
TYPE Original Research
PUBLISHED 29 January 2025
DOI 10.3389/frobt.2024.1363150

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Ricardo Sanz,
Polytechnic University of Madrid, Spain
Christian Eymüller,
University of Augsburg, Germany

*CORRESPONDENCE

Herman Bruyninckx,
herman.bruyninckx@kuleuven.be

RECEIVED 29 December 2023
ACCEPTED 27 November 2024
PUBLISHED 29 January 2025

CITATION

Schneider S, Hochgeschwender N and
Bruyninckx H (2025) Semantic composition of
robotic solver algorithms on graph structures.
Front. Robot. AI 11:1363150.
doi: 10.3389/frobt.2024.1363150

COPYRIGHT

© 2025 Schneider, Hochgeschwender and
Bruyninckx. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Semantic composition of robotic
solver algorithms on graph
structures

Sven Schneider1,2, Nico Hochgeschwender3 and
Herman Bruyninckx2,4,5*
1Department of Computer Science, Institute for AI and Autonomous Systems, Hochschule
Bonn-Rhein-Sieg, Sankt Augustin, Germany, 2Department of Mechanical Engineering, KU Leuven,
Leuven, Belgium, 3Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany, 4Department of Mechanical Engineering, TU/e Eindhoven, Eindhoven,
Netherlands, 5Flanders Make, Lommel, Belgium

This article introduces amodel-based design, implementation, deployment, and
execution methodology, with tools supporting the systematic composition of
algorithms from generic and domain-specific computational building blocks
that prevent code duplication and enable robots to adapt their software
themselves. The envisaged algorithms are numerical solvers based on graph
structures. In this article, we focus on kinematics and dynamics algorithms,
but examples such as message passing on probabilistic networks and factor
graphs or cascade control diagrams fall under the same pattern. The tools rely
on mature standards from the Semantic Web. They first synthesize algorithms
symbolically, from which they then generate efficient code. The use case is an
overactuated mobile robot with two redundant arms.

KEYWORDS

solvers based on graph traversal, model-based engineering, algorithm synthesis, code
generation, composability and compositionality, kinematics and dynamics

1 Introduction

Figure 1 shows a complicated, overactuated mobile robot with two redundant, torque-
controlled arms performing a dual-arm manipulation task. A typical implementation
of such an application relies on a wide range of algorithms, including (i) kinematics
and dynamics solvers for forward kinematics or inverse dynamics problems as available
in libraries like Pinocchio (Carpentier et al., 2019), the Rigid Body Dynamics Library
(RBDL) (Felis, 2016), or the Kinematics and Dynamics Library (KDL)1; (ii) probabilistic
filters and estimators, implemented by libraries such as the Georgia Tech Smoothing and
Mapping library (GTSAM) (Dellaert, 2012), or the Bayesian Filtering Library (BFL)2,
to determine the state of the robot and its environment, for example, by simultaneous

1 http://www.orocos.org/kdl

2 http://www.orocos.org/bfl

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363150
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363150&domain=pdf&date_stamp=2025-01-28
mailto:herman.bruyninckx@kuleuven.be
mailto:herman.bruyninckx@kuleuven.be
https://doi.org/10.3389/frobt.2024.1363150
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full
http://www.orocos.org/kdl
http://www.orocos.org/bfl
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 1
Complicated robotic system solving a dual-arm manipulation task. In the first row, the robot approaches the table with its mobile base to then perform
a touch-based alignment. In the second row, the two manipulators grasp and lift the object. Finally, the robot leaves the table while carrying the object.

localization and mapping (SLAM); (iii) data-flow computations in
cascade control diagrams such as the MATLAB Control System
Toolbox3, in the Stack-of-Task’s (Mansard et al., 2009) dynamic-
graph4, or in video-processing pipelines like GStreamer5; and (iv)
task specifications, expressing the desired behavior of the robot’s
dynamics and its controllers as well as the desired sensor processing
outputs, realized via expression graphs (Aertbeliën and De Schutter,
2014). The overall integration of such functionalities and their
realization that the robot requires to solve its tasks is also known
as a robot control architecture.

Even if these algorithms and libraries originate from different
yet highly relevant robotics domains, they share two important
commonalities. First, they rely on an underlying structural model
of a graph that represents a kinematic chain, a probabilistic network
or factor graph, a data-flow network between operators, and an
expression graph, respectively. Second, they answer queries on
these graphs by (i) propagating data between the graph’s nodes
and (ii) dispatching6 computations on that data for each visited
node or edge while (iii) performing one or more graph traversals.
Here, a traversal represents a particular choice of serializing or
scheduling the computations to establish a computational control
flow.The good news is that for many of these queries, the knowledge
already exists about how to create efficient execution schedules.
This includes kinematics and dynamics problems (Popov et al.,
1978), inference in Bayesian networks (Pearl, 1982), or cutting
cascade control loops into a series of computations for each time
scale. The main differences between these solvers comprise the
data encoded in the graph and the specific policies or choices

3 https://www.mathworks.com/products/control.html

4 https://github.com/stack-of-tasks/dynamic-graph

5 https://gstreamer.freedesktop.org/

6 By “dispatching,” we mean to execute or trigger a computation.

It resembles dispatchers in operating systems [cf. (Tanenbaum and

Bos, 2014)].

imposed on the algorithms, that is, which data to propagate, which
computations to perform, and how to traverse the graph. The
solution to such a recurring problem in architectures is known as a
design pattern and has been popularized in software engineering by
the “Gang of Four” (Gamma et al., 1994) in object-oriented software
development. Hence, given these commonalities and differences, we
classify such graph-based solvers as a fundamental pattern that has
not yet been described in the existing literature.

On the one hand, software libraries that implement graph-
based solvers allow their users to customize the structural graphs
at compile time. On the other hand, they keep the solver algorithms
that act on these graphs inaccessible, which leads to the following
three problems. First, such designs prevent many customizations
and optimizations of the computational control flow as well as
the introspection and instrumentation of the executing algorithms.
The easy way to introduce a new algorithm or adapt an existing
one is for developers to implement it completely from scratch
or by copying and refactoring a previous implementation. For
instance, in KDL, we have counted twelve realizations of the
computations for the forward position kinematics (FPK) and seven
realizations for the forward velocity kinematics (FVK) across 22
solvers in total. This is a clear violation of the “Don’t Repeat
Yourself ” (DRY) (Hunt and Thomas, 2019) principle for good
software engineering and leads to technical debt. A second problem
comes from how the libraries support configuration. One approach
is to create an application programming interface (API) where the
configuration options are part of the input parameters. This leads
to very long function signatures, so the pragmatic choice is to
limit the configuration capabilities of the library. Another (better)
approach to configuration is to provide a setters and getters API
via which any desired set of parameters can be given new values at
runtime. However, this introduces the risk of data inconsistencies
because, in most cases, several parameters should be updated
together in an atomic way. A third problem is that, at runtime,
applications may require multiple solvers with partially overlapping
“computational states,” such as the position and motion of sensors

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.mathworks.com/products/control.html
https://github.com/stack-of-tasks/dynamic-graph
https://gstreamer.freedesktop.org/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

or tools on the robot’s kinematic chain. This leads to redundant
computations and challenges in keeping a consistent state between
these multiple solvers.

To address these problems, this article introduces the software
engineering aspects of a model-based design, implementation,
deployment, and execution methodology, with tools supporting the
systematic composition of algorithms from generic and domain-
specific computational building blocks. A first contribution is
that the granularity of these building blocks is designed for
composability: on the one hand, they are so small that each
of them is a pure function and, on the other hand, they need
not be smaller than what is contained in one node of the
graph that represents the computational control flow. That is,
where the if-then-elses and the for or while loops
are introduced to differentiate between different behaviors of the
executed algorithms. The algorithm’s building blocks are models of
the data structures, the pure functions that act on this data, and
the order in which these functions are called, that is, the schedule
or control flow. We present the mechanism to model, compose,
and execute complicated algorithms. Simultaneously, we ensure that
each mechanism is configurable so that a large variety of data-flow
policies can be composed on top. Examples include, among others,
incremental computations by processing sub-graphs on demand,
employing optimized computations for sub-graphs, or injecting
instrumentation and logging into the algorithm. In summary, our
main contributions are:

• We analyze kinematics and dynamics solvers as the main
representatives of algorithms that perform computations on
graph structures. Their commonalities and differences allow us
to identify and describe the graph-based solver pattern.

• We derive free and open-source licensed, vendor-neutral
models and metamodels7 to represent and compose graph-
based solvers for kinematics and dynamics solvers. The models
include the data structures, the operators or functions that
manipulate these data structures, and the ordering constraint
on the functions. We reify each of these elements so that they
can be symbolically referenced.

