
TYPE Technology and Code
PUBLISHED 04 September 2024
DOI 10.3389/frobt.2024.1363041

OPEN ACCESS

EDITED BY

Federico Ciccozzi,
Mälardalen University, Sweden

REVIEWED BY

Cezary Zielinski,
Warsaw University of Technology, Poland
Antonio Cicchetti,
Mälardalen University, Sweden
Muhammad Waseem Anwar,
Mälardalen University, Sweden

*CORRESPONDENCE

Maria I. Artigas,
mariaisabel.artigasalfonso@kuleuven.be

RECEIVED 29 December 2023
ACCEPTED 12 August 2024
PUBLISHED 04 September 2024

CITATION

Artigas MI, Rodrigues RT, Vanderseypen L and
Bruyninckx H (2024) Software patterns and
data structures for the runtime coordination
of robots, with a focus on real-time execution
performance.
Front. Robot. AI 11:1363041.
doi: 10.3389/frobt.2024.1363041

COPYRIGHT

© 2024 Artigas, Rodrigues, Vanderseypen and
Bruyninckx. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Software patterns and data
structures for the runtime
coordination of robots, with a
focus on real-time execution
performance

Maria I. Artigas1,2*, Rômulo T. Rodrigues1,2, Lars Vanderseypen1

and Herman Bruyninckx1,2,3

1Department of Mechanical Engineering, KU Leuven, Leuven, Belgium, 2Flanders Make, Leuven,
Belgium, 3Department of Mechanical Engineering, TU Eindhoven, Eindhoven, Netherlands

This paper introduces software patterns (registration, acquire-release, and cache
awareness) and data structures (Petri net, finite state machine, and protocol flag
array) to support the coordinated execution of software activities (also called
“components” or “agents”). Moreover, it presents and tests an implementation for
Petri nets that supports real-time execution in shared memory for deployment
inside one individual robot and separates event firing and handling, enabling
distributed deployment between multiple robots. Experimental validation of the
introduced patterns and data structures is performed within the context of
activities for task execution, control and perception, and decision making for
an application on coordinated navigation.

KEYWORDS

multi-robot, coordination, Petri net, finite state machine, real-time, shared memory

1 Introduction

Society expects “smarter” robotics technology and “higher performance” of the
applications and systems that are built with it. A major contribution toward realizing
these expectations is improving the capabilities and the predictability of the composition
of robotic components into systems. Coordination plays a major role in achieving this
predictability: a system has several concurrently active components that require access
to “resources” that cannot be shared trivially, such as locations in space or tools and
sensors. Application developersmust translate user requirements into concrete coordination
specifications: when and why each of the components in the system must start or stop
a particular “behavior.” Coordination is triggered by “events” generated by the software
component in the system that has the authority to make such decisions, and it is provided
with the necessary information by all the components that rely on its coordination.
A good (but not necessarily unique) separation of concerns (Dijkstra, 1982) approach
to ensure coordinated resource sharing with predictable performance and acceptable
access policies is to introduce a dedicated coordination software component for each
shared resource. The contributions of this paper are focused on this coordination
design concern.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363041
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363041&domain=pdf&date_stamp=2024-08-31
mailto:mariaisabel.artigasalfonso@kuleuven.be
mailto:mariaisabel.artigasalfonso@kuleuven.be
https://doi.org/10.3389/frobt.2024.1363041
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 1
Coordination between concurrently active “agents” in traffic situations, particularly a T-junction. Left: only one “robot” coming from one of the three
roads shall be allowed to access the crossing Cr. Right: our design introduces a mediator software component to realize such coordination problems.
It relies on i) a Petri net as a declarative model of the coordination’s decision making and ii) a protocol between the mediator and each of the
coordinated robots, via which the latter’s own internal decision making is decoupled from that of all other robots.

The left-hand side of Figure 1 shows a simple example of the
role of coordination in multi-robot systems (Section 1.3 provides an
overview of more archetypical coordination-use cases).

• The sketch on the left-hand side represents a “T junction.”
• Robots can come from three different roads, each with the
timing unknown to the other robots.
• The “crossing area” Cr is the “shared resource” that should be
entered by only one robot at a time.

The figure’s right-hand side sketches our software design (which
is described in detail in the later sections of this paper).

• The crossing area gets its own mediator software
component (Gamma et al., 1995). The mediator allows robots
to navigate the crossing area in a coordinated way. The core
data structure of the mediator is a Petri net that represents a
declarative model of the coordination’s decision-making.
• The second software component is a map data structure that
all robots share with the mediator. On that map, they indicate
which area they are currently driving in. These areas are given
numbers 1, 2, and 3 for each of the three roads “R”; “i” and “o”
indicate the “incoming” and “outgoing” lanes.
• The third software component is a protocol data structure
that is accessed in sequence by the mediator and each of
the coordinated robots. The protocol decouples a robot’s own
internal decision making from that of all other robots.

The map is also a shared resource in itself, but its software
design presents a different set of coordination challenges,
which are beyond the scope of this paper; for further
details, refer to Van Baelen et al. (2022).

The following sub-sections introduce and define all the concepts
needed in this paper. Section 2 discusses the previous work on
which this paper is based and other related work. Section 3 describes
the coordination mechanisms introduced in this paper and the
complementary communication and configuration mechanisms

for its integration. Section 4 introduces the implementation and
evaluation of the Petri nets for runtime coordination. Section 5
explains the application of the previously described patterns in a
coordinated navigation case. A secondary demonstration is also
provided. Section 6 concludes the paper with a discussion of the
presented and future work. Supplementary Appendix SA explains
the connection between the coordinating and coordinated activities
via events.

1.1 Component

The terminology “(software) components” has been
interpreted several times over the past decades (Brugali and
Scandurra, 2009; Brugali and Shakhimardanov, 2010), referring
to the software primitive that provides “computational behavior”
to a system. The terminology used in this paper to represent
complementary types of computational behavior is as follows:

• (robot) Component: each piece of software-controlled
hardware that the application identifies as a “robot.” It is
not to be subdivided further hardware-wise and can be
connected to other robot components via mechanical, power,
and information connectors to form a larger “composite” robot
component.
• Computer: the set of CPUs, each with possibly several
computing cores and managed by one operating system. Many
robot components are built with more than one computer.
• Process and thread: the two well-known application-
independent computational primitives under the control of
an operating system.
• Activity: the smallest concurrently running piece of software
that components the need and is deployed in a thread.
Typically, each component requires application-centric
functionalities implemented in a multitude of activities, all

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

running asynchronously on the same computer or different
computers.
• Algorithm: an activity can execute one or more algorithms
inside, for which it guarantees the synchronous execution
context needed to realize the functionalities (or “behavior”) of
a component. In other words, the activity is responsible for
asynchronous data exchange between activities, making sure
that their algorithms only have to access locally stored data
structures that are, hence, synchronously processed.

