how one can use our approach to

systematically run a simulation-based testing campaign with
scenarios of varying complexity.

2 Domain analysis

To develop our composable and modelling approach,
we perform a domain analysis using the corpus we
obtained in (Parra et al., 2023). In this section, we describe the
methodology we followed and the domain model we derived based
on our insights.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

2.1 Methodology

Semi-structured interviews were conducted (Hove and Anda,
2005), which involved interviews with specific questions to set the
theme for the discussion, but allowed for exploration of the topic
through open-ended questions. This allowed for a flexibly guided
discussion. We designed a questionnaire that covered experts’
experience with software for mobile wheeled robots (specifically
indoor navigation stacks for mapping, motion planning, and
obstacle avoidance), their real-world challenges, and the challenges
of simulation in the context of testing. An internal pre-study
was conducted to improve the questionnaire. We then recruited
participants for the study by reaching out to professionals in
academia and the industry. A list of potential candidates was
obtained from our professional network.

We conducted 14 interviews with a pool of experts with diverse
academic and professional backgrounds, as well as multiple years
of experience in the field. The table summarizing the interviewee’s
demographics can be found in the Supplementary Material of this
paper. The interviews were conducted through an online meeting,
recorded, and transcribed into protocols, which were later separated
into fragments. Interview participants signed a written informed
consent and their participation was voluntary. All the interview data
were anonymized by IDs, which only participants have and can use
to withdraw their participation.

To analyse the fragments, we used qualitative coding (Saldaña,
2021), which consists of assigning one or multiple “codes” to the
fragments1. For instance, the fragment “One metric to measure
map quality is to see how many tasks can be completed with it.
How useful it is to solve certain kind of tasks.” has the codes
Environment Representation and Performance. We selected a list of
codes before the start of the coding and allowed for expansion if
necessary. We performed two rounds of coding: an initial round
and a review in a second round. We used 37 themes to code the
interviews. The distribution of references per individual code is
available in the Supplementary Material of this paper. Once all the
fragments were coded, patterns were identified in the data.

2.2 Domain model

Based on the identified patterns, we derived a domain model for
scenario-based testing in robotics in the form of a feature model,
as illustrated in Figure 1. Here, we employed a standard feature
model notation (Kang et al., 1990) to express the mandatory and
optional features of the scenarios. Our scenario domain model
is composed of four main features: the System under Test (SUT),
which is tested, assessed, and evaluated in the context of varying
scenarios; the testing objective of the scenario; the scenery, which
is a description of the environment or virtual world in which the
SUT is embedded; and a specification of the mission that the SUT
is expected to execute. In the following paragraphs, we explain
the domain model by referencing some representative quotes from
the interviews shown in Table 1 as excerpts E1-E10. Note that the

1 The codes and interview fragments are available online at https://github.

com/secorolab/floorplan-dsl-interviews.

abstract feature model in Figure 1 is not exhaustive; its abstraction
levels were chosen to allow the addition of new features (e.g.,
planning and scheduling features under the mission feature) in
future extensions.

The interviews revealed that the roles and activities of the
developer influenced the type and scope of the tests they
performed during the development process. Most interviewees
considered themselves to be integrators and/or robot application
developers in various fields, such as logistics or healthcare, where
robots (cf. E4) perform missions characterized by navigation
tasks and where an action is associated with one or more
waypoints (e.g., the waypoints of racks to be visited in a logistic
mission) (cf. E5).

Stakeholders mentioned a number of testing goals that influence
their design decisions for their tests. Developers often build systems
by composing readily available components (cf. E2), some of
which are well-tested software packages developed and maintained
by a third party such as an open-source community. Often, the
components chosen for building the system are highly tailorable,
which requires tuning parameters for an optimized performance (cf.
E2). For integrators, interest in testing focuses on the capabilities
and performance of the integrated system. These tests verified
that all components were integrated correctly and validated the
parameter values, and often involve multiple components and
algorithms, instead of focusing on a single component. They are
also more likely to require execution in a robotic simulator, and
therefore, a scenery. However, other testing objectives such as safety
and robustness, functional correctness, etc., are also present (cf.
E1, E2, E3).

Generally, simulation is seen as a valuable tool, but it can be
challenging to fully utilize it. The setup process for simulation
execution can be a time-consuming task, meaning that smaller
developer teams often opt to perform tests exclusively in the
real world. One participant states, “[using a simulator] depends
on whether creating the simulation was going to add a long
term benefit. In most cases, the answer was not. It required too
much effort”.

Creating or specifying the scenery, or environment model, for
the simulation is often mentioned as one of the big challenges.
Although simulating a scenario requires several types of models,
such as robotic platform models, simulation capabilities for sensors
and actuators, and a model of the environment (the scenery), the
former two are often provided by their respective manufacturers,
but the latter must often be created by application developers.
We identified that scenery can be broadly divided into two main
features, namely, the environment dynamics and the environmental
features that are present. If the target environment contains
particular features such as double doors, rails, or columns, it is
useful to include them in the simulated environment to observe the
behaviour of the system when it is exposed. (cf. E7) The simulation
environment can also be application dependent. One participant
stated, “You need to describe the elements you want to be robust
against. You do not want to describe all aspects.” Modelling the 3D
scenery for simulation is often the reason developers refrained from
employing simulators. The experts see the modelling task as time-
consuming, as one participant asserts “The environment is very large
and modelling is time-consuming”. The effort necessary to model
the environment depends on the scale and level of granularity that

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/secorolab/floorplan-dsl-interviews
https://github.com/secorolab/floorplan-dsl-interviews
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 1
Abstract scenario feature model derived from the codes in participant interviews.

TABLE 1 Representative interview excerpts and their relation to top-level features of our domain model.

Feature ID Excerpt

Testing Objective

E1 I would measure [robustness] by trying challenging scenarios, maybe introducing different test. Create a simple environment for a test, such as a
static environment, and make it more complex by adding dynamic obstacles

E2 Another of my projects was regarding robot collisions, so a lot of tests also focused on that. The test were performed to optimize parameters and try to
make the stack work

E3 There is an impact, if there is a discrepancy between what you see in the real world and the map this will degrade the performance

SUT E4 My goal was to integrate the platform and the navigation stack, so my tests had that objective

Mission E5 We also deployed robots in industrial spaces, and there the setting was an industrial warehouse with many racks

Scenery

E6 We try to replicate the real environment, but is very limited. We have only a static world with the walls and objects that make the environment

E7 Another challenge are dynamic obstacles, and understanding the environment. i.e., understanding that a piece of furniture is not fixed but also that
it does not move often

E8 Interacting with objects such as doors and chairs is also challenging

E9 Lighting is one of the main issues if you wanna use VSLAM map, model of human agents are difficult in our standard simulator. I also wanted to
model doors that open and close. It is interesting to simulate if the robot can get through certain doors

E10 When dynamic come into play, i.e., everything that makes the map to change significantly, this can lead to localization and navigation failures

the test requires. The same participant states: “Depending on the
application, I would also like to see the models have either a lot of
detail or be very simple”. This refers to the levels of granularity,
i.e., how much correspondence there is between the real world
entity and its model (Hauer et al., 2020). Because modelling using
traditional tools is time-consuming, and the 3D modelling tools
have a steep learning curve, when developers create scenery models
for simulation these tend to be low in granularity; i.e., they mostly
consist of a set of walls.

The experts are also interested in re-creating environments for
simulation. Two-thirds of the participants have tried to replicate the
real world in a simulation. When real-world environments are re-
created, most of the features of the environment were not modelled.
The result is a scenery that consist of a set of walls that replicates
the geometric shape of the original environment, with some cases
adding objects such as furniture.