• We develop a toolchain that processes the above graph-
structured models using symbolic queries to synthesize
kinematics and dynamics solvers and generate code from
the resulting models. We complement the toolchain by an
implementation of a software library that implements the pure
functions to implement the solvers. Both are released under a
free and open-source license.

• We showcase the models, toolchain, and backend software
library in a case study for kinematics and dynamics solvers.

The remainder of this article is structured as follows. In
Section 2, we revisit the application to provide a detailed review
of kinematics and dynamics solvers to then derive requirements
for graph-based solvers in Section 3. Afterward, Section 4 provides

7 A metamodel is a model that represents the constraints that a concrete

model must satisfy, structurally and semantically, in order to be a “well-

formed model” in the context of the application domain the model is

designed for.

the background on composable models. We present the tooling
for solver synthesis and code generation in Section 5, followed by
a case study in Section 6. Section 7 discusses our approach and
tools, while Section 8 concludes the article.

2 Kinematics and dynamics solvers

This section describes the structural and computational policies
used in numerical solvers for kinematic chains via (i) the topology
of the underlying graphs; (ii) the types of traversals (that is,
the serialization of the computations) over these graphs; (iii) the
representation of data structures; (iv) the types of computations on
these data structures; (v) the handling of cycles in the graphs; (vi)
the handling of domain-specific, composite and hierarchical nodes;
and (vii) the support of incremental computations to only evaluate
output that depends on changed input and caching of intermediate
results. In the supplementary material, we provide an additional
analysis of graph-based solvers for probabilistic networks, data-flow
programming, and expression graphs.

The robot in Figure 1 exemplifies the most relevant types of
kinematic chains: each of the two manipulators by itself is a
serial chain, but when connecting both arms to the robot, a tree-
structured chain with the torso as its root emerges. Finally, the
mobile base is an example of a parallel chain where the ground
couples (or “constrains”) the motion of all wheels. The objective of
solvers that act on such kinematic chains is to answer queries that
compute the instantaneous forces and motions of all links when
a particular subset of them is given as inputs (or “drivers”) for
the motion. Figure 2A depicts an example where multiple motion
drivers are attached to a kinematic chain tomove or accelerate a body
in a certain direction while resisting external forces. Additionally,
the application specifies the expected solver outputs, such as the
pose (position and orientation) and velocity of an end-effector, or
the joint-level control torques to achieve the desired motions.

The following paragraphs provide some concrete examples of
queries and their solvers. Algorithm 1 shows an FPK solver that,
given a model of a kinematic chain with N bodies and the joint
positions q as inputs, computes the pose iX0 of each body i with
respect to the root body 0. To this end, in Line 2, it composes the
static pose over the body (or “link”) XL,i with the pose over the
joint XJ,i(qi) that depends on the current joint position. The result
is the relative pose of the current body i with respect to its parent
p(i). Then, in Line 4, the solver accumulates the parent’s pose with
that relative pose. Here, a single outward traversal (Line 1) of the
kinematic chain froma selected root to the leaves suffices to compute
the answer. In the context of kinematic chains, such a graph traversal
that serializes kinematic or dynamic computations is also called a
sweep.

The FVK solver in Algorithm 2 computes the Cartesian velocity
Ẋ i for each body in the kinematic chain given the joint velocities
q̇. A comparison of the FVK solver with the FPK solver reveals
that the former is an extension of the latter: only two lines have
been added, while the others remain the same. These two lines
are the initialization of the root body’s velocity (Line 1) and the
accumulation of velocities along the kinematic chain (Line 6). The
accumulation step consists of, from right to left, (i) mapping the
joint velocity q̇i to Cartesian space with the joint Jacobian Si; (ii)

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 2
(A) Kinematic chain with three types of motion drivers attached to links and joints as solver input: desired Cartesian accelerations via constraint forces
Fcstr and acceleration energy Eacc; Cartesian external forces Fext; and joint torques τ f f . The solver’s output is the answer to the query that asks for the
fifth link’s pose 5X0 and the fourth link’s velocity Ẋ4. (B) Kinematic chain consisting of links and joint with positions X and velocities Ẋ propagated
outward (blue circle) during the first sweep; inertia M, force F, and acceleration energy Eacc propagated inward (green circle) during the second sweep;
as well as constraint forces Fcstr and acceleration Ẍ propagated outward during the third sweep.

Algorithm 1. Forward position kinematics.

Algorithm 2. Forward velocity kinematics.

transforming that Cartesian velocity to the root coordinate frame
using the inverse transformation matrix iX0; and (iii) adding the
Cartesian velocity Ẋp(i) that has already been accumulated in the
previous step, up to and including the parent body.

Another policy for the velocity accumulation step is to express
the velocities in the moving coordinate frame instead of the
stationary root frame: Ẋ i← iXp(i)Ẋp(i) + Siq̇i. Many more such
policies exist, especially when considering complicated algorithms,
including forward and inverse dynamics solvers (cf. Featherstone,
2008; Vereshchagin, 1989) that map forces to accelerations and
vice versa, respectively. The variety in solver policies is due to

the large set of choices that are possible, for example, (i) the
choice of physical units that must be kept consistent across
all operations; (ii) the propagation of the motion drivers that
could either be accumulated as soon as possible (for the most
efficient computations) or only during the third, solver sweep
(for most flexibility); or (iii) the choice of matrix inversion and
the handling of singularities during such an inversion. The two
solver examples already demonstrate how a naïve implementation
of such algorithms leads to code duplication when each algorithm
resides in its own function or class, as is commonly the case
in software libraries. For example, a hypothetical solver library
may provide the functions fpk(chain, q) for Algorithm 1,
fvk_stationary(chain, q, qd) for Algorithm 2, and
fvk_moving(chain, q, qd) for the choice of the moving
coordinate frame, each containing computations of the FPK solver.
The number of policies increases even further when the chain’s
dynamics also enter into the solver.

The two algorithms above demonstrate a computation on a
graph. The graph represents the kinematic and dynamic properties
of the kinematic chain (including the topology of the connections
between links) but does not contain all data structures found
in the algorithms. Instead, all variables apart from the already
specified pose over the link, XL,i, must be added to the graph.
The computations are the various types of operators with physical
meaning that are represented mathematically by either matrix
multiplication or vector addition (composition of poses, maps
from joint space to Cartesian space, transformation of a velocity,
or addition of two velocities). The top-to-bottom order of the
lines is a physically imposed ordering constraint: here, the
transformation of velocities depends on (the presence of) poses.
Finally, more complicated solvers rely on up to three sweeps,
as depicted in Figure 2B: positions and velocities travel outward
from the root to the leaves in the first sweep; inertia, force,
and acceleration energy travel inward in the opposite direction
during the second sweep; the third sweep is outward again,
accumulating those computational results that are needed for the
actual query.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

Some kinematic chains have cycles. Solvers deal with such
cycles in two complementary ways. The first option is to cut
an edge in each cycle, which results in a spanning tree of the
kinematic chain. For each cut, the solver adds Cartesian acceleration
constraints on either side of the cut, representing the physical
reality that both sides of the cut must move with the same
acceleration. That reality is a constraint that the solver algorithm
must take into account. The solver deals with the loop constraint
by computing the constraint forces that would make both sides
of the cut accelerate in exactly the same way. The second option
is to cluster the cycles into composite nodes that must then be
solved for numerically using an explicit matrix inversion (Jain, 2012;
Chignoli et al., 2023).

We have already introduced a hierarchy in the description of the
types of kinematic chains above. Here, the apex of that hierarchy
could be the whole robot, the base with two arms, to be treated as
one kinematic chain on which a single solver operates. However,
more commonly, roboticists decouple the arms from the base and
associate dedicated solvers with each; often, kinematics solvers that
run at lower control frequencies suffice for the base, whereas for the
arms dynamics solvers at higher control frequencies are required
to handle contact situations. Finally, the individual joints of the
arms are the “smallest” kinematic chains. Yet, even at this level,
joints could actually be composites. As an example, one model
of a spherical joint is a sequence of three revolute joints. Then,
solvers dispatch specialized computations depending on the joint
type. For example, one-dimensional joints such as revolute and
prismatic joints allow for computationally efficient solutions that
rely on scalars instead of full matrices.

We have presented an example of incremental computations
in dynamics solvers in Schneider and Bruyninckx (2019):
the propagation of the so-called articulated-body inertia
matrix (see Featherstone, 2008) is a computationally
expensive operation. Additionally, the inertia matrix does not
change significantly in neighboring configurations, while its
parameterization is prone to measurement noise. Consequently,
it is a good candidate for a computation that is performed at a
reduced frequency in comparison to the propagation of the other
quantities. The articulated-body inertia matrix is then cached and
reused across multiple solver invocations.