One could have given the name software component to what is
called activity above. Because activities are designed to be executed
concurrently, an appropriate set of asynchronous data exchange
mechanisms is needed; thesemechanisms should be shared between
the activities within the same process memory or use one or more
inter-process communication technologies. The challenges of data
consistency between concurrently running activities are to be solved
at the activity level but not at the thread or algorithm levels. The
thread level in a software component design is responsible for
scheduling by the operating system. The process level is responsible
for managing resources shared between all activities within all
process’s threads, such as file descriptors, signal handling, and thread
priorities.

1.2 Coordination

Coordination is all decision making shared between
concurrently executing activities about which of their algorithms
(“behaviors”) must become “(in)active” at each moment in time
in each of the robot components and about how to keep other
robot components informed about which behavior(s) are currently
“(in)active.” A key message of this paper is that all forms of inter-
activity coordination can be realized with the following primitives,
whose “separation of concerns” roles (Dijkstra, 1982) are illustrated
in Figure 1.

• Flag: this represents the “state” of a Boolean condition defined
over a set of parameters in the behavior(s) of an activity. For
example, for mobile robots navigating in the neighborhood
of the crossing in Figure 1, flags can indicate areas in which
each mobile robot finds itself. (The above-mentioned “map”
software component could act as the major source of flag
information and event information introduced below.)
• Event: this represents the change in the Boolean state of a
flag. Because Figure 1 is a static “snapshot” of the status of
the world, it does not show events. They only come in when
the time-varying dynamics of the coordination problem are
considered and they are to be communicated between activities.
• Finite state machine [FSM, Hrúz and Zhou (2007)]: each of the
activities needs to realize a particular behavior in a particular
order. Such an order is represented declaratively by a finite state
machine data structure and behavior:
• Each activity can be “in” one and only one state at a time.
• In each state of the finite state machine, the activity

executes a particular set of algorithms and communicates
a particular set of data structures, including events.
• Transitions between states are triggered by incoming events

or events generated internally in the activity.

• Some of these transitions can also give rise to the firing of
events that must be communicated to other activities.

This description of themechanism of an FSMcorresponds to that
of a Mealy machine (Mealy, 1955), which is formally represented as
a tuple (S, I,O,T ,O), with S representing the finite set of states; I
representing the finite set of input events (or “input symbols”); and
O representing the finite set of output events (or “output symbols”).

• T : the transition function T :S× I→ Smaps the combination of
a state and an input event to a state.
• O: the output function O:S× I→ O maps the combination of
a state and an input event to an output event.

In the actual execution of an FSM, the policy must be added to
select one of the states as the initial state S0.

• Petri net (PN): this is a data structure that keeps track of
the (externally exposed) state of a set of activities that need
to be coordinated in the coordination mediator software
component, as shown in Figure 1. Each of these states fills
a place in the Petri net with a token. (This paper uses
only the simplest form of Petri nets, sometimes called safe
Petri nets (Barylska et al., 2017), in which each place can hold
only zero or one token.) The role of the Petri net is to support
decisions about the coordination between activities and not
about the internal algorithm coordination of one single activity.
Semantically, a Petri net can have more than one of its places
marked at any given time, while a finite state machine can be
in only one of its states at any given time.

This mechanismof a Petri net is formally represented as a
tuple (P,T,M,F), with Prepresenting the finite set of places;
Trepresenting the finite set of transitions(PandTare always disjoint);
Mrepresenting the set of markingsof the Petri net, where each
marking is a mapping M:P× {0,1}, indicating whether a placeis
marked or not, that is, it contains a tokenor not; and Frepresenting
the firing functionsuch that F :P×M→Mremoves the tokensin the
input placesof a transitionwhenever all these placesare markedand
produces a tokenin each of the transition’s output places.

In the actual execution of a Petri net, the policy must be added
to define an initial marking M0.

• Protocol: this represents the order in which a particular subset
of flags is allowed to be set to “true” in the interaction
between the coordinationmediator and one of the coordinated
activities. Such an order must be agreed upon in advance by
all activities participating in the coordination mediation to
be able to guarantee temporal constraints between behavior
state changes.

For example, the protocols in Figure 1 show that for each robot,
the sequence of execution is as follows: 1) the robot requests access,
2) the access is approved, and 3) the robot can enter the area.

Note that the “array” used in Figure 1 to represent a protocol is
always finite, and flag entries are entered always from the first entry
on the left. In other words, it is not an endlessly growing “stream” of
flag entries. When the protocol ends, for one reason or another, all
entries are removed so that the next execution of the protocol starts
with an empty array again.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

In the simple workspace sharing example in Figure 1, the labeled
circles (called “places”) represent conditions that can be true or false,
and the solid lines (called “transitions”) represent decision making:
if all the input conditions are true, the transition is “fired.”The result
is that the conditions in the input places are put to false again, and
those in the output places become true. The truth values of the
“source” places (i.e., those without input transition) are determined
by the flags in the protocol arrays. Similarly, the truth values of the
“sink” places (i.e., without output transition) determine the value of
the corresponding flags in the protocol.

The ideal lifetime of an event is “zero”: as soon as an event is
fired by an activity, all the activities that need to react to the event
(that is, “to handle” it) will consume the event during their reaction.
The software architecture of such coordinated components must
foresee the communication of events between the firing activity and
each of the handling activities, which is (one of the reasons) why
asynchronous data exchange is needed between these activities.

Figure 1 uses the simplest form of a protocol sequence, namely,
an array; in general, protocols consist of compositions of more
than one such array, representing different allowable “paths” in
the coordination. Note the important difference between the very
narrow and lean semantics of a “protocol” as needed in this paper
and the much wider semantics of “protocol stacks” as used in inter-
process communication (Delanote et al., 2008).

1.3 Archetypical use cases

The following example set of multi-robot applications, with
multi-tasking functionalities for each robot, is representative of the
scope of this paper’s coordination design contributions:

• Workspace sharing. This involves scenarios where multiple
mobile robots (flying, wheeled, and legged) from possibly
different vendors (and hence with independently developed
software capabilities) need to share the same space in
a warehouse or orchard. The same holds for multiple
manipulator arms on conveyor belts or at assembly and
fruit harvesting stations. In addition, both types of robotic
components should also physically interact with each other,
like an assembly robot arm that can take parts from a mobile
robot that brings the parts from storage.
• Execution protocols. For example, robots must register with
the “manager” of a shared resource (charging station, parking
space, inland waterway lock, and gripper on a fruit harvesting
robot) and then follow a protocol coordinated by that manager
every time they want to use that resource. Being able to
coordinate the execution of different robots in a predictable,
agreed-upon way is another necessary (but not sufficient)
condition for sharing physical workspace.
• Task sharing. A typical example is two mobile robots in a
manufacturing cell that coordinate how to share the same
areas during the execution of their tasks, such as driving
the routes through the depicted stations. Other applications
requiring robots to share task executions are include carrying
or pushing a shared load, covering a whole agriculture field or
a surveillance area, closing a control loop around other robots’
sensor capabilities, and platooning in traffic. Task sharing

is the driving end-user pull behind having to spend design
and implementation efforts on all the archetypical challenges
mentioned above.