In summary, developers usually test their robots in scenery
resembling static and primitive environmental features, such as
walls and rooms (cf. E6) of the known and unknown target
environment. These simple sceneries are incrementally enriched
through additional and not necessarily dynamic features such
as static obstacles (cf. E2) until the point of including dynamic
elements, such as other agents, obstacles, and lighting conditions
(cf. E9, E10), and actuated environmental features such as drawers,
windows, and doors (cf. E8) to gain confidence in the tests. One
can infer that developers of real-world robot applications would
like to further exploit simulation-based testing of robotic systems,
but that the current tools for specifying and executing actual test
scenarios are limited. They do not allow the creation of scenery
models in a flexible and incremental manner in which new concepts
and associated semantics (e.g., a door and how it moves) can be
added without altering the existing model.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 2
Composable and executable scenario pipeline showing the models, the tools discussed in this paper (purple) and the execution artefacts resulting from
their composition and transformation.

3 Composable and
executable scenarios

One of the goals of our composable and executable scenario
approach is to enable engineers in specifying, reusing and executing
scenarios in simulation. Before specifying a scenario, examining the
design space of the scenarios (cf. Figure 1) with the testing objective
and the application requirements inmind results in the choice of the
scenario features. Next, the corresponding models for those features
must be specified (or potentially reused from other scenarios).
Finally, these models are composed and transformed into software
artefacts that can be used in simulation. The remainder of this
section looks at these threemain steps inmore detail. Figure 2 shows
an overview of the scenario specification and execution activities
and tooling.

3.1 Scenario design

Let us start by examining the design dimensions of a scenario,
and how the design decisions have an impact in the effectiveness and
efficiency of the scenario.

The first design dimension to be determined should be the
testing objective, as all the other design decisions for the scenario
will depend on the objective and the scope of the test. There

are numerous objectives that engineers can have in mind when
designing a test, among others, examples include:

• Performance: Optimization of the configuration parameters
for a particular behaviour in an exploratory way, identification
of the effect of changes in the performance, or measurement of
the efficiency of a given configuration.
• Robustness: Determination of the reaction or handling

unexpected environmental changes, or calculating through
experimentation the failure rates of the hardware or software
components.
• Safety: Validation of conformance to internal or external

standards, or identification of hazards and failures in the robot
capabilities.
• Functional: Validation of the correctness of a component

by validating that its performance is within the required or
specified tolerances.

The task specification–what the SUT should do during a test–is
one of the inputs that must be defined or adapted to support the
test objective of the scenario and the scope of the SUT. Usually, the
task for a fully-integrated system is determined by the application,
but given the environmental complexity different variations of tasks,
e.g., in scale or choice of locations, can be chosen to fit the SUT,
and the scope and objective of the scenario. For instance, functional
tests require tasks that are designed to be successfully completed in

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

nominal conditions. Note that in unstructured environments, even
for nominal conditions, larger scale ormore complex tasks can reveal
unexpected behaviours, due to the increasing amount of time the
robot interacts with its surroundings. For other types of tests like
safety, engineers can specify tasks informed by the test objective, e.g.,
choosing actions or constraints that could produce a failure. In short,
the task specification is a test input that describes the workload the
robot is expected to execute.

The scenery features include the features to be modelled in the
floor plan, including the types of objects the robot interacts with, and
the behaviour of those features, particularly if they are dynamic. The
choices depend on the objective of the test (e.g., narrow hallways,
moving obstacles), the SUT (e.g., minimum width of doorways for
it to pass through). Functional tests require scenery that represents
expected operating conditions, while sceneries that are used or
designed for robustness tests must include features that represent
invalid inputs or stressful conditions, such as dynamic obstacles. For
testing the conformance to safety features, the scenery design should
focus on including features that introduce hazards, increasing the
risk of a critical failure. Consider the following examples of sceneries
for different types of tests:

• Functional navigation tests: To assess if the robot is able to
complete navigation tasks of varying complexity, validate if the
robot is able to reach the target poses. A passing test means
the robot reaches all the waypoints in its task. The complexity
of the mission is determined by several factors: how many
waypoints must be visited, the distance between waypoints,
and the reachability from one waypoint to another. The
distance between waypoints can be chosen from an existing
scenery, or a new scenery can be created to test in larger
environments. The reachability is constrained by the geometry
of the space and by the pose of obstacles. The ideal simulation
scenery for testing localization components includes many
static features in the floor plan, but a reduction of these features
can also increase the complexity.
• Robustness testing for obstacle avoidance: To validate howwell

the local planner adapts to sudden changes in the scenery, the
robot can be tasked to perform navigation tasks of varying
complexity in scenery where there are dynamic changes. The
changes should be sufficient to trigger a re-planning of the
planned path by the local planner, but not enough to worsen
the localization performance. For this objective, it is sufficient
that the changes occur at random times, where the complexity
increases with the frequency and number of changes. This
type of simulation scenery could also be used to perform a
functional test of the trajectory planning component.
• Safety conformance by negative testing: One way to test the

conformance to safety and functional requirements is to design
a test case where the robot is expected to fail. Rather than
random changes to the scenery, the changes can be adversarial
to the robot, where especial conditions trigger changes in the
simulation scenery. For instance, when the robot is less than
1 m away from the door, the door closes.

The test oracle–themechanism to compare the expected result of
a test with the observed output–is directly related to all the scenario
features. Although they are usually derived from or influenced by
the application requirements, they must be defined taking into

account the objective of the test (e.g., what metrics to observe), the
task (e.g., waypoints, specified tolerances or constraints), SUT (e.g.,
configuration) and scenery (e.g., free space, objects, obstacles). For
example, the specified tolerance for the performance of a component
can be the difference between a passed and failed test.

3.2 Scenario specification

A scenario specification is a composition of multiple models,
with each individual model targeting a different dimension of the
scenario. To form a complete specification of the scenario, we
use composable models. A model is “composable” if the entities
of the model can refer to each other via identifiers. New entities
from a new model are composed by referencing the entities in
the existing models. A model can now be a domain-specific
artefact, that with composition can create a full specification. In
previous work (Schneider et al., 2023), the use of JSON-LD as
a representation for composable models was introduced, as well
as many metamodels that are used in the scenario specifications
presented in this work.

Composabiliy enables a modular approach for the re-use of
models in multiple specifications. This is used in our approach as
a way to systematically and gradually introduce complexity, and
allows the creation of scenarios that are more challenging based
on simpler scenarios without modifying the existing models. For
instance, a scenario can start with a static scenery that just contains
walls, and a new scenario reuses the floorplanmodel and composes a
new simulation scenery with obstacles in the environment. The next
scenario reuses these specifications and composes some dynamic
behaviour to the obstacles, and so forth.

The floor plan model is the starting point of the scenery
specification.Wemake a distinction between “user-facing” or “front-
end”models and “machine-readable” or “back-end”models.Models
written using DSLs are “front-end” models, as they are written
using syntax and semantics meant for human understanding. On
the other hand, the composable models are meant to be created
and understood by computers. While it is possible to create these
models by hand, it is complex and error-prone. A better approach is
to transform the “front-end” models into “back-end” models.

The FloorPlan DSL, introduced in our previous work
(Parra et al., 2023), is the base of the front-end environment
specification. It enables developers to describe concrete indoor
environments using a pseudo-code-like representation. The
language is implemented with TextX (Dejanović et al., 2017), a
Python-based language workbench for defining the metamodel
and language syntax. The language is declarative and designed to
be easy to understand. Using keywords such as Space, Column, or
Entryway followed by an identifier, common elements of an indoor
environment can be specified and referred to.