3 Requirements for graph-based
solvers

Physical and scientific constraints exist that lead to efficient
solvers for kinematic chains and graphical models. It is the top-
level tree structure of the underlying graphs that enables the
application of dynamic programming. For graphs with cycles,
the graph must be pre-processed to establish a tree-structured
view on the graph, either as a spanning tree or a hierarchical
decomposition as in the junction tree algorithm. On the one hand,
dynamic programming dictates which data structures should be
cached at each node and which operations should be performed
on that data. On the other hand, it coordinates or schedules
the computations along the graph traversal. Two sweeps, one
inward and one outward, decompose the graph’s state that can
then be flexibly and efficiently recomposed in a final solver

sweep to answer queries. The scheduling can depend on various
types of state or runtime conditions, such as the availability
of data or conflicts in the motion specification. Hence, we can
encode such a solver algorithm as a computational graph on
top of the underlying structural graph. The latter is the basis
of the former’s bookkeeping (which data structures to use in
which operations), configuration (which values to fill into the
data structures), and coordination (in which order to execute the
operations). For data-flow networks and expression graphs, these
three points are completely at the developers’ disposal, who must
rely on their insights into the domain to design the algorithms.
Nevertheless, the same algorithmic building blocks exist in these
approaches.

We can derive various requirements for our approach from the
analysis. First, we need explicit models of the graphs’ structure
and of how behavior is attached to that structure. Here, behavior
refers to explicit models of algorithms that consist of data
structures, functions, and schedules. The various computational
policies, such as caching of intermediate results or varying
execution frequencies are then a higher-order composition to the
algorithms. A second necessity is flexible tooling that efficiently
synthesizes the domain-specific algorithms and attaches them
to the underlying graph models. Because the algorithms are
merely models, additional tools are required that can execute
these models by interpretation or compilation. Finally, all of
the above models should be unambiguously understandable by
a robot so that it can automatically adapt its software, also
at runtime.

4 Composable and compositional
models for kinematic chains

In this section, we summarize the main results of our prior
work from Schneider et al. (2023) to represent the above-mentioned
graphs (their structure and their “behavior”) as they are a
prerequisite for the remainder of this article. In that publication, we
have presented an in-depth analysis of existing modeling formats,
including the Unified Robot Description Format (URDF)8 and
the Semantic Robot Description Format (SRDF)9 that originate
from the Robot Operating System (ROS) ecosystem (Quigley et al.,
2009). Given the lessons learned, we have designed and realized
composable and compositional models in JSON-LD (Sporny et al.,
2020). Composability pertains to structure and is an application of
twomajor software design principles tomodels.The first is the open-
closed principle (Meyer, 1997), which implies that it should always be
possible to extend existing models without a need for modification.
The second is the single-responsibility principle (Martin, 2003), which
implies that each model should represent exactly one concern.
In relational databases, the latter principle is known as the third
normal form (Codd, 1971; Kent, 1983): each table has a single
“topic” and only contains direct dependencies on the table’s key;
that is, it only represents intrinsic properties instead of extrinsic
attributes (Bruyninckx, 2023, Section 1.5.3). Compositionality is

8 http://wiki.ros.org/urdf

9 http://wiki.ros.org/srdf

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
http://wiki.ros.org/urdf
http://wiki.ros.org/srdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 3
The joint joint1 constrains the relative motion of the two frames link0-joint1 and link1-root that are associated with the links link0 and
link1, respectively. For example, the pose joint1-pose of the latter frame with respect to the former frame is associated with the joint position
q1 and can change over time. Finally, pose link0-pose locates the joint frame on link link0 with respect to the root frame link0-root. For rigid
bodies, this pose remains static.

concerned with model semantics. It implies that each model must
have an unambiguous meaning10. For composite models, that
meaning must follow from the meaning of its constituents and
the composition rules (which are higher-order models, that is, a
set of relations with other models as arguments) so as to avoid
unpredictable “emergent” behavior of the composed system. Both
these design goals, composability and compositionality, are highly
relevant in complex modern robots that act in open environments
and open-ended missions where (i) designers usually cannot
foresee all possible applications of their models and, hence, should
avoid introducing artificial limitations; and (ii) robots must be
able to interpret and reason about the models by themselves
without having to rely on human developers to transform the
models to code.

JSON-LD models are both JavaScript Object Notation (JSON)
(Bray, 2017) documents and Resource Description Format (RDF)
(Cyganiak et al., 2014) documents11. They support composability
and compositionality because all model elements (i) have unique
identifiers so that they can be referenced from “external” sources
such as files on servers or even executing software binaries; (ii)
can refer to complete metamodels that unambiguously define the
models’ semantics, so that they are free from implicit assumptions;
and (iii) are loosely coupled due to the underlying, generic graph
structure as well as the support for “symbolic pointers” that
are represented by Internationalized Resource Identifiers (IRI)
as defined by Duerst and Suignard (2005). In the following
subsections, we introduce concrete JSON-LD models of kinematic
chains and their behavior as a running example. The proper

10 A counterexample is the rhetoric metaphor where the literal meaning

deviates from the implied, figurative meaning.

11 https://w3c.github.io/json-ld-syntax/#relationship-to-rdf

design of the underlying metamodels can only originate from a
detailed and exhaustive domain analysis as we have performed
for kinematic chains here and for the additional domains in
the supplementary material. As a typographic convention, we
indicate model elements in a monospaced font. In addition, we
designate models by concise and human-understandable identifiers,
yet their real meaning must only come from their properties and
metamodels.

Figure 3 depicts two links that are constrained in their relative
motion by a joint. We consider the most abstract representation
of a link or body, its “skeleton,” as simply a collection of
simplices, that is, geometric entities such as points, lines, or
frames. These simplices are attachment points for, among others,
shape geometry, inertia, motion specifications and also joints as
textually represented using JSON-LD in Listing 1. Syntactically,
JSON-LD can add one identifier (@id keyword), one or more
types (@type keyword), and one context (@context keyword)
to any JSON object. The referenced context, as a list of IRIs,
symbolically points to allmetamodels that define themeaning of this
model. Part of that metamodel is the structural constraint that the
Joint type demands the between-attachments property, as
indicated by the matching colors. One way to formally represent
such a constraint is via the Shape Constraint Language (SHACL)
defined in Knublauch and Kontokostas (2017). Another part of the
metamodel defines that the between-attachments property
symbolically refers to a list of all simplices that are, on the one
hand, attached to bodies and, on the other hand, are involved in
the joint-constraint relation. Similar to the body, this is the most
abstract representation of a joint that captures nothingmore than the
joint’s constituents. The type of joint (e.g., revolute or prismatic), its
geometric constraints (e.g., a revolute joint keeps two lines attached
to both bodies coincident), or its direction of motion must be
composed on top of this model as indicated by the ellipsis. More

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://w3c.github.io/json-ld-syntax/#relationship-to-rdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

Listing 1. Textual model of joint rob:joint1. Colors that match with Figure 3 indicate identical entities.

Listing 2. Pose relation in JSON-LD.

complicated kinematic chains are represented by ordered collections
of joints. Thus, our models can represent kinematic chains of
arbitrary topology: serial, tree-structured, and parallel (that is, with
one or more cycles).

The pose in Listing 2 is a relation over the same frames as
those present in the joint relation to represent the coordinate-free
position and orientation of the joint’s constrained motion. In the
context of a Pose, these two frames play the role of an of frame
and a with-respect-to (or wrt) frame, respectively. Listing 3
then introduces concrete coordinates in 3D-Euclidean space (as
a unitless direction-cosine matrix and a position vector measured
in meters). This model shows an example of multi-conformance,
meaning that an entity can have more than one type to define
its semantics, a feature that is rarely encountered in modeling
approaches or general-purpose programming languages. Moreover,
JSON-LD helps in distinguishing properties by mapping them to
IRIs: theofproperty in Listing 2 Line 5 has a differentmeaning from
the one in Listing 3 Line 11. To this end, the embedded context maps
the latter to the IRIcoord:of-pose (Line 5), wherecoord is the
prefix (or “namespace”) defined in Line 3. Additionally, this context
defines the of property as a symbolic pointer (Line 6). We again
notice the recurrence of the same rob:link0-joint1 frame in
Line 12 that we have already encountered above.

The model of a function (or operator) follows the same pattern:
it features an identifier, a type, and its properties, as exemplified
in Listing 4. The semantics are defined in the metamodel that is
referenced by the type. In this example, the operator represents a
map from a joint-space position rob:q1 to a pose rob:joint1-
pose in Cartesian space. The metamodel also imposes structural
constraints, for example, that the joint position and the pose are
associated with the same joint. There are two noteworthy remarks.

First, the model represents an operator but does not “execute” it;
instead, that evaluation is the result of a model transformation via
some interpretation or compilation. Second, multiple instances of
the same operator, that is, operators with the same type, can exist.
In that sense, when compared with general-purpose programming
languages, the type defined in the metamodel resembles a function
declaration, whereas an instance establishes the connection or
binding of data structures, similar to a closure in functional
programming languages. The execution or invocation of such a
function is represented by an entity of type Schedulewith a single
property trigger-chain12, an ordered list of symbolic pointers
to operators.