1.4 Scope

This paper focuses on the software design of the coordination
of runtime decision making, including data structures, policies,
decision-making functionalities, software patterns, and best
practices. An implementation using Petri nets, with the purpose
of being used within these coordination patterns, is explained and
evaluated. As the final validation, the previous patterns are applied
to two coordinated navigation cases.

Subjects outside the scope of this study are the functional
algorithms that define the behavior inside activities, the creation
of maps and Petri nets, the policies behind the reasons why
the application takes these decisions, and the communication
functionalities via which activities exchange the data they need from
each other to realize their functional behavior.

1.5 Contributions

The contributions of the paper are

• The softwaremechanisms of coordination, which encompasses
everything needed to fire and handle events that allow
concurrent activities to coordinate their executions. In
particular, this includes the complementary roles of finite state
machines and Petri nets by introducing two non-traditional
primitives (the protocol array and the event circular buffer)
that help in the separation of concerns (Dijkstra, 1982) of
the mentioned complementary roles within the presented
software design.
• Explicit awareness of the implementation constraints, which
are introduced by the distributed, multi-core computer
infrastructure common in modern robotics applications.
In particular, this includes ensuring event data consistency
between concurrent activities via circular buffers and
optimizing execution efficiency by exploiting data locality and
cache awareness.

2 Related work

The coordination of components is only one of the
necessary “concerns” that large-scale “cyber–physical” systems
must deal with. It fits into the broader context of the “5Cs”
approach of making systems-of-systems software architecture
(Bruyninckx, 2023; Klotzbücher et al., 2012; Radestock and
Eisenbach, 1996; Vanthienen et al., 2014). The five parts of the 5Cs
meta model are

• Computation: the functional behavior inside each activity.
• Communication: the data exchange behavior between
activities.
• Coordination: the decision making behavior in and between
activities.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

• Configuration: adapting each activity’s behavior to the
actual context.
• Composition: the integration of the previous four parts at the
“levels” of activity, component, system, and system-of-systems
architecture.

Each of the first four “Cs” can, in itself, be a full or partial
sub-system of the “5Cs”. A very established pattern within the
coordination “C” is that of the life cycle state machine (LCSM),
responsible for the “top-level” coordination inside one single activity:
to create, to start up, to execute, to pause, to reconfigure, and to
shut down activities (and the resources they manage) in predictable
and composable ways. One single robot will have many activities
(sensing, control, worldmodeling, task execution, etc.), each with its
own LCSM, and the focus of this paper is to explain how tomaintain
the coordination between all these LCSMs, which is where the Petri
nets come into play.

Petri nets have been widely used for modeling concurrent
activities/processes (e.g., to analyze the concurrency behavior of
several activities with respect to deadlock analysis or reachability
analysis), and their implementations come in various forms
depending on the use case context in which they are deployed.
The implementation proposed by Davidrajuh (2010) has been
widely used with MATLAB integration for Petri net modeling,
simulation, and performance analysis. In the case of generalized
stochastic Petri nets, the implementation proposed by Dingle et al.
(2009) provides an open-source tool for design and analysis. The
TINA toolbox (Berthomieu et al., 2004) offers a broad set of tools
for the construction and analysis of Petri nets and timed Petri
nets, which has been extensively used in academia. IOPT-Tools
(Pereira et al., 2022; Gomes et al., 2010) provide a framework for
the automatic generation of controller code from a modeled Petri
net. Developments toward the implementation of Petri nets for
microcontrollers have been researched by Kučera et al. (2020),
providing a framework to model timed interpreted Petri nets to be
used in Arduino devices.

While these implementations provide frameworks to work
with Petri nets for different purposes, they are not focused
on optimization for low-latency execution. This focus is a
primary motivator for the research presented in this paper
because modern robotic applications must coordinate several
activities such as control, perception, world modeling, and
task monitoring, many of which expect real-time determinism
(Abdellatif et al., 2013). Piedrafita and Villarroel (2011) analyzed
the execution dynamics of four different Petri net software
implementation techniques, whose performance is evaluated with
the same Petri net models as in this paper.

For robotics applications, Ziparo et al. (2011) used Petri nets
as models for multi-body and multi-robot execution and planning.
Their modeling within a multi-robot context is analyzed by
Costelha and Lima (2007), investigating deadlocks and reachability.
Figat et al. (2017) and Figat and Zieliński (2022) focused on,
respectively, hierarchical finite state machines and Petri nets.
Zhou et al. (2017) used a hierarchical FSM for the control of a
navigation base with a manipulator, where one FSM is embedded
into a higher FSM. Lacerda and Lima (2019) generated Petri nets
for the coordination of a fleet of robots according to the time logic
constraints of the coordinated execution.

3 Methodology

The focus of this paper is on three of the “5Cs”
software concerns:

• Coordination : managing the interactions between a (possible
large) set of concurrently executing activities using flags,
events, finite state machines, and Petri nets as the sufficient
mechanisms.
• Configuration: allowing application developers to steer the
execution efficiency of their applications: 1) the pre-processing
of data structures used by the coordination primitives at
runtime and 2) the event firing and handling mechanisms
that each coordinated activity needs to interact with the
coordinating activity.
• Communication: facilitating the exchange of events between
the finite state machines in the coordinated activities on the
one hand and the coordinating mediator’s Petri net on the
other hand.

In addition to the separation of concerns (Dijkstra, 1982) that
already come with the “5Cs” approach, this paper adds other
separations of concerns pertaining to the design of the inside of
the relevant “5Cs” components. More concretely, the design of the
data structures and operators needed to implement the envisaged
coordination mechanisms.

3.1 Coordination mechanisms

The mechanisms needed for the coordination of activities
are conceptually very simple: flags, events, Petri nets, and finite
state machines (Section 1.2).

A finite state machine (Hrúz and Zhou, 2007; Mealy, 1955)
models the discrete behaviors of one single activity. Its four data
structures are the sets of 1) states that the activity can be in, 2)
transitions that are allowed between states, 3) events that can trigger
transitions, and 4) flags whose status is linked with (a subset of)
the events. The latter is added to the mathematical representation
of an FSM in Section 1.2 to allow the interaction between anFSMand
a Petri net. Its functions are 1) to process the list of available events, 2)
to compute which transition each of those events will trigger (when
processed in order of arrival), and 3) to adapt the above-mentioned
data structures accordingly.