To compose objects, such as doors with hinges or elevator doors,
into the scenery, their models must be specified in a composable
way. We do so based on the kinematic chain metamodel described
in previous work (Schneider et al., 2023) and represent them also
in JSON-LD (as there is no front-end language currently available).
Two types of scenery models are needed to represent an object: An
object model describes their geometry and instance models that

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

specifies the pose of its articulated joint using a selection of frames
of reference.

3.3 Scenario execution

Executing the scenario involves the composition and
transformation of the models into software artefacts for their
execution in simulation. The execution of an indoor scenario
requires multiple software artefacts: a simulation scenery (3Dmesh)
representing the walls of the environment for the simulator, an
occupancy grid map representative of the environment for the
navigation stack, and a task to complete in a format supported
by the system.

Although the majority of the artefacts generated by the tools are
simulator-independent, engineers will also need simulator-specific
artefacts to run the tests; our current version of the tooling supports
the generation of the artefacts required by the Robot Operating
System (ROS) and the Gazebo simulator2. Previously, when the
FloorPlan M2M Generator was executed, it used the manually-
specified FloorPlan model to generate the occupancy grid maps
and the 3D meshes that would be referred to by manually-specified
Gazebo models and worlds. These sceneries could only represent
static environments.

In this paper, we introduce an extension to the FloorPlan
M2M Generator that generates a Composable FloorPlan model
(represented in JSON-LD) to enable its composition with other
scenery models. Now, it also generates the Composable FloorPlan
models, where each entity has an identifier that other entities can
refer to. The transformation and composition process, illustrated in
Figure 3, links all the entities from the different models in a singular
graph though their identifiers.Using this graph,we canmake queries
about environmental concepts and features, and generate artefacts
or new models. The transformation and composition engine is
implemented by using rdflib3 to query the singular graph, and,
similar to textX generators, filling out a jinja template4 for the
corresponding artefact. In our case, it allows us to model and
compose objects into the scenery, and to define their dynamic
behaviour.

Scenery composition refers to the composition of the static
scenery models with the dynamic scenery objects to generate the
simulation scenery.We developed the SceneryComposer tool to add
articulated dynamic objects to the static simulation scenery from the
FloorPlan models. The composable models enable the specification
of the objects and their location in the environment, and the Scenery
Composer tool creates a single scenery model that refers to all the
different models together. The format of this model will depend
on the simulator. In the case of Gazebo, this format is known as
the Simulation Description Format (SDF)5, and referred to as the
“world” file. At the time of writing, the Scenery Composer targets
only Gazebo, and generates all the required models in SDF.

2 https://gazebosim.org/

3 https://rdflib.readthedocs.io/

4 https://jinja.palletsprojects.com/

5 http://sdformat.org/

At runtime, three Gazebo plugins are responsible for the
behaviour of the dynamic scenery objects. The three plugins require
that the scenery object is articulated, i.e., has at least a revolute or
prismatic joint. All plugins are able to set a joint pose, but differ
when andhow the changes occur.The Initial Joint Pose plugin is used
to assign to a joint a position at the start of the simulation, which
will fixed throughout the entire run. In contrast, the Time-Based
Dynamic Joint plugin can change the position of the joint at specified
time stamps; for example, closing a door after 30 s of simulation
time. The Trigger-Based Dynamic Joint plugin can change the joint
position from an initial state to an end state if the robot ever gets
closer than a specified distance.

Finally, a task specification can be generated using the
composable approach based on the scenery models. We opted for
generating the task specification in our approach to take advantage
of existing mission and task DSLs that meet application and
domain-specific requirements for the specification, which would
be hard to generalize. As a proof-of-concept, our tool generates
navigation tasks tailored to our SUT, but can be easily adapted to
generate specifications in other formats. We refer to the tool as
the Task Generator, which exploits the geometric information in
the FloorPlan model to generate a series of waypoints that form a
smaller contour based on the inset of each space in the environment.
The tool uses the FloorPlan composable models to extract the free
space information, and a configuration file to determine the distance
between the room contour and the inset contour. The current
prototype generates a list of waypoints using YAML syntax, which
is used by the navigation stack.

4 Evaluation

To evaluate our approach, we designed three scenarios that
demonstrate how to exploit different properties of the scenery for a
given test objective. For each scenario we describe the test objective,
i.e., the motivation for the test and chosen from the examples in
Section 3.1, and the features selected for the test based on the test
objective. Note that although testing is context-dependent and the
scenarios discussed here take into account a specific System Under
Test (SUT), our focus is on how to test robot software, not the
design or development of a particular navigation algorithm or robot
platform. In particular, the goal of the scenarios described in this
section is to exemplify how one would use composable scenarios
to execute tests to validate the software of a mobile robot. Thus,
we mainly focus on the models being used and/or designed as
described in Section 3.2.

Our SUT consists of the KELO Robile platform, a mobile robot
platform with four active wheels and a 2D laser for navigation. The
robot is 0.466 m wide and 0.699 m long. Its software is based on
the Robot Operating System (ROS), and uses its navigation stack6.
This includes the default map_server; move_base to send navigation
goals to the robot; the Navfn global planner, the Dynamic Window
Approach (DWA) local planner with global and local costmaps; and
the Adaptive Monte Carlo Localization (AMCL) algorithm for its
pose estimation.

6 http://wiki.ros.org/navigation

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://gazebosim.org/
https://rdflib.readthedocs.io/
https://jinja.palletsprojects.com/
http://sdformat.org/
http://wiki.ros.org/navigation
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 3
Scenery models are composed using their identifiers and then transformed into execution artefacts.

The scenery where the tests are performed is the ground floor of
a university building and was modelled using the FloorPlan DSL,
as detailed in (Parra et al., 2023). The recreation of the building’s
corridors and rooms was achieved by performing measurements
of occupancy grid maps captured in the real world. Then the
measurements were used to specify the FloorPlan DSL model, and
used to generate the occupancy grid and wall mesh.

The test scenarios also exploit the composable models presented
in this paper to generate the tasks to be performed and the variations
in scenery in which they are executed. First, using the Composable
FloorPlan Model, the Task Generator creates task specifications for
each room and hallway in the scenarios. Second, we specify an
Articulated Scenery Object model that describes the door geometry
and joints. Finally, in each scenario we compose this door model
with specific scenery instance models into a Gazebo world model
that supports the scenario’s testing objective, as will be detailed later.

4.1 Scenario 1: functional testing for
navigation

4.1.1 Testing objective
The objective of this functional test is to ensure that all

components of the navigation stack are correctly integrated and
configured7. The goal is for the robot to successfully navigate from

7 In the scope of this paper, this is a simplified version of an integration test

for the navigation stack. As such, we consider it an example of how to

validate the functionality of a subsystem within a system-of-systems.

the starting position to a series of waypoints. In addition, for this
paper, we chose to observe the localization component as it is one
of the components in the navigation stack that relies on the correct
integration with the other components. In this scenario, a successful
navigation test means that the robot meets the following functional
requirements: (a) reaches all the waypoints, (b) the localization
error does not exceed 0.35m, and (c) the confidence level of the
localization component is 95% at minimum.

4.1.2 Models
Given that this is a functional test, we select the features

shown in Figure 4 and treat this scenario as a way to obtain a
consistent and reproducible baseline. Therefore, the scenery we
chose is a static environment with realistic features. The corridor
illustrated in Figure 4 is 60 m long, and is part of the FloorPlan
model of the university building. It has several features to aid in
localization: doorways and doors, columns, and intersections.