Our approach generalizes the geometric relations
semantics (GRS) (De Laet et al., 2012) in two ways. Although the
GRS do separate the coordinates from their coordinate-free relation,
theydonot reify the latter.Here, instead,weassignunique identifiers to
both representations, which enables us to properly express the one-to-
many relations from the former to the latter. Furthermore, we extend
theGRS to themodels of kinematic chains and to thedynamics solvers
on top. This includes physical quantities such as acceleration, force,
and inertia together with their operators. Having symbolic models
of kinematic chains allows pre-processing or “normalization.” This
includes, for example, the extractionof a spanning tree, the conversion
of all quantities to matching physical units, the composition of static
chains of pose relations, or the transformation of inertia to frames
that are most suitable for the solvers.

12 This terminology originates from the microblx framework (Klotzbuecher

and Bruyninckx, 2013).

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

Listing 3. Pose coordinate representation.

Listing 4. Forward position kinematics operator of a joint.

5 Tooling implementation: synthesizer
and code generator

In this section, we describe our tooling to synthesize concrete
algorithm models for kinematics and dynamics solvers and to
generate correct-by-construction code from such models. Synthesis
entails deriving data structures, function instances, and a schedule.
The generated code can then be seen as a dispatcher of that
schedule. Figure 4 depicts the architecture of our toolchain, which
consists of three main tools. The synthesizer that consumes a
model of a kinematic chain, a query model composed on top of
that kinematic chain, and a dedicated solver configuration or a
“template” of the solver. It produces as output an algorithm model
that can be seen as an instantiation of the template along the
kinematic chain. This algorithm is fully linked to the kinematic
chain model, meaning it is a graph that symbolically points to
elements of the kinematic chain. The IR generator lowers the
algorithm model to an intermediate representation (IR) that the
template-based code generator then transforms to code in a general-
purpose programming language. It is a best practice to keep any
logic out of the code generator. Hence, the IR generator performs
any pre-processing required for the code generator. Thus, lowering
entails the preparation of the algorithm for the code generator
by serializing the graph to a tree and introducing any necessary
transformations. Finally, given software libraries that provide the
pure solver functions, this code is compiled into an executable

with a general-purpose compiler. We provide more details on the
implementation of all tools and models in the following discussion.

5.1 Synthesizer

The overall process of synthesis is a form of graph rewriting,
that is, matching patterns in the graph and replacing them with new
patterns. In general, due to the subgraph isomorphism problem, this
is an NP-complete problem (Cook, 1971). However, we can exploit
domain-specific knowledge that enables us to (i) guide the traversal
over the graph structure; and hence (ii) reduce graph matching on
the overall graph to a local neighborhood or even simply localized
graph traversals.

We have implemented the synthesizer using the established
RDFLib13 Python library, which also supports the standardized,
powerful, and mature graph query language SPARQL (Harris and
Seaborne, 2013). The step change in employing this setup is that (i)
SPARQL enables the declarative formulation of complicated graph
matching and even graph rewriting queries; (ii) in SPARQL the
directionality of edges does not constrain traversability so that a
query can follow edges in the “opposite” direction, (iii) RDFLib
allows “anchoring” these queries in the underlying graph to drastically

13 https://rdflib.dev/

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://rdflib.dev/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 4
High-level architecture of our toolchain showing the three developed tools (blue boxes without hatching), a general-purpose compiler (blue box with
hatching), and the artifacts (orange boxes) they consume or produce (arrows).

improve performance by restricting the graphmatching to the above-
mentioned neighborhood of these “anchor points,” and (iv) RDFLib
provides a tight interface of custom code with the queries.

The synthesizer features a modular architecture with a small
framework core that is complemented by modules to realize the
interaction with the graph, for example, by emitting the required
data structures and operators for performing the FPK computations.
Inspired by the terminology of Gremlin (Rodriguez, 2015), we call
eachmodule a step. A step declares to the framework (i) an expansion
query that, on the one hand, determines where the traversal through
the graph should continue and, on the other hand, is a first filter
criterion to determine when the step applies; and (ii) the functions
that implement the graph manipulations at the nodes (either the
parent and child or only the child) reached by the expansion. The
pure declaration has the benefit that the framework can pre-process
and optimize the query execution. Specifically, we have noticed that
query execution is a significant contributor to the overall runtime
of the synthesizer, but many of these queries tend to be the same.
Hence, the framework first clusters all steps with the same expansion
query, then executes that query once and afterward dispatches to
all steps. The framework also manages a blackboard that it passes
to each step. The blackboard is a shared data structure that allows
various steps to communicate with each other and incrementally
build up the algorithm model. Finally, the framework also realizes
the graph traversal as such, with the help of the expansion queries,
in a breadth-first manner.

A configuration must be provided to select the types of
queries that the synthesizer supports. It consists of a configuration
per sweep, an ordered list of steps to be applied during the
graph expansion and graph traversal, and the order and direction
of these sweeps. As an example, a synthesizer for the FPK
problem only requires a single sweep as dictated by physics and
evident by Algorithm 1, whereas a hybrid dynamics solver demands
three sweeps.

5.1.1 Graph expansion by example
We use the FPK solver to exemplify the synthesis in Figure 5.

This figure shows an excerpt of a kinematic chain model in
the lower box, which is a visual representation of the models
from Listings 1 and 2 with an additional joint position q1

composed on top.
As a first step, the synthesizer determines the traversal, that

is, which parts of the graph to visit and in which order. Most
computations in the kinematics and dynamics solvers propagate
quantities between “local” root frames on adjacent links. The
SPARQL query in Listing 5 identifies such frames by a transition
over a link and over a joint. Assume that the traversal starts at the
frame link0-root. This is then the ?node argument passed to
the expansion query. Hence, the query tries to follow the geom-
ent:simplices first in the “inverse” direction, as indicated by
the caret, which would bring it to the link0 node, and then in the
“forward” direction so that it arrives at both the link0-joint1
node and back at the link0-root node. Next, the FILTER

statement eliminates the link0-root node. With the same logic
applied to the kc-ent:between-attachments edges, the
traversal arrives at the link1-root, which is designated as
?child. Line 4 finally returns any found child (and also the original
input node as the parent) as a result of the query.

5.1.2 Graph manipulation by example
Next, we investigate how the position propagation step

(Algorithm 1 Line 2) manipulates the graph. At first, the step
registers a set of visitors, or callbacks, with the framework. During
this registration procedure, the step declares the conditions for
when these visitors should be executed. The conditions include
the mandatory expansion query and further optional queries,
for instance, to check if the traversal is currently visiting a leaf
node. Finally, the step can decide whether to visit the edge,
in which case it receives the parent and child as argument, or

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 5
Given the kinematic chain model from Listing 1 (lower orange box), the synthesis step for the FPK algorithm emits a model (upper green box) of the
data structures indicated by blue circles (see Listings 2 and 3), the operators indicated by red circles (see Listing 4), and the schedules indicated by gray
circles. Edges are labeled by gray panels. The thick edges show how the query in Listing 5 traverses the graph from the start node link0-root (the
?parent) to the link1-root node (the ?child).

Listing 5. SPARQL query for frame-to-frame traversal expansion.

whether to only visit the child node. In addition to the expansion
query from Listing 5, the position propagation step does not
declare any further conditions. Furthermore, this step requires
access to the parent’s and child’s states, so it employs an “edge
visitor.” The step necessitates two passes: a configuration pass to
instantiate the algorithm’s data structures and a computation pass
to instantiate the operators and append them to the schedule.

Continuing with the example in Figure 5, we notice that
link0-joint1 is eligible for the position propagation step
because it has been reached by the expansion query. During
the configuration pass, the step obtains handles to the link0-
root-to-joint1 pose, the link0-joint1 frame, and the
joint position q1 to then emit the two poses link0-joint1-
to-link1-root and link0-root-to-link1-root.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

Listing 6. IR of algorithm.

Additionally, the joint position and all three poses are added
to the blackboard. This enables the computation pass to access
them and emit two operators. The first maps the joint position
to Cartesian space (joint1-fpk). The second composes the
pose of the link and the pose over the joint (compose1). Finally,
the pass adds both operators to the schedule (sched1). For this
example, we have used human-readable identifiers for all created
models; however, in the implementation, we have instead opted
for randomly generated universally unique identifiers (UUIDs) as
defined by Leach et al. (2005).

5.1.3 Parallel kinematic chains
Handling parallel kinematic chains requires the interplay of the

graph traversal and the visitors. First, during the traversal, each
expanded node is assigned a depth, that is, its minimal distance
from the node where the traversal started. Then, the visitors feature
conditions to handle the different types of edges: cross edges connect
nodes with the same depth, forward edges connect from nodes with
lower depth to nodes with higher depth, and vice versa for back
edges. The concrete graph manipulation to be performed for each
type of edge is again part of the step. An example in the context
of the FPK is to insert a computation that checks, at runtime, if
the poses each way around the cycle are consistent. Alternatively, a
dynamics solver could insert acceleration constraints as described in
Section 2.