From a software implementation point of view (but not from
a semantics point of view), finite state machines are just a
boundary case of Petri nets: the former has a constraint on
the number of “tokens,” namely, exactly one in the whole set of
“states.” Figure 2 shows an example of the mapping of an FSM to an
equivalent Petri net.

So, this paper focuses on the software design of Petri nets
because that of finite state machines differs only in the configuration
of the resulting library and the naming of the implementation
primitives. A Petri net model shares the four above-mentioned
building blocks with a finite state machine model, but it uses the
following specific terminology: a place that can contain zero or one
token as a marking, a transition, and a directed arc between them.
The constraint on an arc is that its start and end must be either
a place or a transition; in other words, places are only connected

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 2
A finite state machine and the mapping to its equivalent Petri net. This mapping constrains the Petri net to have only one connector between any
internal place and the transitions connected to that place. All other places map to “sink” or “source” events; the “source” places are denoted with small
letters, and the “sink” places are denoted with capital letters. A similar typographical convention is used for input and output events in the finite
state machine.

to transitions and vice versa. The constraint of a maximum of one
token per place is what Murata (1989) referred to as “finite capacity
nets of capacity one for all places”; other works of literature call
it “safe Petri nets” (Barylska et al., 2017). A transition represents a
coordination point in the Petri net: its input places represent the
conditions to be fulfilled for that synchronization to take place;
and its output places represent the status changes triggered by the
coordination.

In addition to the above-described data structures, the Petri
net mechanism also has some operators (“behavior”) on these data
structures. If each input place of a particular transition has a token,
that transition is enabled, and firing a transition implies that the
tokens in its input places are removed and the tokens in its output
places are filled. The token in the source places is to be filled by
the processing of an event that comes from “somewhere.” Similarly,
removing a token from a sink place gives rise to sending an event
“somewhere.” The links with that “somewhere” are discussed in the
following section on “communication.”

Notably, in Figure 2, the FSM and Petri net represent the same
process; however, throughout the paper, this is not the case. FSMs
are used for the discrete behaviors of single activities, while the Petri
nets are used for the coordination across activities.This means there
is a match among the FSM states of the coordinated activities and
Petri net places of the coordinator; however, they do not present the
same process. The latest is illustrated in Figure 3.

3.2 Communication mechanisms

The finite state machine in each of the coordinated activities
exchanges events with the coordinating mediator’s Petri net
(Figure 3).This is reflected in the structure of the Petri net as follows:

• Some input places of transitions do not have any transitions for
which they are output places, e.g., p1, p3, and p4 in Figure 3;
these are called source places. Source places are filled in by
the arrival of events to the owner of the Petri net activity. In
Figure 3, a token is added to source place p1 when external
event 1 (E1) is processed.

• Similarly, sink places do not have any transitions for which
they are the input places, e.g., P2, P5, and P6 in Figure 3.
Sink places trigger the sending of events from the owner of
the Petri net activity to other connected activities. In Figure 3,
sink place P2 causes the triggering of the internally generated
event 4 (e4).

Source and sink places are the locations where the Petri net is
connected to events from and to the “outside world.” Internal places
are all other places.

The contribution of this paper with respect to communication
pertains to the introduction of the protocol data structure: it
decouples the internals of the finite state machines and Petri nets
from the communication of the information they need for their
coordination.

The protocol contains information regarding which of the
two activities involved in the coordination is expected to set
the next flag in the protocol. This document uses arrays as
protocol data structures since they are the simplest approach
needed to realize the following goal:

• Only those events that a coordinated activity or the
coordinating activity generates or reacts to “end up” in the
protocol data structure. These are the events that need to be
shared between them.
• Theprotocol introduces a hard constraint in the order in which
these events are allowed/expected to be generated; Figure 3
represents this order by the “snake-like” trajectory through
the protocol data structure. In order to guarantee the correct
execution of the coordination, both coordinated parties must
satisfy these hard constraints in the sequence in which the
relevant events are generated or reacted to by the finite state
machine and in which the sink and source places are marked
in the Petri net.

A flag can be set directly by an activity, or it is the result of
processing an event received from that activity. Because of the strict
order brought by the protocol, there is no risk that this asynchronous
access to the data introduces inconsistency.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 3
Examples of the three software mechanisms needed in interactivity coordination: A Petri net inside a coordinating activity, a finite state machine inside
each of the coordinated activities, and (an array of) flags for the bookkeeping of which coordination “events” have been communicated between both.
Capital letters are used for output events in the finite state machine and for sink places in the Petri net. The colored lines link events and places to
locations in the protocol array. The “snake-like” trajectory through the array represents the temporal order in which the “communication” takes place
between finite state machine events and the marking of places in the Petri net.

3.3 Configuration mechanisms

This section introduces three software patterns that provide
the mechanisms needed to configure the coordination between
activities. The patterns themselves are not explained in detail
because that part of the authors’ research is beyond the scope
of this document. However, they are in use in the experimental
demonstration in Section 5. Each of these patterns works at a
different time scale in the coordination interaction:

• Semantic registration (“long term”): an activity that needs to
be coordinated is registered (by itself or by a “third party”)
for a particular coordination using a semantic ID. This ID is a
symbolic unique identifier used in amodel of the coordination
and, hence, can be retrieved from persistent storage or inter-
process communication.
• Symbol table data structure (“medium term”): it links the
semantic ID symbol to a (possibly variable) number of
“resources” or “components.”The table facilitates the discovery,
communication, execution, and introspection of the “resource”
at runtime, which can also be done by activities that have been
developed independently.
• Acquire–release (“short term”): this pattern structures access to
a shared resource by expecting the resource-using activities to
acquire access from the resource-owning activity and to release
their granted access explicitly.

The registration puts the semantic ID into a table (or a “map”)
with (at least) the following columns:

• The semantic ID.
• The name of the coordinated activity, as used in the source code
of the implementation.
• The binary pointer(s) to the memory where the coordination
data structure(s) are stored.

TABLE 1 Example of a table for registering the access of activities to
shared resources. This particular example uses amutex to coordinate the
access to data structures encoder_t and motor_t, shared by three
activities in a robot, control, proprioception, and drive.

Semantic ID

Datatype Model Pointer Mutex Activity

encoder_t Left 0x0a00 0x0a08 Drive and
proprioception

encoder_t Right 0x0a10 0x0a18 Drive and
proprioception

motor_t Left 0x0a20 0x0a28 Drive and control

motor_t Right 0x0a30 0x0a38 Drive and control

Table 1 shows an example of such a symbol table. The semantic
ID itself has two fields, datatype and model. There can be multiple
semantic IDs with the same model label, but the tuple (datatype,
model) must be unique. Multiple activities can access the same
variables, and coordination is done via mutexes.