The Gazebo world model with static doors was generated by
the Scenery Composer using the Composable FloorPlan Model, the
articulated scenery door model, and the scenery instance model for
the 17 doors. The instance models allow us to specify the initial pose
for each door joint, whichwas set as “closed” (0 rad) for this scenario.
Even though the door models are articulated, the doors will remain
static throughout the execution.

The navigation task the robot executes was generated by the Task
Generator using the Composable FloorPlan model. Its specification
consists of a list of waypoints which must be visited in strict order.
The generated task specification was manually updated to close the
circuit (i.e., five Go To actions in a sequence, including the return
to the first waypoint). In this scenario, the waypoints are the four

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 4
Feature model for Scenario 1, with a static scenery and realistic environmental features (e.g., doors). The task consists of five Go To actions for the four
waypoints (red dots) for a mobile robot (SUT).

corners of a corridor as shown in Figure 4, and are located at a
constant distance of 70 cm from the walls.

4.1.3 Test oracle
A passing test must meet the functional requirements listed in

Section 4.1.1. For the experiment, we hold the hypothesis that the
robot will be able to localize itself successfully, as the environment
is static and has numerous features for correcting the estimation. To
measure the localization performance, we rely on two metrics: the
error e is computed as the difference between the pose estimation
and the ground truth pose pgt, and the standard deviation of
the particle cloud, which we use to validate the confidence level.
To compute the latter, we obtain the number of times when the
difference between the ground truth and the particle cloud is not
statistically significant (i.e., not larger than 2σ). The confidence level
is the proportion of those that fulfil Eq. 1,

Pc − 2σ ≤ pgt ≤ Pc + 2σ (1)

where σ is the standard deviation of the particle cloud, and Pc is the
mean of the particles.

4.2 Scenario 2: robustness testing for
obstacle avoidance

4.2.1 Test objective
The objective of this test is focused on the robustness of the

navigation stack, particularly on the ability of the robot to avoid
obstacles in a dynamic environment under stressful conditions. This
scenario uses a highly dynamic environment where there is a higher

risk of collision with moving doors. The task is now performed in a
dynamic version of the scenery, where the doors open and close at
random intervals. The challenge for the robot is twofold: first, it has
to adapt its plan depending on the status of the doors, which change
frequently and randomly. Second, theymust avoid colliding with the
doors, even if they change state when the robot is very close.

4.2.2 Models
Using Scenario 1 as a starting point, we increase the complexity

to test the robustness of the obstacle avoidance component by
making the scenery dynamic, as shown in Figure 5. The scenery
for this scenario is mostly the same as the one in Scenario 1, the
only difference being the addition of dynamic doors that will open
and close at random intervals using the Time-Based Dynamic Joint
plugin. Thus, the world file for Scenario 1 is almost identical to the
world file for Scenario 2 with the only difference being the use of the
plugin at runtime. All positions for all the doors remain the same.
Although the task specification is the same, its execution is more
complex due to a more challenging environment. When closed, the
doors are aligned with the walls of the corridor, keeping the way
clear for the robot. When open, the doors are perpendicular to the
corridor walls, and partially block the corridor as the doors open
towards the inside of the corridor.

The execution models remain mostly the same, the only
difference is observed in the world file of the simulation. Dynamic
models require a plugin (with its configuration) for them to have a
behaviour during the simulation run. For each door, we instantiate
a Time-Based Dynamic Joint plugin, which takes as a parameter a
JSON file with a sequence of key-frames. The key-frames contain
the simulation time at which the joint should move to a particular

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 5
Feature model for Scenario 2: A robustness test in a dynamic environment and randomly actuated doors. The mission and SUT features are the same as
in Scenario 1. Door models are articulated.

pose. The doors are closed at 0 rad, and open at 1.7 rad. Each door
is independent and has a unique opening/closing sequence, with a
randomly assigned state change and simulation time. The sequence
for each door remains constant throughout the five runs.

4.2.3 Test oracle
A successful scenario test run is one where the robot successfully

avoids all collisions. Tomeasure the effectiveness of the robot to avoid
collisions, we look for the smallest distance to an objectwith respect to
the robot’s centre. Given its rectangular shape, a collision occurs when
the distance of an object do to the centre of the robot is do(x) ≤ 0.35
anddo(y) ≤ 0.2. For the simplicity,wediscussdo using the radius of the
robot from its corner, i.e.,√0.2332 + 0.352 = 0.42 althoughwevalidate
there are no crashes by checking do(x) and do(y).

4.3 Scenario 3: safety conformance in
adversarial environment with task
variability

4.3.1 Test objective
Motivated by the near crashes in Scenario 2 (discussed in Sect.

5.2), the objective in this scenario is to validate the conformance
of the SUT to one of its safety requirements, namely, that the
robot respects the minimum acceptable distance to obstacles and
maintains a safety buffer of ds = 0.2. More concretely, we validate the
ability of the navigation stack to complete a navigation task in an
adversarial environment where doors close as the robot approaches
them. This means the robot should respond to the environmental

changes and conform to its minimum safety distance of 0.2m, i.e.,
min(do(x)) ≥ 0.55 and min(do(y)) ≥ 0.433.

In this scenario, we also introduce four variations in the task
scale that gradually increase the scenario complexity, creating one
sub-scenario for each task. The sub-scenarios were executed 5 times
each, which amounts to 20 runs in the simulator for this scenario.

4.4 Models

To test the safety requirements of the SUT, we select the
adversarial behaviour for the dynamic elements of the scenery for
this scenario, as can be seen in Figure 6. Following the incremental
approach, this scenario will reuse most of the execution models of
Scenario 2, but specify an adversarial behaviour for a subset of the
doors in the environment. Although we use the same campus re-
creation from the previous two environments, our tests are now
performed in three rooms rather than one corridor.

Instead of random events as in Scenario 2, in this scenery the
two dynamic doors are now triggered when the robot is within a
distance threshold from the door using the trigger-based dynamic
joint plugin. All other doors in the scenery are set to open with the
initial joint pose plugin, and remain static throughout the execution.
The relevant doors and their behaviour are illustrated in Figure 7.
The trigger-based dynamic joint pluginis configured by describing
an initial position, a final position, and a minimum distance for
the transition trigger. The force and speed of the closing door is
not parameterized. When the robot comes to a distance of 1.3 m
or closer, an event to close the door triggers. This distance was

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 6
Feature model of Scenario 3 where the scenery door models behave adversarially. Shares the same SUT as Scenario 1 and 2.

FIGURE 7
The scenery for Scenario 3, with two adversarial doors (door 17 in
C022 and door 12 in C069) and four tasks that vary in scale and
number of waypoints.

determined after experimenting with different values, and it ensures
that the robot can detect the sudden change in the environment
without the door hitting the robot. The order and position of the
waypoints was intentionally selected in order to force the robot to
plan to pass through the adversarial door.

Because we want the robot to attempt to go through the doorway
(as it does not expect the door to close), we chose two different rooms
to test this, as shown in Figure 7. In the figure, the four different tasks

we composed to gradually increase the complexity of the scenario
are also shown. On each task, the number of waypoints to visit and
the distances between them increases. The tasks vary in number of
waypoints to be visited and distance to the next waypoint. All the
tasks start in the same pose in room C025. Task 1 and 2 are relatively
short and only involve travelling to C022, while in Tasks 3 and 4 the
robot must travel first to C022 and then to C069. Tasks 1 and 3 have a
single GoTo action in each room for a total of one and twowaypoints,
respectively; while in Tasks 2 and 4 the robot must perform a total
of five and ten Go To actions in sequence, respectively. We name the
concrete scenarios to match each task, Scenario 3.1 to 3.4.