5.2 Code generation

We have implemented the code generator using the
StringTemplate14 library and its JSON frontend StringTemplate
Standalone Tool15. StringTemplate enforces the separation of logic
from rendering templates and is one of the few template engines
that has scientific justifications for its design and the included and
excluded primitives (Parr, 2004). A graphical user interface, the
“Inspector,” allows visually debugging the generated code by tracing
each rendered token back to a template fragment and its input data.
Furthermore, the StringTemplate library is extensively used in the
ANTLR parser generator (Parr, 2013).

To bridge the gap between the complete graph models and
the template engine, we have introduced the IR and its generator.
Its objectives are three-fold. First, because the templates are logic-
free, the IR generator performs any necessary processing (e.g.,
filtering strings so that they represent valid identifiers or embedding
information for the template into the IR) on the graph model.
Second, it transforms the graph into a tree structure by cutting loops
and replacing them with symbolic pointers. Finally, it serializes the
resulting graph to JSON, as exemplified in Listing 6. The excerpt of
an IR model contains (i) the variables, which is a dictionary
with all required data structures, their types, sizes, or initial values;

14 https://www.stringtemplate.org/

15 https://github.com/jsnyders/STSTv4

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.stringtemplate.org/
https://github.com/jsnyders/STSTv4
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

Listing7. StringTemplate excerpt for generating the solver implementation. Colors align with the IR from Listing 6.

(ii) theclosures, a dictionary of operators with their connections
to data structures as symbolic pointers (joint-position and
pose) and additional properties (dimensions and joint); and
(iii) the schedule as an ordered list that contains the symbolic
pointers to the closures dictionary.

Listing 7 shows an excerpt of a template model for generating
C code. The snippet consists of three rules in Lines 1, 9, and 15.
As such, these templates align with our objective of composability
because (i) every rule is labeled by an identifier and, hence, can
be referenced, while (ii) higher-level rules dispatch to lower-level
rules. This structure mirrors that of parsers for formal languages,
but instead of constructing an abstract syntax tree (AST), it renders
text from anAST.The top-level application rule accepts several
parameters and then defines the to-be-rendered text between the
double angle brackets << and >> (single angle brackets < and >

contain StringTemplate processing directives). Here, only the two
arguments closure and schedule are shown that align with
the IR from Listing 6.The application consists of the program’s main
function, which first defines and initializes all required variables (not
shown) from the algorithm model’s data structures and then emits
the function calls. Line 4 iterates over the schedule and applies
the statement rule to each entry with an implicit argument of
the currently visited entry and the closures dictionary. Any two
generated lines will be separated by a line break. The statement
shows another StringTemplate pattern: the notation closures.

(closure-id) performs a lookup in the closures dictionary
with the value of closure-id as key. Here, another dictionary is
returned inwhich the().operator retrieves the value associated
with the operator. The directive ({rule-id}) (…) then dispatches
to the rule rule-id, which is the joint-position-to-

pose in this example. This last rule finally renders the function call
with the provided arguments.

The real implementation separates the top-level application
template from the reusable and domain-specific fragments. We also
see that fragments relate to different domains, such as the algorithm

model (statement rule) or the kinematics model (joint-
position-to-pose rule), and are, hence, located in separate
files. As a result, we can efficiently compose a variety of applications
by relying on StringTemplate’s import feature to include only the
necessary fragments in a top-level template.

5.3 dyn2b: support library for
computational building blocks

We have also implemented a C software library called dyn2b
that realizes the numerical computations for kinematics and
dynamics solvers at runtime. dyn2b is designed for composability
in that it only provides pure functions at the granularity required
by the synthesizer and code generator. First, pure functions are
free from side effects, which means that any state must be passed
into the functions as explicit arguments to allow for their arbitrary,
even reentrant, execution. Second, this design prevents the state
from remaining hidden behind a private interface. All too often,
algorithm or function developers cannot foresee the context in
which their artifacts will be used and, hence, should not introduce
preliminary decisions to hide the state. As an example, we have
noticed this limitation in the development of an online identification
procedure for dynamic parameters that relied on the KDL. Here, the
inertial parameters are hidden inside a class that prevents them from
being updated using an estimator. Most solver libraries, including
RBDL and Pinocchio, already follow such a design that avoids
encapsulation: the kinematic chain’s model and/or the solver’s state
live in separate yet pre-defined data structures that are publicly
accessible. Third, the separation of data from the computations
enables (i) the optimization of the data layout for the hardware at
hand, including the order of the data structures and their alignment
to memory boundaries or cache lines; (ii) state persistence, for
instance, by streaming part of the state to a database; or (iii)
instrumentation of that state at specific points in time.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

The provided functions mainly comprise 3D-Cartesian space
kinematics and dynamics to propagate and accumulate the compact
representation (cf. Featherstone (2008)) of screws and inertia and
functions that map between joint space and Cartesian space for
revolute and prismatic joints. In contrast to Featherstone (2008), we
do not distinguish between velocity vectors and force vectors but
only implement a generic set of functions for screws. The reason
is that the type checking, including the checking of additional
semantic constraints, is performed on the model level; the code
generator then only dispatches to the correct numerical functions.
The screw operators act on collections of screws instead of individual
screw vectors so that they can efficiently handle the multiple
instances of motion drivers. dyn2b explicitly excludes functions
for highly variable domains, such as operators associated with more
sophisticated joints, stiffness, and damping due to their non-linear
behavior, numerical integrators, or trajectory generators. All of these
warrant their custom set of models, tools, and software libraries.

dyn2b is compatible with and is built upon the Basic
Linear Algebra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) libraries. For now,we rely on the verymuch unoptimized
Netlib reference implementations of both libraries. Hence, a
significant performance improvement may be possible with a
(highly localized) change to a dedicated BLAS implementation
for small-scale linear algebra. Here, the role of a general-
purpose language compiler is to generate efficient numerical
code by program-level optimizations such as code inlining,
vectorization, constant propagation, or introducing platform-
level details, including calling conventions, instruction scheduling,
register allocation, and machine code generation.

5.4 Steps for dynamics solvers

Analogous to the synthesis and code generation example above,
we have also realized the building blocks for further kinematics
solvers up to the acceleration level as well as dynamics solvers. Here,
we outline the main challenges and policies that we address in our
implementation for such solvers.

The main difference for traversing the graph during the inward
sweep relates to the handling of leaves, loop-closures, and branching
points. We have already discussed the case of an unconditional edge
visitor in Section 5.1.2. In contrast, to handle leaves, a step registers
a conditional node visitor with the framework that will be called
with only the currently visited node as argument. The condition
resembles Listing 5, but (i) is a boolean-valued SPARQL ASK query
that (ii) checks whether no joint follows the link; that is, it is a
leaf. The concrete graph manipulation instructions depend on the
quantity or motion driver; for instance, inertial force vectors are
initialized to zero vectors, whereas the propagated inertia matrix is
initialized with the leaf link’s inertia matrix. As for branching points,
such as link 1 in Figure 2A, the synthesis step emits operations to
accumulate inertia and force over all children of the currently visited
segment. Because a serial connection is a special case of a branched
connection, we employ the same steps for both in our synthesis tool.
The only difference is that the synthesized algorithm contains more
data structures and operations for branching points.

Next, we turn to the propagation of motion drivers through the
kinematic chain. As an example, Figure 2A depicts two instances

of external force motion drivers (Fext,3 and Fext,4). Both instances
are propagated inward to arrive at link 1, which now “feels” the
propagated effect of both forces as F′ext,3 and F′ext,4. Traditional
solvers would accumulate their effect by adding both forces
to minimize the overall number of force variables and, hence,
maximize the computational efficiency of the solvers. In contrast,
following our recent work (Schneider and Bruyninckx, 2019), the
steps for the inward sweep decompose the kinematic chain’s state by
propagating all forces and their instances in separation. Then their
combined effect at link 1 can be represented as a list: (F′ext,3 F′ext,4).
In other words, accumulation here means to append. In this setting,
it is the role of the synthesis steps to perform the bookkeeping of
individual, propagated forces, which includes (i) tracking the sizes
of the lists per segment so that their memory can be pre-allocated;
(ii) computing the indices into the lists so that each force can be
found; and (iii) symbolically associating each propagated force with
its original motion driver. For a human consumer, similar names
establish the link to the original motion driver, but in the models,
a separate relation facilitates the traceability of propagated forces to
their original motion specification.