The above-mentioned mechanisms are needed for the
following reasons:

• Unambiguous ownership: registration implies that there is a
“shared object” to register to and that the system developers
should make one, and only one, activity the responsible
“owner” of that object. (The “owning” object can be a fully
passive library and need not be an activity in itself.)
• Runtime reconfiguration: because registrations are objects with
a lifetime, they can have a life cycle state machine on their
own. This is important to coordinate the reconfiguration of

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

the “object” at runtime and between a changing number of
registered activities.

This paper focuses on this short-term time scale, hence, on
a low-latency implementation of the acquire–release protocol. The
“objects” in this paper are coordination objects, specifically Petri
nets, and the scope of the presented research calls for Petri nets to
be created at runtime. For example, in manufacturing or logistics
cases, dozens of shared resources occur, to which, at any time, two,
three, or more robots want access, and those robots can be different
ones every time.

4 Implementation

The focus of the paper is on the software mechanisms that
are used to realize coordination between a (possibly large) set
of concurrently executing activities. The Petri net model plays a
central role within the coordination mechanisms presented in the
last section.Therefore, an implementation with the purpose of multi
activity coordination is presented.

This paper’s design drivers of the implementation of the design
discussed in Section 3 are typical for embedded systems: low-
latency and asynchronicity within a shared memory deployment.
The presented design is not claimed to be efficient for other use
cases, such as the offline analysis of Petri nets in search of deadlocks,
livelocks, starvation, etc.

One implementation decision is easy to make: while finite
state machines and Petri nets are two complementary coordination
mechanisms at the conceptual level, their implementations are
extremely similar; both need “states” and “transitions,” with
incoming “events” as triggers of the evaluation of the mechanism,
as well as the evaluation’s possible outcomes. Figure 2 explains the
direct mapping of a finite state machine into the equivalent Petri
net, so this section restricts itself to the implementation of Petri
nets only.

This summary from previous sections is behind the other
implementation decisions:

• Petri net models are expected to be generated at runtime from
symbolicmodels.This allows the use of data structures that can
exploit the knowledge of the number of places, transitions, and
events.
• Petri nets are expected to be executed in an event loop of
real-time activities (Samek and Ward, 2006). This allows
a “5Cs” design that pre-empts the execution when a
maximum number of transitions, places, and/or events have
been processed, with a known impact on the latency this
introduces.
• The coordinated activities typically run asynchronously with
the coordinating activity (that is, the one that executes the
Petri net). Hence, measures have to be taken to guarantee
data consistency. This implementation provides two of these
measures:memory barriers with acquire and release semantics
(Standardization committee C and C++, 2017) and circular
buffers for wait-free exchange of events (Desnoyers and
Dagenais, 2012; Varghese and Lauck, 1987).
• The target applications are expected to be always on, so all of
the above-mentioned features must be (re)configurable.

4.1 Data structures

Figure 4 shows the data structures to represent and execute Petri
nets.The data structures abovewill always be accessed synchronously
within only the Petri net executor activity. The efficiency is designed
for the following execution use case:

• Computation of the status changes: the Petri net’s status is
updated as soon as the activity reacts to incoming events.
The events are received asynchronously by the Petri net
executor activity (in the communication part of the activity’s
event loop, Supplementary Appendix SA), and our design uses
circular buffers for this purpose. Circular buffers are also
used inside the synchronous part to encode the “to-do lists”
of places and transitions that need processing based on the
incoming events. The buffers make use ofmemory barriers (of
the acquire-release type, as provided by the concurrency support
part of the C/C++ standard libraries) in the trade-off between
efficiency of execution and the consistency of data.The latter is
a concern to be dealt with by the application developers and is
introduced by out-of-order execution optimizations in modern
compilers and CPUs.
• Data locality: the data structures needed in nearby
moments in the computations are stored in nearby bytes in
physical memory. So, cache coherence is optimized in two
complementary ways:
• Minimally sized data structures to keep their status. For

example, when there are N places, one needs only M 8-
bit bytes, where 8×M is the smallest number larger than
N. For example, when there are less than 255 places in a
Petri net, one char is enough. Such low numbers are not
exceptional in the use cases of this paper because access
coordination is almost always very local and between a low
number of coordinated activities.
• All data structures are arrays of the same type.This reduces

the need for padding between non-homogeneous parts in
the data structures and, hence, indirectly their size as well.
• The individual data structures are all cache line aligned to

avoid cache trashing.
• Arrays instead of linked lists: the semantic IDs of the

representation of places, transitions, and events are
mapped to unsigned integers ranging from 0 to an a priori
known integer value N. These integers can then also serve
as indices in arrays so that the inefficient search through
lists is replaced by efficient direct access into the arrays.

This section uses teletype font, like this, to represent
data structures and operations that are used in the software
implementation of this paper’s concepts. The following data
structures represent the structure of a Petri net (Figure 4, left):

• place_to_transitions: this is a map (or symbol table or
associative array, Section 3.3) to quickly find the output
transitions of a place with a given ID. It contains i) pointers
bi in an array place_to_transitions_pointer to the binary
representation of the transition with a given ID and ii) an
array place_to_transitions_number containing the number of
transitions for the referenced place.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 4
Overview of the data structures used in this paper’s implementation of Petri nets. Left: to represent a Petri net. Right: to execute a Petri net. Both sets
can be (re)configured at compilation time or runtime.

• transition_input_place and transition_output_place: similar
to place_to_transition, these maps allow quick access to the
output and input places of a given transition.
• sink_places: an array of bits in which each bit represents
whether the place is a sink. There is no need to encode
whether a place is a source or an internal place as their
behavior does not impact the synchronous execution of the
Petri net.

The following data structures represent the synchronous
execution status of a Petri net (Figure 4, right):

• marking: similar to sink_places, this bit array encodes
which places are marked and are, hence, candidates to be
processed next.
• places_to_process: this circular buffer (fully inside the
synchronous context of the coordinating activity) represents
the to-do list of the IDs of places that must still be inspected
to detect enabled transitions. In addition, the size of this array
can be kept minimal, given the knowledge of the number of
places. It also does not make sense to put one particular place
more than once on this to-do list.
• places_to_skip: this circular buffer represents the list of
the IDs of places that still have to be processed, but
whose processing has been postponed until the next run
of the event loop. Because of the event loop context and
the deterministic low-latency driver, the system developers
can decide to limit the number of places on the to-do
list that will be processed in each run of the event loop
and the number of times such processing is done. This
approach provides a configurable trade-off between reactivity
and deterministic execution time via the configuration
variables below.
• is_place_already_in_buffer: these bit arrays remember
whether a place is already being checked to avoid the repetition
of processing within the same execution loop.