4.4.1 Test oracle
We expect the safety requirement of min(do(x)) ≥ 0.55 and

min(do(y)) ≥ 0.433 to be violated, since the doors will only close
when the robot is near the door. However, the expected behaviour is
that the robot will avoid collisions in all cases and attempt to move
away from the obstacles until it reaches a safe distance again. We
observe the changes in speed and angular velocity at the moment
the door is triggered, as well as the distance to objects do, to analyse
the robot’s behaviour in context, e.g., whether it is violating the safety
distance but moving slowly.

A passing test also requires the robot to complete the tasks
successfully. Our hypothesis for this scenario is that the robot will
be able to finish the task, but will take more time, as the adversarial
elements will just impede the robot to take the shortest possible
route. For this comparison, we create two additional sub-scenarios
where the doors remain static and which match the most complex

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

tasks at two scales: Task 2 and Task 4, which we name S3.5 and S3.6,
respectively.

To measure how well the robot “recovers” once the door closes
on its path, we measure the amount of time the robot has obstacles
within its safety buffer tds . We expect the distributions of the total
runtime and the total time the Minimum Safety Distance (MSD) tds
was violated for scenarios to behave similarly based on the task scale.
Finally, we expect that the behaviour of the robot in an adversarial
scenery vs. a static one should not differ substantially other than
to avoid the effects of the adversarial door being opened. While we
expect tds to be larger in the adversarial scenery, we expect that the
total delay caused by the robot’s reaction to the closing door and the
detour caused by the closed door not add more than 30 s for door 17
and 60 s for door 12.

5 Results

We ran our experiments in an XMG laptop with 16 GB of RAM
and an AMDRyzen 9 5900HXCPU and running Ubuntu 18.04.The
SUT described in Section 4 uses ROS1 noetic. Using the generated
artefacts, we execute each scenario 5 times in Gazebo and analyse
their results.Themodels and launch files used to run these scenarios
can be found in https://github.com/secorolab/frontiers-replication-
package.

5.1 Scenario 1

In all runs, the robot was able to reach all waypoints and
complete the task. The time to complete the task was also consistent,
with an average of 696.08 s and a standard deviation of 2.58 s. The
behaviour of the robot was consistent across the five runs, with the
localization error of 0.1238 m on average, and a maximum value of
0.522 m from run 1. Similarly, the standard deviation of the particle
cloud was consistent, as can be seen in Figure 8. As expected, the
standard deviation of the particle cloud in y is larger than in x (the
direction of travel), and clearly increases whenever the uncertainty
about the robot’s orientation increases, i.e., when the robot makes
turns. The confidence level of the localization component across all
runs was 99.8%.

Despite the error being under the acceptable threshold
on average, we can see that the localization requirements are
violated briefly when the robot makes turns near the entrance to
the hallway. Figure 9 shows the run with the largest error in more
detail. On the zoomed in area, we see one of the moments at the
beginning of the task, where the localization error and the standard
deviation of the particle cloud both reached their maximum values
in all runs. This area in particular has a lower number of features for
the localization component, as no columns are in range for the laser
sensors and there is an intersection right before entering the area.

Although all the runs were completed successfully, only three
of the runs met the requirements of the localization component.
While the confidence level of the localization component was high,
meaning that 99.8% of the time the difference between the pose
estimate and the ground truth pose is not statistically significant,
the error is larger than the acceptable value for this scenario. This
threshold was chosen to guarantee that potential errors in the

FIGURE 8
Localization error and standard deviation of the particles along the x
and y axis in Scenario 1

FIGURE 9
Localization error for run 1 in Scenario 1. On the right the zoomed-in
version shows the first 130s of the run.

localizationwould allow the robot to reach its goals without crashing
against the walls.

The results reveal that there are areas in the environment
that may require further testing, because although the scenery
for this scenario is static and represents the nominal operating
conditions for the SUT, the localization component does not meet
the application requirements.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/secorolab/frontiers-replication-package
https://github.com/secorolab/frontiers-replication-package
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 10
Distance from obstacles in Scenario 2. Distances larger than 0.8 m are shown in yellow, and the darker the purple, the closest the robot was to one of
the doors in the hallway.

5.2 Scenario 2

All test runs for this scenario were successful, as no
collisions were detected. The minimum distance to obstacles
is shown in Figure 10. One can clearly see that do decreases near
the doorways, as expected. Although the average do is 1.2 m, run
4 was particularly challenging for the robot; and it is noticeable
that in a few locations the dynamic doors almost caused collisions.
In this run, on two occasions, do is less than 5 cm, meaning the
robot managed to avoid a collision by merely 3.77 cm and 4.1 cm,
respectively.

This scenario builds on top of the static scenery of Scenario 1,
and increases the load for the obstacle avoidance component. In a
general sense, the dynamic behaviour of the doors in the scenery
helps validate the ability of the robot to react to dynamic obstacles
in its environment. However, the near misses reveal risks of collision
that should be validated against the safety requirements.

5.3 Scenarios 3.1–3.6

As a first step to validate the conformance to the safety
requirements, we analysed whether there were any obstacles within
the 0.2 m safety buffer. To our surprise, we discovered that the
SUT struggled with the non-adversarial scenario S3.6, which had
one run fail after the robot could not exit C022. Given that
the non-adversarial scenery represents the static environment
and hence nominal operating conditions, we could immediately
conclude that the safety requirements were not being fulfilled.
After further inspection, we noticed that the publicly available
configuration of the navigation stack8 (a2s) had several errors. The
robot’s footprint was much smaller and not symmetric around its
centre (as can be seen in Figure 11); the laser scan topic used to
update the costs for the path planner was using a namespace, i.e.,

8 This configuration has been used for over a year as part of a robotics

course by several groups of students. Available at: https://github.

com/a2s-institute/robile_navigation/tree/noetic/config

robile_john/scan_front instead of /scan_front; and,
finally, although the platform is omnidirectional and the odometry
model used by AMCL was configured as such, the path planner was
configured to behave as a differential drive robot.

To validate the safety requirements while trying to deliberately
provoke a collision (in S3.1–S3.4), we corrected the configuration
errors for the differential configuration (fro-diff), and added an
omnidirectional configuration (fro-omni). Note that our goal is
not to find an optimal configuration, but rather we focus on testing
if the new configurations fix the problemwe observed.The results of
the laser measurements that violate the safety buffer for the five runs
for each task and configuration can be seen in Figure 11.9

Next, we focus on the behaviour of the robot around the two
adversarial doors: door 17 and door 12. We see the moment the
doors are triggered as vertical dotted lines in Figure 12. We can
see that the behaviour of the robot when door 17 is triggered is
consistent regardless of the task. For Scenarios S3.3 and S.6, despite
some variation on when door 12 is triggered, the behaviour is
similarly consistent. Furthermore, Figure 12 shows that violations
to the safety buffer do not only occur with the adversarial doors,
but any time the robot passes through or near doorways, and that
the combination of the task to execute and the state of the doors
contribute significantly to the safety violations.

In all the runs, the robotmomentarily violates the safety distance
onmultiple occasions, including themoments where it goes through
the non-adversarial doors. Figure 13 shows the distribution for
tdo≤MSD in all the tasks of Scenario 3. Except for the outlier with
the larger tds of the a2s configuration, the difference in the mean
of tds between fro-diff and a2s is not statistically significant.
However, both differential configurations had failures on scenario
S3.6, while fro-omni was the only configuration to successfully
finish all tasks; the trade-off seems to be related to the amount
of time the MSD is violated and suggests that there are possible
improvements to the latter configuration.