On the one hand, the decomposition during the inward sweep
is computationally more expensive than the inward sweep in
traditional solvers. On the other hand, it also enables the flexible
recomposition of the motion drivers during the final outward sweep
or solver sweep. Examples include (i) weighing or prioritizing
motion drivers with respect to each other; (ii) avoiding actuator
saturation by scaling down some motion drivers in accordance with
the motion specification; or (iii) using the decomposed state in
model-based controllers (MPC).

6 Case study

The objective of the case study is multi-fold. First, it
demonstrates the algorithm synthesis and code generation from
composable models. Second, it shows the iterative and incremental
modeling and development of a concrete application together with
its integration into a real robot. Third, it provides evidence of the
models’ composability because the application is composed of the
solvers’ algorithmmodels. Finally, it demonstrates compositionality
by performing semantic algorithm manipulation. The case study
follows the code-centric tutorial that is available together with
the toolchain. The objective is to compose a controller and a
robot interface onto a recursive Newton–Euler algorithm (RNEA).
Afterward, we systematically inject instrumentation operations
into the resulting algorithm. Our target platform is a Kinova
Gen316 manipulator for which we have created composable
models in JSON-LD17.

To synthesize the RNEA, we configure the toolchain with
two sweeps. The first sweep realizes the outward propagation
and accumulation of poses, twists, and acceleration twists. The
second sweep realizes the inward propagation of Cartesian-space
inertial forces that compensate for gravity and velocity-dependent
accelerations. The inward sweep also computes the joint-level

16 https://www.kinovarobotics.com/product/gen3-robots

17 https://github.com/comp-rob2b/robot-models

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.kinovarobotics.com/product/gen3-robots
https://github.com/comp-rob2b/robot-models
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

control torques associated with the inertial forces. Both sweeps are
built from the available steps and code generator fragments that we
have explained above. In practice, a robot will have to synthesize
(part of) an application whenever the graph changes structurally.
For traditional solutions that rely onmanually implemented solvers,
this high variability leads to a combinatorial explosion for even
moderately sized applications, which makes it challenging to design
and verify the developed software in advance. Hence, we tackle such
problems with our toolchain to synthesize and generate correct-by-
construction solvers from verifiable specifications.

6.1 Damping controller and robot interface

The first extension is a Cartesian-space motion controller. Its
role is to realize the robot’s behavior over a longer time span as
contrasted with the solver, which only realizes the instantaneous
mappings of force and motion inputs to the control commands
of the kinematic chain’s actuators. For the case study, we have
opted to demonstrate the controller attachment using a simple
damping controller. The controller’s objective is to move the
robot’s end-effector while limiting the maximum velocity vmax and
maximum force fmax that it could exert on its environment. The
controller computes the commanded force as shown in the following
Equation 1.

fcmd = fmax −
fmax

vmax
vmsr (1)

In this equation, the damping is the intermediate term D = − fmax
vmax

that is scaled by the currentlymeasured velocity vmsr. Intuitively, this
means that the controller (i) at vmsr = 0 commands the maximum
force so that the robot can accelerate if it is not impeded; (ii) at
vmsr = vmax commands no force so that the robot does not accelerate
further; and (iii) otherwise linearly interpolates between both cases
with D as the proportionality factor. This behavior is depicted in
Figure 6. For this case study, we have connected the controller to the
robot’s linear upward motion (as seen by the world frame). Hence,
the robot always tries to move to a fully stretched-out configuration
(a workspace singularity) but can manually be displaced. When the
operator holds the robot in place, they feel the robot “pushing”
upward with the maximum configured force. If they move it upward
too fast (beyond the configured maximum velocity), they feel the
robot actively counteracting by braking. An alternative application
of this controller is to bring the robot into safely controlled contact
with its environment and then align it without relying on additional
exteroceptive sensors. As a second extension, we have modeled and
implemented a robot interface. The robot interface model attaches
to the various joint-level quantities to read joint positions and joint
velocities from the robot’s sensors and to command torques to
the actuators. The solver handles these attachments by a step to
read measurements in the first sweep and another step to write
commands in the last sweep.We support two backends:robif2b18

to operate the real robot and a simple simulation that provides fixed
measurements while printing joint-level commands to the terminal.

18 https://github.com/rosym-project/robif2b

FIGURE 6
Depiction of the damping controller’s behavior. The linear damping D
is computed from a given maximum velocity vmax and a maximum
force fmax, as indicated by the orange line. The force to command the
robot fcmd depends on the measured velocity vmsr. In free space, the
force accelerates the robot to maximum velocity, whereas in a rigid
contact, the robot does not move while still limiting the
commanded force.

6.2 Semantic algorithm manipulation

The algorithm model already enables simple queries to gather
statistics about an algorithm or even a complete application. A
simple example is to count the number of functions or data
structures of a particular type. This may provide insights into the
expected performance or memory requirements of the algorithm.
However, more interesting queries concern the instrumentation
of the running software. To this end, Listing 8 demonstrates a
complicated query that inserts a logger into an existing schedule.
Apart from the prefix definition at the top, the query consists of
three main parts: DELETE to remove elements from the RDF graph,
INSERT to extend that graph, and WHERE to localize the deletion
and insertion points. We start with the latter, which has the goal of
finding an operation ?op of type Damping (Line 19) with an input
property velocity-twist and an output property wrench.
This operation is part of the ?schedule’s trigger chain (Line 15),
the totally ordered collection of operations. RDF represents such a
collection as a singly linked list, a set of anonymous nodes that (i)
point to the concrete content (here, the operations) via the first
property; and (ii) are linked among each other by therest property
that points to the next node.The traversal of this list reads as follows:
(i) start at the ?schedule node; (ii) follow one step along the
trigger-chain property; (iii) follow an arbitrary number of
steps (indicated by the asterisk) along therest property to visit any
list node; and (iv) for each of these nodes, follow to the content via
thefirst property to an operation?op that must satisfy the above
constraints. The query also creates a new UUID as an identifier for
the logger (Line 22). The statement in Line 9 instantiates the new
logger with a single property quantity that represents an ordered
list—indicated by the parentheses—of data structures to log. Notice
that apart from the twist and wrench, we also log the joint position
of the manipulator’s second joint q2 that experiences the greatest
displacement. Finally, Lines 7, 11, and 17 represent, respectively,
the cutting, splicing, and bookkeeping of inserting the logger at the
correct location into the linked list.

For demonstration purposes, we have implemented a simple
backend for this logger model that, at runtime, writes the data into

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://github.com/rosym-project/robif2b
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

Listing 8. SPARQL update query to insert a logger into a schedule.

FIGURE 7
Visualization of the logged data recorded on the real robot. The plot
shows the relationship between the end-effector's measured upward
velocity (top), the upward control force (middle), and the second
joint's position (bottom). The seven labeled phases comprise the robot
being fully stretched out (1 and 7), manually pushed downward (2) and
upward (6) or held in place (3 and 5) by a human operator, and
moving up without contact (4). The controller is configured with
vmax = 0.1 m s−1 and fmax = 10 N.

a comma-separated value file. The drawback of this approach is
that it potentially introduces high amounts of jitter into the real-
time control loop. Hence, a more sophisticated approach would
rely on a realtime-capable communication infrastructure, such as
ring buffers, to send the data to a dedicated log writer. Figure 7
depicts part of this logged data as recorded from the real robot

that is executing the above application while intermittently being
impeded by a human operator (indicated by colored segments).

The robot starts in a stretched-out configuration, a workspace
boundary, so that it points vertically upward. Because it cannotmove
further in that direction, the controller commands amaximum force
of fmax = 10 N. Next, the operator physically displaces the robot
until it is parallel to the ground. During this second phase, we see
that the robot moves faster than vmax = 0.1 m s−1 and, hence, the
controller counteracts with a control force greater than fmax. After
releasing the arm, in the fourth phase, its velocity gradually increases
so that the commanded force reduces.Then, the operator pushes the
robot upward so that it exceeds vmax. Here, the controller actively
brakes to counteract that upward motion. Not surprisingly, due to
the affine control law (scaling and translation), the control command
is similar to the measured velocity. Finally, the arm reaches the
initial, stretched-out configuration again.

7 Discussion

A major inspiration for the toolchain originates from the
strategic programming paradigm (Lämmel et al., 2003). Although
mostly targeted at tree structures, its objective is to separate the
traversal control from the logic that is applied at visited nodes.
Here, the traversal strategies are composed of atomic traversal steps
and higher-order functions that are called combinators. Especially
adaptive programming, as found in the DJ library (Orleans and
Lieberherr, 2001), employs a similar approach as our toolchain by
defining graph visitors and their declarative traversal specifications
that are then dispatched on a graph of Java objects. With those
insights, we refactored our synthesis tool by separating the graph
traversal, the synthesis steps, and the blackboard that contains the

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

shared state. Additionally, we realized the query declaration and
implemented the caching to reduce the amount of overall query
executions.