• marking_history: this array of L unsigned integers contains
counters indicating howmany times each place in the Petri net
has been processed during this event loop execution.
• max_number_of_loops: this defines the maximum number of
times a place can be processed per event loop execution before
loop’s execution is preempted.
• transitions_to_fire and is_transition_already_in_buffer: these
serve similar functions to places_to_process and is_place_
already_in_buffer but are used for processing of transitions
instead of places.

In order to reduce the cache missing latency when accessing
all these data structures, they should be aligned on cache lines,
including padding the last needed cache line with empty bytes.

4.2 Discussion

The presented design aims to improve execution latency at the
cost of some extra memory in the data structures:

• The data structures place_to_transition and transition_input_
place both encode the connection of outgoing arcs from places
to transitions of the Petri net. This redundancy in memory
allows faster lookups in the Petri net execution loop.
• The IDs to process in the circular buffers transitions_to_
fire and places_to_fire correspond one-on-one to the flags
marked in the status buffers is_place_already_in_buffer and
is_transition_already_in_buffer. Every time a new entry is
added to the circular buffers, it is also added to the status
buffers. This is, strictly speaking, redundant information, but
this redundancy yields fast verification of what is already in the
to-do lists, hence avoiding repeated processing of the samedata.
• A similarmotivation is behind the design of the data structures
sink_to_events and sink_index, which also contain redundant
information about the mapping from place ID to sink ID.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

Installation instructions, examples, and the code for the
implementation of Petri nets explained in this paper are available
in1.

4.3 Results for generation and execution
performance

To evaluate the execution time of the previous Petri net
implementation, five Petri net models presented by Piedrafita and
Villarroel (2011) have been built in the library.The range for scaling
the size of the Petri nets is taken from the same reference. The Petri
net models built were as follows:

• SEQ: Petri nets of p sequential processes.
• PR1: Petri nets of p sequential processes with two states and
one shared resource.
• P1R: Petri nets of one sequential process with p resources.
• PH: Petri net of the philosophers’ problemwith p philosophers.
• SQUARE: Petri nets of p sequential processes with p-1
resources.

Within this context, two tests were performed: 1) performance
test with immediate firing of one transition; in this case, the
execution time of 2,000 triggered transitions is measured. 2) Test
with immediate firing of all transitions in the net; this type of test
is expected as it marks the maximum reaction time for the complete
evaluation of the Petri net. In the latest test, all the transitions of the
Petri net will be enabled and triggered in each loop as the Petri net
is saturated.The execution time is measured for 2,000 loops for each
Petri net. The tests have been run on an HP ZBook Firefly 14 G7
Mobile Workstation.

The X-axis in Figures 5, 6 marks the computation time, while
the Y-axis is the scaling parameter, which denotes the number of
sub nets in the Petri net [as described by Piedrafita and Villarroel
(2011)]. Figure 5 (left) presents the generation time for the Petri
nets.The generation time comprises bothmemory allocation for the
data structures in Figure 4 and its initialization. For the Petri net
models SEQ, PR1, PH, and P1R, the allocation time is dominant over
the initialization time, making the generation time stable within the
order of nets tested. In the case of SQUARE, as the size of the net
scales quadratically, the initialization time dominates.

Figure 5 (right) shows the performance of the execution of firing
one transition per Petri net evaluation. In the case of SEQ, PR1,
PH, and P1R, the execution time does not escalate with size, as
the number of filled outgoing places from transitions is constant.
In the case of SQUARE Petri nets, as the scale factor increases, the
number of places to be filled after triggering a transition increases
proportionally. Figure 6 shows the execution of saturated Petri nets.
The execution time grows linearly for the Petri netmodels SEQ, PR1,
PH, and P1R. This is expected because the number of evaluations is
proportional to the number of places in the net.With the same logic,
the time for the SQUARE Petri nets grows quadratically with respect
to the scale parameter.

As the Petri nets are saturated in the second
set of tests (Figure 6), the time in the graphs is taken as an upper

1 https://gitlab.kuleuven.be/u0141779/coordination_library.git

bound for the processing time of the Petri net. For instance,
a sequential Petri net with 20 processes can take up to 722 ns
(1.44 ms/2,000) in the case of all processes coordinated from
a mediator.

5 Experimental validation

The design and best practices proposed in this article
were applied in an experimental setup with two autonomous
mobile robots (AMRs) operating in an area with a pre-
defined traffic layout. The demonstration case is an artificial
scenario of an emergency AMR entering an area with an AMR
operating at a lower speed. According to the situation, the
slower robot has to reconfigure its execution at discrete and
continuous levels in order to let the emergency AMR overtake.
Moreover, for the coordination in the shared area, a mediator
is introduced to ensure the execution of the synchronization of
the AMRs.

5.1 Robot setup

Figure 7 shows one of the identical mobile platforms and
the 5C activity components running on the onboard computer.
Each platform is equipped with an active KELO drive 100,
a Hokuyo URG-04LX LiDAR Sensor, and an ODROID XU4
Embedded Computer. In each robot, the following activities
are running:

• Mobile platform drive: this receives sensor data and transmits
wheel setpoints via EtherCAT to the KELO wheel drive.
• Proprioception: this estimates the relative motion of the vehicle
using wheel encoders (dead-reckoning).
• LiDAR: this captures range data via a serial interface from the
Hokuyo URG-04LX.
• Navigation: this detects and tracks features in the environment
(perception) and computes the steering and forward speed
commands to perform a desired maneuver (control).
• Adaptive free-space motion tube: this evaluates and
adapts the control commands provided by the navigation
activity to ensure that the vehicle moves within the
free-space.
• Control: this transform control commands (steering and
speed) to KELO wheel setpoints.
• Communication: exchanges data with other processes.

These seven activities are registered in five threads (represented
in different colors in Figure 7) running at different frequencies.
The five threads run in a single multi-threaded process, which
allows for efficient in-memory data exchange among the different
components. Figure 7 shows some examples of data shared
between the activities in colored circles. For that, the variables
(objects) need to be first registered in the symbol table with
a semantic ID (name and datatype) by the activity owning
the resource, e.g., “LiDAR measurements,” range_scan_t is
registered by the LiDAR activity. For access to a shared variable,
first, an activity requests the data pointers corresponding to a
particular semantic ID (configuration) from the symbol table.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://gitlab.kuleuven.be/u0141779/coordination_library.git
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 5
Generation (left) and execution (right) time results for different Petri net models. Execution time refers to transition triggering in the net 2,000 times.

FIGURE 6
Time results for different Petri net design executions. Execution of all transitions enabled in the net 2,000 times.