9 We also ran the tests for S1 and S2 with the new configurations, and

validated that they perform similar to the original a2s configuration.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/a2s-institute/robile_navigation/tree/noetic/config
https://github.com/a2s-institute/robile_navigation/tree/noetic/config
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 11
Laser measurements within the safety buffer ds. The robot size (gray), the safety buffer (red) and its configured footprint (yellow).

By comparing runs in sceneries with and without adversarial
doors, we can see the effects on the speedwhen the robot slows down
as it attempts to avoid a collision, and the angular velocity changes as
it turns to follow an alternate path. Figure 14 shows one run of S3.4
and the same task, but without the effects of the adversarial door
in S3.6. We have zoomed in to the two moments where the robot
reaches the trigger distance of 1.3 m to door 17 and then door 12.

The total tds for the different configurations makes the effects
of the misconfiguration noticeable. Surprisingly, the original
configuration a2s requires more time to complete S3.6 than S3.4,
on average 8.9 s more (after excluding the outlier). Surprisingly, the
fixed configuration fro-diff also requires more time for S3.6
than S3.4, although it is about half of themisconfigured SUT at 4.8 s.
Finally, the fro-omni config behaves as expected, requiring only
1.3 s more for S3.6 than S3.4, which makes these the only successful
test runs of scenario 3 in terms of performance.

At a grand scale, these tests reveal that the robot is able to avoid
collisions to adversarial obstacles in its environment, attempting to
go back to a safe distance as soon as the environmental change is
detected. As expected, although the MSD was violated, the robot
reacted quickly and the total time MSD was violated did not differ
significantly between adversarial and non-adversarial sceneries.

However, upon closer inspection, the test results returnedmixed
results. Firstly, by using static and dynamic sceneries and a variety
of tasks we were able to detect a misconfiguration issue. However,
the proposed configurations to fix the issue still do not respect
the required safety buffer and need further testing and tuning.
Secondly, the tests also revealed that (new) nominal sceneries cause
safety violations that still need to be handled, and the effect of the
adversarial doors in the performance was overestimated with S3.6
taking longer despite the detour required by the adversarial door in

S3.4. Although the scenario tests have met the safety criteria of our
oracle regarding tds , the performance trade-off for the differential
configurationwas unexpected. Finally, with these examples, we show
how the composition plays a key role in the testing process; the
interaction between the different features in the scenery and the
gradual increase in complexity allowed us to systematically test the
SUT and uncover issues that went unnoticed for over a year and in
our test runs for S1 and S2.

6 Discussion

The results demonstrate that the use of composable and
executable scenarios enables the design, specification and execution
of tests for a variety of testing objectives. By reusing and composing
different scenery models, our approach can gradually increase the
complexity of the test scenarios with minimal effort. Due to the
context-dependent nature of testing, the results above cannot be
generalized to all robots or applications. However, we believe this
does not necessarily limit its applicability to other systems due to
our focus on the scenery models (which are robot-independent).
Furthermore, our evaluation demonstrates how to design, specify
and execute test scenarios for systems using the ROS navigation
stack (a popular framework used in robotic applications). We now
discuss aspects to be considered when applying our approach to a
different robot or application.

The transformation and composition process presented in
Section 3.3 has a small learning curve. Developers that wish to
use our tools, must learn how to specify environments using the
FloorPlan DSL and understand the basics of composable models,
and making queries on RDF graphs. In its current iteration, because
the graph construction relies on the identifiers for each of the

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 12
Distance to obstacles do for Scenario 3. The red area shows the limit at
which ds is violated. The dotted lines show when the doors were
triggered.

elements to be able to successfully compose and query the singular
graph, the lack of front-end models for the scenery objects makes
this process error-prone. The objects in this paper were limited
to doors with hinges, however the composable metamodels for
kinematic chains would also support the specification of sliding
doors (or objects) by using prismatic joints. The addition of other
types of objects is possible, but suffers the same limitations as the
current specifications. We hope to extend our DSLs to be able to
specify the scenery objects without having to worry about their
composable specification.

Although not the focus of this paper, the validation
of the scenery and scenario are another area of future
development. In (Parra et al., 2023), we presented experiments on
the real2sim gap, and shown how developers could validate that the
scenery specification reflects a real-world environment. However,
we have not yet implemented validation checks after models have
been composed into the graph.

The transformation itself is currently handled in two different
parts: The Composable FloorPlan model is generated using the
textX infrastructure, while other execution artefacts are defined

FIGURE 13
Distribution of the total time the Minimum Safety Distance tds

was
violated against the total runtime.

directly in the transformation engine. Ideally, we would like to
define these transformations by using transformation rules and
a model transformation language, however, target models (e.g.,
SDF) do not always have publicly available meta-models. Although
this could potentially limit the generalization of the approach, the
use of templating engines, such as jinja, provides some flexibility
and ease of use for extending the type of artefacts supported
and customizing the generated model itself. However, we plan to
investigate the possibility of using transformation rules for those
models with available meta-models to allow for a more systematic
transformation.

There are also opportunities for automating the generation
pipeline.The process currently is completely under the control of the
developers, and each tool is executed manually and independently.
On the one hand, this makes the tool modular and allows
customizing which aspects of the scenery are to be generated. On
the other, it requires additional effort to keep track of and maintain
consistency between the models generated by different tools. The
modularity of the tools also makes the integration of external or
manually-defined models in a scenario possible, at least to some
degree. Because composable models can reference other models by
their identifiers, those external models can be referenced in the
graph and on the templates of the artefacts that use those artefacts
(e.g., the 3D Wall mesh or Gazebo models can be referenced by
our generated Gazebo world). However, additional effort must be
taken to ensure that the IDs, references, and relevant environmental
features are valid and consistent with the FloorPlan models.

6.1 Related work

In contrast to the autonomous driving domain (Ren et al., 2022),
scenario- and simulation-based testing of autonomous mobile

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 14
Min. safety dist. for a nominal scenario (Task 6) and a scenario with adversarial doors (Task 4) and configuration a2s.

robots is desirable; however, this has not been well established
(Afzal et al., 2020; Afzal et al., 2021b). In the autonomous driving
domain, scenario standards such as ASAM OpenSCENARIO
(ASAM, 2022) are emerging to describe common scenery elements,
such as roads, streets, traffic signs, and lanes. However, in robotics,
environment and scenery modelling is traditionally supported
by CAD tools published by multiple vendors. In the context
of indoor robotics, and therefore relevant to our work, is the
application of these approaches and tools from the architectural
domain, where Building Information Modelling (BIM) has been
an established technique to model the geometric information
of building structural components (e.g., walls, corridors, and
windows), as well as semantic hierarchical information (e.g.,
about the accessibility and connectivity of rooms) (Borrmann et al.,
2018). The composable scenario modelling approach introduced
in this work targets robotic experts, where BIM is not as
prevalent as in other engineering domains. For example, during
the interviews, only a single mention of BIM was made. Even
though there are numerous 3D software commercially available
that implements the BIM standard, modelling scenery is still
considered a time-consuming task by robot application developers,
as supported by our interviews. In addition, because BIM models
support the full building management lifecycle, they introduce
many irrelevant dependencies, such as the latest IFC 4.3. x
schema10 including concepts to define structural building elements
(IfcWall, IfcDoor, etc.), but simultaneously introduce concepts for
measurements of physical quantities (IfcAbsorbedDoseMeasure,
IfcMolecularWeightMeasure, etc.) or building lifecyclemanagement
(such as actor roles, including civil engineer or building owner, but
also orders, including purchase orders ormaintenance work orders).

10 https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.

xsd

Furthermore, as pointed out by Hendrikx et al. (Hendrikx et al.,
2021), BIM cannot be considered accurate or complete for robotic
applications.