As shown in the high-level architecture diagram in Figure 4, the
individual tools rely on explicit models instead of language-specific
APIs. On the one hand, this design allows each tool to be realized
with themost suitable programming language and choice of software
libraries. On the other hand, also the model representation between
two tools can be changed if the producing and consuming tools
are adapted. In either case, such a change remains very localized.
Here, we will review further variation points and their associated
one-to-many mappings with respect to model representation, graph
querying languages, template engines, and the execution backend.

The same models can be serialized in various interchange
formats, with XML (Bray et al., 2006) and JSON as the most
common options. Two models can even be equivalent semantically
yet differ structurally. For instance, a RigidBody constraint could
be part of an entity’s type or, alternatively, tagged to that entity
by a relation. In any case, if the models represent the same
information, they can always be model-to-model transformed into
each other. In the Semantic Web, the Web Ontology Language
(OWL) defined by Bock et al. (2012) provides multiple concepts to
perform such transformations.

Thedecision to use SPARQLwasmainly driven by its support for
declarative graph matching and its vendor-independent and mature
standard, together with the availability of RDFLib. RDFLib eased
the integration with our Python toolchain, in particular, due to the
in-memory, in-process database that avoids a dedicated database
setup. However, in our prior work (Hochgeschwender et al., 2016),
we also employed the declarative graph query language Cypher
(Francis et al., 2018) that originates from theNeo4j database. Cypher
supports graph matching and, as of now, is in the process of being
standardized. The imperative language Gremlin (Rodriguez, 2015)
is another popular alternative for graph querying that supports
graph matching.

We prototyped the code generation with the more popular
template engine Jinja19 in Schneider et al. (2023). Although the
integration with the Python-based toolchain was easy, we quickly
noticed the problem of interleaving logic with the templates and
a tight coupling of the templates with the execution environment.
Examples include the injection of Python functions into the
templates as processors or filters and exposing the database
interface to the templates. Additionally, in Jinja, the entry point is
always an “anonymous” template (not a rule as in StringTemplate)
that terminates the composition hierarchy at the top. Developer
discipline andmacros (akin to rules in StringTemplate) can help, but
“clean” templates are not enforced.

Especially when the applications growmore complicated, it may
be worthwhile to explore different starting points for the algorithm
synthesis. Currently, every synthesis execution starts from scratch.
On a computer with an Intel Core i7-4790K CPU and 16 GB RAM,
the synthesis takes approximately 1.5 s, while the code generator
finishes in approximately 0.3 s. However, it is important to note
that this is a design-time cost and not part of the real-time path

19 https://palletsprojects.com/p/jinja/

during the running application; the generated code itself is real-
time capable, that is, it always performs a maximum amount of
operations, each with a deterministic runtime. Still, when only some
models change, it may be computationally more efficient to reuse
previously synthesized algorithms and specialize or modify them
in a post-processing step. Another variation point comprises the
types of generated artifacts. Because the case study is only an excerpt
of the overall application, it suffices to generate completely static
code. A simple extension to efficiently change the software’s behavior
is to expose and adapt some of the data structures at runtime.
Another extension is to generate runtime-composable functions,
such as the cascades in a controller, which can be hooked into an
application-level event loop to be executed at different cycle rates.

There exists an overlap of our approach and toolchain with
functionality in the ROS ecosystem. As mentioned above, the
structural models in ROS systems are represented in URDF
and SRDF. The robot_state_publisher20 and tf (Foote,
2013)21 packages provide the software to bring these models to
life by realizing the runtime behavior. However, only the FPK
computation from Algorithm 1 is realized by these packages:
the robot_state_publisher evaluates Line 2, whereas each
instance of a tf listener computes Line 4. These two types
of computation are tightly coupled to the ROS communication
infrastructure that serializes, sends, receives, and deserializes all
pose relations, even if the involved nodes run on the same
computer. Once all poses have been accumulated, the tf listener can
answer queries that require the transformation of points or vectors
between coordinate frames. tf effectively only supports position-
level kinematics: twists can only be approximated by discrete
differentiation of poses. Acceleration twists, dynamic quantities and
their operators, andmaps fromCartesian space to joint space remain
completely absent. Additionally, the transformation graph in tf must
always form a tree. This is caused by the stateless publish-subscribe
communication: any node can provide new transforms at any point
in time so that the tf listener must always construct and evaluate
the transform graph anew, which requires a tree as an efficient yet
limiting data structure. For similar reasons, tf does not support
ahead-of-time or just-in-time validation to answer questions such as
“Do the frames in a query exist?” or “Does the transform graph actually
form a tree?“

Our approach compares favorably to the currently hyped
large language models (Vaswani et al., 2017): it is an engineered
solution that is explicit in the represented knowledge, which
enables explainability. In other words, composable models represent
exactly what is necessary, nothing more and nothing less. These
properties are also required to certify such a toolchain for safety-
critical systems.

8 Conclusions and future work

In this article, we present the graph-based solver pattern
that recurs in various seemingly unrelated robotic domains and
is the foundation of various efficient algorithms that act on

20 http://wiki.ros.org/robot_state_publisher

21 We use tf and tf2 synonymously.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://palletsprojects.com/p/jinja/
http://wiki.ros.org/robot_state_publisher
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

graph structures. We delve into the details of the pattern by
performing an in-depth analysis of solvers on kinematic chains.
The supplementary material extends the analysis for probabilistic
networks and factor graphs, data-flow models, and expression
graphs. We complement the composable models with a model-
based engineering toolchain to synthesize such algorithms from
the algorithmic building blocks: the data structures, pure functions
that act on these data structures, and schedules that describe
control flows as sequences of functions. A core element of this
toolchain is the synthesizer that accommodates various concerns,
including (i) multiple, structured traversals over potentially cyclic
graphs; (ii) dispatching computations at specialized node types,
both in terms of the graph structure (e.g., at branch nodes, leaf
nodes or cycle edges) but also the domain-specific semantics
(e.g., at geometric frames, rigid bodies, or kinematic joints);
(iii) the algorithm management such as performing memory
allocation or triggering computations; and (iv) the incremental
construction of the overall algorithm where the operations must
have access to a prior state from the same sweep or previous
sweeps. The synthesizer is an application of higher-order, graph-
based reasoning that relies on established standards and mature
software libraries. We generate correct-by-construction code from
the synthesized algorithm that is complemented by a low-
level numeric library to perform the computations required for
kinematics and dynamics solvers of rigid-body systems. In a case
study, we evaluate our approach on a real robot and demonstrate
how the explicit algorithm model facilitates semantic algorithm
manipulation.

The proposed approach paves the way to have models for the
robot’s complete life-cycle, including runtime aspects of the system.
Hence, as future work, we foresee the exploitation of all of the above
models so that robots can adapt their software themselves even at
runtime. To this end, we have already developed a proof-of-concept
tool using the llvmlite22 library, a Python interface to LLVM’s23

just-in-time (JIT) compiler. Additionally, we plan to apply and
extend the models and the tools to more complicated applications
involving multi-robot systems that must cooperate in challenging
manipulation tasks. It is in such systems that the models will
pay off the most, due to the complicated robot models and
world models that are connected by task or motion descriptions.
Here, the graph structure helps in coordinating and configuring
a wide range of algorithms, including monitors, controllers,
or estimators that are associated with the many relations in
the graph.

Data availability statement

The code and models for this article can be found in
the following repositories: Synthesis tool and code generator
templates: https://github.com/comp-rob2b/kindyngen.Metamodels
that define themodel semantics: https://github.com/comp-
rob2b/metamodels. Models for the Kinova Gen 3manipulator:

22 http://llvmlite.pydata.org/

23 https://www.llvm.org/

https://github.com/comp-rob2b/robot-models. Kinematics and
dynamics software library: https://github.com/comp-rob2b/dyn2b.

Author contributions

SS: conceptualization, data curation, formal analysis,
investigation, software,methodology, visualization,writing–original
draft, writing–review and editing. NH: conceptualization, funding
acquisition, methodology, project administration, supervision,
and writing–review and editing. HB: conceptualization, funding
acquisition, methodology, project administration, supervision, and
writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. Sven
Schneider and Nico Hochgeschwender gratefully acknowledge the
ongoing support of the Bonn-Aachen International Center for
Information Technology. This work was supported by the European
Union’s Horizon 2020 project SESAME (H2020-101017258, Secure
and Safe Multi-Robot Systems). Nico Hochgeschwender gratefully
acknowledges the support of the SOPRANO (Horizon Europe –
101120990) Project. Herman Bruyninckx gratefully acknowledges
the support of RobMoSys (H2020-732410, Composable Models
and Software for Robotics Systems-of-Systems) and Esrocos (H2020-
730080, European Space Robot Control Operating System).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1363150/full#supplementary-material

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://github.com/comp-rob2b/kindyngen
https://github.com/comp-rob2b/metamodels
https://github.com/comp-rob2b/metamodels
http://llvmlite.pydata.org/
https://www.llvm.org/
https://github.com/comp-rob2b/robot-models
https://github.com/comp-rob2b/dyn2b
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2024.1363150

References

Aertbeliën, E., and De Schutter, J. (2014). “eTaSL/eTC: a constraint-based task
specification language and robot controller using expression graphs,” in Proc. IEEE/RSJ
international conference on intelligent robots and systems (IROS).

Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., et al.
(2012). “OWL 2 Web Ontology Language structural specification and functional-style
syntax,” inW3Crecommendation. SecondEdition (W3C standard). Available at: https://
www.w3.org/TR/owl2-syntax/.

Bray, T. (2017). The JavaScript object notation (JSON) data interchange format. RFC
8259, Internet Eng. Task Force (IETF) (IETF standard). Available at: https://datatracker.
ietf.org/doc/html/rfc8259.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., and
Cowan, J. (2006). Extensible markup language (XML) 1.1. Second Edition. W3C
Recommendation, World Wide Web Consortium W3C. Available at: https://www.w3.
org/TR/2006/REC-xml-names11-20060816/.

Bruyninckx,H. (2023). inBuilding blocks for complicated and situational aware robotic
and cyber-physical systems (KU Leuven: Department of Mechanical Engineering).

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., et al.
(2019). “The Pinocchio C++ library – a fast and flexible implementation of rigid
body dynamics algorithms and their analytical derivatives,” in IEEE/SICE international
symposium on system integration (SII).

Chignoli, M., Adrian, N., Kim, S. b., andWensing, P. (2023). “Improving contact-rich
robotic simulation with generalized rigid-body dynamics algorithms,” in Embracing
contacts – workshop at ICRA 2023.

Codd, E. F. (1971). Further normalization of the data base relational model. Tech.
Rep. IBM Research Laboratory.

Cook, S. A. (1971). “The complexity of theorem-proving procedures,” in Proc. ACM
symposium on theory of computing.

Cyganiak, R., Wood, D., and Lanthaler, M. (2014). RDF 1.1 Concepts and abstract
syntax. W3C recommendation.World Wide Web Consort. (W3C). Available at: https://
www.w3.org/TR/rdf11-concepts/.

De Laet, T., Bellens, S., Smits, R., Aertbelien, E., Bruyninckx, H., and
De Schutter, J. (2012). Geometric relations between rigid bodies (Part 1):
semantics for standardization. IEEE Robotics & Automation Mag. 20, 84–93.
doi:10.1109/mra.2012.2205652

Dellaert, F. (2012). “Factor graphs and GTSAM: a hands-on introduction,” in Tech.
rep. (Atlanta: Georgia Institute of Technology).

Duerst, M., and Suignard, M. (2005). Internationalized Resource identifiers (IRIs).
RFC 3987, Internet Eng. Task Force (IETF). Available at: https://datatracker.ietf.
org/doc/html/rfc3987.

Featherstone, R. (2008). Rigid body dynamics algorithms. Springer.

Felis, M. L. (2016). RBDL: an efficient rigid-body dynamics library using recursive
algorithms. Aut. Robots 41, 495–511. doi:10.1007/s10514-016-9574-0

Foote, T. (2013). “Tf: the transform library,” in Proc. IEEE international conference on
technologies for practical robot applications (TePRA).

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., et al.
(2018). “Cypher: an evolving query language for property graphs,” in Proc. International
conference on management of data (SIGMOD).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: elements
of reusable object-oriented software. Addison-Wesley.

Harris, S., and Seaborne, A. (2013). SPARQL 1.1 query language. W3C
recommendation. World Wide Web Consort. (W3C). Available at: https://www.
w3.org/TR/sparql11-query/.

Hochgeschwender, N., Schneider, S., Voos, H., Bruyninckx, H., and Kraetzschmar, G.
K. (2016). “Graph-based software knowledge: storage and semantic querying of domain
models for run-time adaptation,” in Proc. International conference on simulation,
modeling, and programming for autonomous robots (SIMPAR).

Hunt, A., and Thomas, D. (2019). The pragmatic programmer. Reading: Addison
Wesley.

Jain, A. (2012). Multibody graph transformations and analysis Part II: closed-
chain constraint embedding. Nonlinear Dyn. 67, 2153–2170. doi:10.1007/s11071-011-
0136-x

Kent, W. (1983). A simple guide to five normal forms in relational database theory.
Commun. ACM 26, 120–125. doi:10.1145/358024.358054

Klotzbuecher, M., and Bruyninckx, H. (2013). “microblx: a reflective, real-time safe,
embedded function block framework,” in Proc. Real time linux workshop (RTLWS).

Knublauch, H., and Kontokostas, D. (2017). Shapes Constraint Language (SHACL).
W3C recommendation. World Wide Web Consort. (W3C). Available at: https://www.
w3.org/TR/shacl/.

Lämmel, R., Visser, E., and Visser, J. (2003). “Strategic programming meets
adaptive programming,” in Proc. International conference on aspect-oriented software
development (AOSD).

Leach, P. J., Salz, R., and Mealling, M. H. (2005). A universally unique IDentifier
(UUID) URN namespace. RFC 4122, Internet Eng. Task Force (IETF). Available at:
https://datatracker.ietf.org/doc/html/rfc4122.

Mansard, N., Khatib, O., and Kheddar, A. (2009). A unified approach to integrate
unilateral constraints in the Stack of tasks. IEEE Trans. Robotics 25, 670–685.
doi:10.1109/tro.2009.2020345

Martin, R. C. (2003). Agile software development principles, patterns, and practices.
Upper Saddle Hill: Prentice Hall.

Meyer, B. (1997). Object-oriented software construction

Orleans, D., and Lieberherr, K. (2001). “DJ: dynamic adaptive programming in Java,”
in Metalevel architectures and separation of crosscutting concerns.

Parr, T. (2013). The definitive ANTLR 4 reference (pragmatic bookshelf).

Parr, T. J. (2004). “Enforcing strict model-view separation in template engines,” in
Proc. International conference on world wide Web (WWW).

Pearl, J. (1982). “Reverend Bayes on inference engines: a distributed
hierarchical approach,” in Proc. International joint conference on artificial
intelligence.

Popov, E. P., Vereshchagin, A. F., and Zenkevich, S. L. (1978). Manipuljacionnyje
roboty: dinamika i algoritmy. Moscow Nauka.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS: an
open-source robot operating system,” in IEEE international conference on robotics and
automation (ICRA). Workshop on open source software.

Rodriguez, M. A. (2015). “The Gremlin graph traversal machine
and language,” in Proc. Of the ACM database programming languages
conference (DBPL).

Schneider, S., and Bruyninckx, H. (2019). “Exploiting linearity in dynamics solvers
for the design of composable robotic manipulation architectures,” in Proc. IEEE/RSJ
international conference on intelligent robots and systems (IROS).

Schneider, S., Hochgeschwender, N., and Bruyninckx, H. (2023). “Domain-specific
languages for kinematic chains and their solver algorithms: lessons learned for
composable models,” in Proc. IEEE international conference on robotics and automation
(ICRA).

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.-A., and Lindström,
N. (2020). JSON-LD 1.1. A JSON-based serialization for linked data. W3C
recommendation. World Wide Web Consort. (W3C). Available at: https://www.w3.
org/TR/json-ld/.

Tanenbaum,A. S., and Bos,H. (2014).Modern operating systems (peason PLC). fourth
edn.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
2017). “Attention is all you need,” in Proc. International conference on neural information
processing systems (NIPS).

Vereshchagin, A. F. (1989). Modelling and control of motion of manipulational
Robots. Soviet J. Comput. Syst. Sci., 125–134. Originally published in Izvestiia Akademii
nauk SSSR, Tekhnicheskaya Kibernetika, No. 1.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363150
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259
https://www.w3.org/TR/2006/REC-xml-names11-20060816/
https://www.w3.org/TR/2006/REC-xml-names11-20060816/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1109/mra.2012.2205652
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://doi.org/10.1007/s10514-016-9574-0
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1007/s11071-011-0136-x
https://doi.org/10.1007/s11071-011-0136-x
https://doi.org/10.1145/358024.358054
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://doi.org/10.1109/tro.2009.2020345
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Kinematics and dynamics solvers
	3 Requirements for graph-based solvers
	4 Composable and compositional models for kinematic chains
	5 Tooling implementation: synthesizer and code generator
	5.1 Synthesizer
	5.1.1 Graph expansion by example
	5.1.2 Graph manipulation by example
	5.1.3 Parallel kinematic chains

	5.2 Code generation
	5.3 dyn2b: support library for computational building blocks
	5.4 Steps for dynamics solvers

	6 Case study
	6.1 Damping controller and robot interface
	6.2 Semantic algorithm manipulation

	7 Discussion
	8 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