FIGURE 7
Mobile platform, hardware view (left), and thread and activities running on the onboard computer (right). Activities running in the same process
exchange data via shared memory. Some of the data chunks accessed via shared memory are illustrated in small colored circles.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 8
Illustration of the control and perception layers of the semantic map designed for the experimental validation. These layers encode the expected
control and perception behaviors of the robot within a particular area. Both layers have several monitors associated with them for triggering the
coordination mechanism and reconfiguring the schedule of the navigation activity of the platforms.

After that, it can read the values (using acquire/release) directly
from the memory without going through the symbol table
(communication).

The traffic layout consists of semantic areas that are anchored
in environmental features perceived by the robot (corridor and
dead-ends). Figure 8 shows the control and perception layers of
the semantic map. A solid black box around the map indicates
solid walls detected by the LiDAR, while dashed black lines limit
semantic areas in each of the layers. The control layer indicates
the maneuver that a robot is expected to perform: move forward,
make a U-turn, or stop. It also encodes constraints such as limits
for driving velocity and deviation from the lane. The perception
layer shows the feature that the robot has to track in different
colored rectangles labeled as “A,” “B,” and “C.” For example, in area
“A” (green), the robot resorts to a corridor detection and tracking
algorithm for estimating its relative orientation and lateral position
with respect to the corridor. In area “C” (yellow), the robot also
tracks its relative longitudinal position with respect to the end of
the solid wall at the end of the lane. The reason for the different
perception behaviors is due to the finite range of the sensor, which
is limited by rmax. The robot does not continuously search for the
solid wall at the end of the lane but only when it reaches area
“B” (blue).

The schedule of the navigation activity links together perception,
control, and monitoring algorithms in the form of a skill. The
schedule of the activity changes at runtime according to the
situation due to coordination and (re)configuration. For example,
the robot starts in a known location of area “A” and moves
around the circuit. A monitor that uses the information provided
by dead-reckoning detects that the robot has reached area “B.”
The schedule of the navigation activity changes: the algorithm
for detecting the end of the lane is added to the schedule,
along with a monitor that checks whether the quality of the
estimation is stable. When the estimation is stable, the schedule
of the navigation activity changes once again by adding (end-
of-lane controller) and removing (corridor controller) algorithms
accordingly.

5.2 Coordinator setup

For coordination purposes in the semantic area, an area
manager is introduced for registering robots in an area and sending
events to the robots when necessary. These events will trigger the
(re)configuration of the schedule of the robots. The area manager is
amulti-threaded process running on a different computer. It has two
activities composed according to the 5C paradigm:

• Area management: this keeps track of the coordination state of
the area and coordinates the robots if required.
• Communication: this binds and starts the communication with
the robots. It is connected through shared memory to the area
management activity. It shares a queue with the updates (task
progress monitoring) from the robot and sends commands
(tasks) from the area management activity in its event loop.

In this experiment, the execution of commands from both
robots is not coupled, meaning that the autonomous execution of
each robot does not implicitly change according to other robots in
the area. Instead, the area manager works as a mediator between the
two robots, coordinating them.

• The area manager makes the decisions on the interaction
behavior: the interaction of the baseswith their shared resource
(space) is set by the mediator, giving access to the areas it
manages through events.
• The area manager decouples execution: the area manager is
the only “agent” aware of the complete state of the coordinated
execution at the discrete level by keeping the execution state in
a Petri net.
• The area manager allows execution when the robots have
incomplete information of the environment: the robots do not
detect each other in the experimental setup proposed, which
means that the mediator is required to allow the execution in
shared spaces without disruption.

There are two acquire–release protocols between the area
manager and AMRs. One of which is from the robot to the area

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 9
Finite state machine of AMRs and navigation map. The states in the finite state machine denote the traversal of the numbered areas according to
directional arrows in the map. For example, state 1 would be the navigation in area 1. The input events (light green, at the left-hand side of the slash)
among states come from either the navigation or communication activity (from the area manager). The output events (dark green, at the right-hand
side of the slash) are triggered by the navigation activity.

manager to access the area. When the robot is navigating toward a
local area, it has to request access to the area manager. When access
is granted, the semantic ID of the robot and its role (normal or
emergency robot) are registered in the list of robots coordinated by
the areamanager.This list contains the robots that “own” the area (as
a passive resource) at a given time.

The area management activity coordinates the interaction of the
robots in the area via the following components:

• Area state: the record of the robots that have requested entering
an area and releasing an area. In case two robots declare they
need to enter the same area, the area management activity
sends control requests to the robots.
• Petri net state: when coordination among the robots in the area
is required, a Petri net model with the coordination in the area
gets initialized. On top of the coordinated states in the Petri
net, configuration parameters can be added.

When coordination is needed among the robots in a given
area, a second acquire–release interaction is established. The area
management activity “acquires” the discrete control of the AMRs
and releases it when the coordination is over. This means that,
while the robot normally coordinates itself by executing the skills
in its FSM depicted in Figure 9, when coordination happens, this is
not the case anymore. When coordinated, the management activity
takes control of the AMR at the discrete level via the coordination
Petri net (Figure 10), with its connected protocols that trigger the
sending of events to the AMRs. While the FSM in the robot is
still tracking the execution of the robot, it does not trigger the
maneuvers. When the coordinated execution is finished, the area
management activity releases the AMR execution with a last shared
event and deletes the coordination.

The Petri net used in the demonstration is depicted in Figure 10.
The color legend of the image explains the ownership of the
places, meaning which activity has control over the events to set
the marking in the place. The white places are internal places
of the Petri net, which denote the state of the AMRs in the
execution. The dark places are source places, which are filled in
by the coordinating activity once the corresponding event arrives
from the AMRs. The light places are sink places to be filled
in by the Petri net execution, triggering the sending of events
to the AMRs.

For example, Figure 10 shows a case of the sink place “Rae1,”
to which only the area manager has writing access. Its marking is
filled in by the triggering of the Petri net. When the place “Rae1”
gets a token, the connected flag “e1” in the protocol with the
communication activity is raised. When the flag “e1” is raised, an
event is sent to the emergency AMR, which indicates it may enter
“Area 1.”

A case of the source place is “Radone1.” The communication
with the emergencyAMRhas writing access right to the flag “done1”
in the protocol, and the area manager activity reads this flag. When
the event arrives from the communication activity connected to the
emergency AMR, the flag “done1” is raised. Once the flag “done1” is
read by the area manager activity, the place “Radone1” gets a token,
and the outgoing transitions can be evaluated to continue with the
coordinated execution.

The processing of incoming and outgoing events according
to the sources and sinks in the coordination structure of the
Petri net in Figure 10 allows the execution of the coordinated
motions of the robots without disruption. Moreover, apart from the
sink and source places, the internal places are added to denote the
concurrent state of different activities in the coordination.