Another domain related to our approach is the field of computer
graphics, specifically procedural content generation approaches,
which focus on synthesizing hundreds of environments separated
froma single environment description. In robotics, these approaches
are typically employed for machine learning applications, as they
require a substantial amount of training and testing data that is
arduous for manual production. Different approaches use diverse
abstractions as inputs, including constraint graphs (Para et al.,
2021), handmade drawings (Camozzato et al., 2015), building
contours (Lopes et al., 2010; Mirahmadi and Shami, 2012), and
natural language descriptions (Chen et al., 2020). A common
theme of these approaches is that the output of the generation
step is uncontrollable. Input abstractions deliberately exclude
spatial relations to keep the input simple because numerous
outputs must often conform to the input model. Thus, these spatial
relations are synthesized by algorithms and are not controlled by
the user. However, not all procedural generational approaches
follow this pattern. Some have rich descriptions that allow for
a more structured output, while still enabling the generation of
variations. For example, the language presented by Leblanc et al.
(2011) is an imperative specification language for building
indoor environments by performing space operations. These
operations involve complex logic to create variation. However,
these approaches are not employed in the context of scenario-
based testing of robotic systems, where additional models of other
agents, dynamic scenery elements, and task specifications need
to be composed.

A closely related approach is the Scenic language (Fremont et al.,
2019), a probabilistic programming language for generalized
environment specification that targets machine-learning
applications. Scenic enables the specification of spatial relationships

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.xsd
https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.xsd
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

with concrete and logical values. However, Scenic is just a language,
and to consume its models, an extra tool is needed to violate our
design ambition of having composable scenario models. GzSCenic
Afzal et al. (2021a) is a third-party tool that leverages scenic models
to generate scenes using the robot simulator Gazebo (Koenig and
Howard, 2004). Although these approaches can generate models
that are consumable by simulators, they lack the generation of other
artefacts for the direct simulation of navigation tasks, such as the
occupancy grid map.

Another modelling approach to describe indoor environments
is supported by the indoor tagging schema of Open Street
Map, which supports modelling a floor plan with tags such as
room, area, wall, corridor, and level (floor). The schema was
devised for indoor navigation, but can be consumed by any
application.Naik et al., (2019) presented an extension to the schema,
whichwas exploited to generate occupancy gridmaps andwaypoints
for navigation. However, these models were not used to generate the
simulation models.

6.2 Conclusion and future work

In this study, we presented a domain model for features
in simulation-based testing scenarios, which we derived from
interviews to 14 domain experts. Based on the insights, we propose
a composable modelling approach to specify and execute scenarios.
Given that the environment representation is one of the challenges
mentioned frequently in the interviews, our focus was on facilitating
the specification and reuse of scenery models for testing.

The specification of these scenarios starts with a floor plan
model that represents the environment in which the robot operates.
This specification is done using the FloorPlan DSL from our
previous work (Parra et al., 2023). In this paper, we present an
extension to the FloorPlan M2M generator, which takes a floor plan
model as input and creates a graph representation of its spaces,
geometry and elements in JSON-LD, which we call the composable
floor plan model. This representation is key to the composability
and reusability of the models. Task specifications are generated
by our proof-of-concept tool that uses the composable floor plan
model to query the geometric information for a target area, and
generate waypoints in free space based on its contours. In addition,
objects can be composed into the static scenery of the floor plan
by specifying an articulated scenery object model (describing the
object geometry and its joints), and scenery instancemodels for each
object. These scenery models are also specified in JSON-LD, and are
an input for our scenery composer, which traverses the linked graph
to generate the required artefacts for the execution of the scenario in
simulation. Finally, at runtime, we introduced three Gazebo plugins
which set the joint position of the objects composed into the scenery
at the start of the simulation, or using time or event-based triggers.

We demonstrated our approach by performing a small
simulation-based testing campaign for amobile robot in a university
building. The scenarios gradually increased their complexity, first
focusing on validating the navigation stack with functional tests,
then performing robustness tests on a highly dynamic environment,
and finally, validating the conformance to the safety requirements.
The composable aspect allowed us to reuse the static floor plan
scenery specified in Parra et al. (2023), and compose static doors

for Scenario 1, randomly opening and closing doors in Scenario
2, and doors that would close as the robot approached them in
Scenario 3. Surprisingly, only when we ran the third scenario were
we able to find a misconfiguration issue in the publicly available
navigation stack of our SUT, which had been undetected for over a
year despite being in use by multiple groups of students. Normally,
this robot operates autonomously within a single room or hallway,
and is teleoperated out of the room for the latter, explaining why
this issue was not detected until now. This shows that the variation
in the scenario features is essential to expose the robot to situations
that may generate failures.

Future work includes creating DSLs to specify the scenery
objects and instances, and expanding our proof-of-concept task
generator to generate task specifications for existing mission and
taskDSLs.This is a key step to explore the ability of a fully-automated
scenario generation approach, which could exploit the Variation
DSL introduced in Parra et al. (2023).

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the studies involving
humans because the discussion in this paper only concerns the
aggregated data from interviews, which was only used to identify
common codes. Interview participants signed an informed consent,
and their participation was voluntary. All the data related to the
interviews is anonymized, and only the participants have their ID,
which they can use to withdraw their participation at any time. The
experiments are conducted on our own robot platform and software,
minimizing risks or harms to participants and organizations, while
enabling them to benefit from the results of our research. The
studies were conducted in accordance with the local legislation
and institutional requirements. The participants provided their
written informed consent to participate in this study. No potentially
identifiable images or data are presented in this study.

Author contributions

AO: Conceptualization, Data curation, Investigation,
Methodology, Software, Writing–original draft, Writing–review
and editing, Formal Analysis, Validation, Visualization. SP:
Conceptualization, Investigation, Methodology, Software,
Writing–review and editing, Data curation, Writing–original draft,
Formal Analysis, Visualization. NH: Conceptualization, Funding
acquisition, Project administration, Supervision, Writing–original
draft, Writing–review and editing, Methodology, Validation.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This wor has

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ortega et al. 10.3389/frobt.2024.1363281

partly been supported by theEuropeanUnion’sHorizon 2020 project
SESAME (Grant No. 101017258).

Acknowledgments

We thank the Institute for AI and Autonomous Systems at the
Hochschule Bonn-Rhein-Sieg for their support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1363281/full#supplementary-material

References

Afzal, A., Goues, C. L., Hilton, M., and Timperley, C. S. (2020). “A study on
challenges of testing robotic systems,” in IEEE Intl. Conf. on Software Testing,
Verification an Validation (ICST), Porto, Portugal, 24-28 October 2020, 90–107.
doi:10.1109/ICST46399.2020.00020

Afzal, A., Goues, C. L., and Timperley, C. S. (2021a). GzScenic:
automatic scene generation for gazebo simulator. arXiv:2104.08625 [Preprint].
doi:10.48550/arXiv.2104.08625

Afzal, A., Katz, D. S., Le Goues, C., and Timperley, C. S. (2021b). “Simulation for
robotics test automation: developer perspectives,” in IEEE Intl. Conf. on Software
Testing, Verification andValidation (ICST), Porto deGalinhas, Brazil, 12-16 April 2021,
263–274. doi:10.1109/ICST49551.2021.00036

ASAM (2022). ASAM OpenSCENARIO standard. Association for standardization
of automation and measuring systems. Online; [last accessed 2023-
December-28]

Borrmann, A., König, M., Koch, C., and Beetz, J. (2018). “Building information
modeling: why? What? How?,” in Building information modeling: Technology
foundations and industry practice (Springer International Publishing), 1–24.
doi:10.1007/978-3-319-92862-3_1

Camozzato, D., Dihl, L., Silveira, I., Marson, F., and Musse, S. R. (2015).
Procedural floor plan generation from building sketches. Vis. Comput. 31, 753–763.
doi:10.1007/s00371-015-1102-2

Chen, Q., Wu, Q., Tang, R., Wang, Y., Wang, S., and Tan, M. (2020). “Intelligent
home 3D: automatic 3D-house design from linguistic descriptions only,” in Proc. Of
the IEEE/CVF conf (on Computer Vision and Pattern Recognition), 12625–12634.
doi:10.1109/CVPR42600.2020.01264

Dejanović, I., Vaderna, R., Milosavljević, G., and Vuković, v. (2017). TextX: a Python
tool for domain-specific languages implementation. Knowledge-Based Syst. 115, 1–4.
doi:10.1016/j.knosys.2016.10.023

Fremont, D. J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.
L., and Seshia, S. A. (2019). “Scenic: a Language for scenario specification and
scene generation,” in ACM SIGPLAN Conf. on Programming Language Design
and Implementation (ACM), Xi’an, China, 30 May 2021 - 05 June 2021, 63–78.
doi:10.1145/3314221.3314633

Hauer, F., Pretschner, A., and Holzmüller, B. (2020). Re-Using concrete
test scenarios generally is a bad idea. IEEE Intell. Veh. Symp. IV, 1305–1310.
doi:10.1109/IV47402.2020.9304678

Hendrikx, R. W. M., Pauwels, P., Torta, E., Bruyninckx, H. J., and van de
Molengraft, M. J. G. (2021). “Connecting semantic building information models
and robotics: an application to 2d lidar-based localization,” in IEEE Intl.
Conf. on Robot. and Autom. (ICRA), 11654–11660. doi:10.1109/ICRA48506.
2021.9561129

Hove, S., and Anda, B. (2005). “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in IEEE Intl. Software
Metrics Symp. (METRICS), Como, Italy, 19-22 September 2005, 10–23.
doi:10.1109/METRICS.2005.24

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-oriented
domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021.

Koenig, N., and Howard, A. (2004). Design and use paradigms for gazebo, an
open-source multi-robot simulator. IEEE/RSJ Intl. Conf. Intell. Robots Syst. (IROS) 3,
2149–2154. doi:10.1109/IROS.2004.1389727

Leblanc, L., Houle, J., and Poulin, P. (2011). Component-basedmodeling of complete
buildings. Graph. Interface 2011, 87–94.

Lopes, R., Tutenel, T., Smelik, R. M., De Kraker, K. J., and Bidarra, R. (2010). “A
constrained growth method for procedural floor plan generation,” in Proc. Of the int.
Conf. Intell. Games simul, 13–20.

Mirahmadi, M., and Shami, A. (2012). A novel algorithm for real-time
procedural generation of building floor plans. arXiv:1211.5842 [Preprint].
doi:10.48550/arXiv.1211.5842

Naik, L., Blumenthal, S., Huebel, N., Bruyninckx, H., and Prassler, E. (2019).
“Semantic mapping extension for OpenStreetMap applied to indoor robot navigation,”
in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20-24 May 2019, 3839–3845. doi:10.1109/ICRA.2019.8793641

Ortega, A.,Hochgeschwender,N., andBerger, T. (2022). “Testing service robots in the
field: an experience report,” in IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS),
Kyoto, Japan, 23-27 October 2022, 165–172. doi:10.1109/IROS47612.2022.9981789

Para, W., Guerrero, P., Kelly, T., Guibas, L. J., and Wonka, P. (2021). “Generative
layout modeling using constraint graphs,” in Proc. of the IEEE/CVF Intl. Conf.
on Computer Vision, Montreal, QC, Canada, 10-17 October 2021, 6690–6700.
doi:10.1109/ICCV48922.2021.00662

Parra, S., Ortega, A., Schneider, S., and Hochgeschwender, N. (2023). “A thousand
worlds: scenery specification and generation for simulation-based testing of mobile
robot navigation stacks,” in IEEE/RSJ Intl. Conf. On intell. Robots and syst. (IROS),
5537–5544. doi:10.1109/IROS55552.2023.10342315

Ren, H., Gao, H., Chen, H., and Liu, G. (2022). “A survey of autonomous
driving scenarios and scenario databases,” in Intl. Conf. on Dependable
Syst. and Their Applications (DSA), Wulumuqi, China, 04-05 August 2022,
754–762. doi:10.1109/DSA56465.2022.00107

Saldaña, J. (2021). The coding manual for qualitative researchers. Coding Man. Qual.
Res., 1–440.

Schneider, S., Hochgeschwender, N., and Bruyninckx, H. (2023). “Domain-
specific languages for kinematic chains and their solver algorithms: lessons learned
for composable models,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), London, United Kingdom, 29 May 2023 - 02 June,
9104–9110. doi:10.1109/ICRA48891.2023.10160474

Sotiropoulos, T., Waeselynck, H., Guiochet, J., and Ingrand, F. (2017). “Can robot
navigation bugs Be found in simulation? An exploratory study,” in IEEE Intl. Conf. on
Software Quality, Reliability, and Security (QRS), Prague, Czech Republic, 25-29 July
2017, 150–159. doi:10.1109/QRS.2017.25

Tang, S., Zhang, Z., Zhang, Y., Zhou, J., Guo, Y., Liu, S., et al. (2023). A survey
on automated driving system testing: Landscapes and trends. ACM Trans. Softw. Eng.
Methodol. 32, 1–62. doi:10.1145/3579642

Timperley, C. S., Afzal, A., Katz, D. S., Hernandez, J. M., and Le Goues, C. (2018).
Crashing simulated planes is cheap: can simulation detect robotics bugs early? IEEE Intl.
Conf. Softw. Test. Verification Validation (ICST), 331–342. doi:10.1109/ICST.2018.00040

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full#supplementary-material
https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.48550/arXiv.2104.08625
https://doi.org/10.1109/ICST49551.2021.00036
https://doi.org/10.1007/978-3-319-92862-3_1
https://doi.org/10.1007/s00371-015-1102-2
https://doi.org/10.1109/CVPR42600.2020.01264
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1109/IV47402.2020.9304678
https://doi.org/10.1109/ICRA48506.2021.9561129
https://doi.org/10.1109/ICRA48506.2021.9561129
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.48550/arXiv.1211.5842
https://doi.org/10.1109/ICRA.2019.8793641
https://doi.org/10.1109/IROS47612.2022.9981789
https://doi.org/10.1109/ICCV48922.2021.00662
https://doi.org/10.1109/IROS55552.2023.10342315
https://doi.org/10.1109/DSA56465.2022.00107
https://doi.org/10.1109/ICRA48891.2023.10160474
https://doi.org/10.1109/QRS.2017.25
https://doi.org/10.1145/3579642
https://doi.org/10.1109/ICST.2018.00040
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Domain analysis
	2.1 Methodology
	2.2 Domain model

	3 Composable andexecutable scenarios
	3.1 Scenario design
	3.2 Scenario specification
	3.3 Scenario execution

	4 Evaluation
	4.1 Scenario 1: functional testing for navigation
	4.1.1 Testing objective
	4.1.2 Models
	4.1.3 Test oracle

	4.2 Scenario 2: robustness testing for obstacle avoidance
	4.2.1 Test objective
	4.2.2 Models
	4.2.3 Test oracle

	4.3 Scenario 3: safety conformance in adversarial environment with task variability
	4.3.1 Test objective

	4.4 Models
	4.4.1 Test oracle


	5 Results
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 Scenarios 3.1–3.6

	6 Discussion
	6.1 Related work
	6.2 Conclusion and future work

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