5.3 Execution of experimental
demonstration

The management activity remains idle after initialization until
two robots are passed to it (along with a communication channel
to them). The robots are passed according to their roles in the
coordination: normal robot or emergency robot. The emergency
robot has priority over the normal robot. The initial state of
each robot is informed to the Petri net, which translates to the
initial marking.

Once the coordination is properly configured, the event loop of
the management activity starts. In the event loop, the management
activity processes the messages coming from the AMRs, updating
them on the execution progress with respect to the skill they are
performing. The activity updates the marking of the coordination
Petri net when the events of finished skills are received. After the
marking of the Petri net is updated from all robots, the Petri net is
triggered. In the case that all the places of a transition have a token,

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 10
Petri net and protocols used for coordinating the normal AMR and the emergency AMR in the demonstration. The color legend shows the reading and
writing “rights” for the flags in the protocols. The execution of the coordination at the discrete level according to the coordination in the Petri net: 1)
normal AMR crosses area 1. 2) Wait until normal AMR crosses. 3) Emergency AMR is allowed to start its execution in area 1, while normal AMR gets the
signal to go to the padding area with higher speed. 4) Wait for normal AMR to be out in area 5 and emergency AMR finishes in area 1. 5) Normal AMR is
in padding area while emergency AMR crosses area 2. 6) Wait for emergency to be done in area 2. 7) Emergency AMR can start crossing area 3, and it is
released from the coordination. 8) Wait for the normal AMR to go out of the padding area. 9) Normal AMR can start crossing area 3, and it is released
from the coordination.

themarking of the Petri net is updated.The updatedmarking is then
passed to the communication modules to send the events coming
from the Petri net to the robots.

The area manager is the only activity aware of the coordinated
execution but is not responsible for configuring the schedule being
executed in the coordinated robots. The change in configuration
(e.g., of the normal robot when the emergency AMR is behind) is
achieved via events that are sent from the areamanager to the robots
via the communication channel. These events lead to a change in
the configuration of the robots, e.g., emergency AMR needs to slow
down because the normal robot is still ahead or the normal robot
has to drive to area 5 and wait there.

Once the coordination has finished (the emergency has
overtaken the normal robot), the area manager gives back control
to the AMRs because there is no need for mediation. Both
robots continue their autonomous execution with their initial
configuration.

5.4 Secondary demonstration: area
manager for heterogeneous AMRs

The same area manager as in the previous experiment
was deployed in a setup with three heterogeneous AMRs. The
demonstration case is the access area to docking stations in a
warehouse. In this application, coordination is needed tomediate the
access to an area that can be used as two lanes by two small AMRs or
one lane for a big AMR.The execution of the coordinated robots and
the Petri net used can be seen in one of the videos in the multimedia
part of this paper.

6 Discussion

The paper’s focus is on the efficient implementation of runtime
coordination needs in multi-robot applications. Most of the
efficiency comes from knowing in advance (the sizes and types) of
all data structures because that knowledge allows making the most
cache-efficient and data locality-driven implementations: (almost)
linear-time indexing of data pointers, optimal cache alignment,
known maximum usage in both time and space, etc. These
efficiencies are typically only possible and useful in embedded and/or
real-time software systems. Single producer, single consumer event
queues, and to-do lists are common practices in this context because
it is normal “to know everything” about such systems.

This section discusses implementation decisions that system
developers have to be aware of to make the best use of the
presented design:

• Semantic registration of all primitives involved (activities, Petri
nets, etc.): while all data structures and operators presented
in this paper can be implemented manually from scratch,
they are also designed to allow an even partial and gradual
development path toward more code generation, from models
of the coordination mechanisms to executable code. It is
important to consider the most advanced version in the
applications, i.e., the version in which these models are
“downloaded” or “adapted” at runtime and updated code is
generated by a running system itself.
• Symbol tables for data sharing: they facilitate data sharing
among activities running concurrently. This not only helps
the above-mentioned code generation but is also useful

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

in allowing “browsing” or “introspection” of a running
application: the symbolic names can then be used to navigate
from “component” to “component” and inspect and/or adapt
the local values in these components.
• Acquire–release pattern: this pattern is used for acquiring
access to write and read the variables kept in the symbol table.
At the deepest level of detail, the presented implementation
already uses this pattern via the acquire and release semantics
of memory barriers. However, a similar approach can be used
at all higher levels of detail, such as to connect two robots to
a third one at runtime, where the latter is responsible for the
coordination of the unique access to one of its resources by the
former two robots. For example, the third robot could let the
first robot use its pan-tilt camera.
• ThePetri net and finite statemachine data structures need only
to be known at the time of runtime software configuration (that
is, not necessarily at compile time or even deployment time)
because memory allocation can be postponed until just before
the data structures are used. A memory pool approach is also
a good fit.
• “Best” design of the monitors. Coordination is, by nature,
a reactive behavior triggered by events that represent
that “something has happened.” Hence, the efficiency and
correctness of the coordination tasks in an application are
not only realized by the efficiency and correctness of the
coordination mechanisms presented in this paper but also
by the “appropriate” design of the monitors that are needed to
generate the events by monitoring Boolean combinations of
status variables that can be spread over several components
of the application. Similarly, the events generated by the
coordination mechanisms must still be reacted to in an
“appropriate” way via decision-making functions in the
relevant system components.
• Simultaneous events. The application context of this paper
is that of concurrent activities, each of which can generate
multiple events and is expected to react to multiple events.
No software design is known to guarantee that the order in
which events end up in each activity’s event queue is the same
temporal order in which these events were generated. Hence,
the system architects have the responsibility to introduce
coordination logic (in FSMs, Petri nets, and protocols) that
is “appropriately” robust against such order “inversions.” To
the best of the authors’ knowledge, the scientific foundations
to generate such robust coordination logic are still to be
discovered.
• Errors in coordination logic. Even a perfect software
implementation of the mechanisms in this paper cannot
guarantee that there are no errors in the coordination logic
of the application, possibly leading to deadlocks or livelocks in
the overall system.

For example, a robot might attempt to enter an area to which it
has not yet been granted access to, or it might try to enter another
area. System designs can be made more robust by introducing
extra monitor activities to detect deadlocks or livelocks when the
coordinated activities have not foreseen thismonitoring themselves.

• Hierarchy in coordination. The coordination examples
presented in this paper are “flat”: there is one Petri net layer

added to the robots’ individual task controllers. This hides the
implicit assumption that the coordinated robots collaborate
only with the coordinating activity and that the actions that
Petri net decides about have no “competition” of decisions
made elsewhere. The authors believe that solutions to these
problems are not to be found in extra software primitives but
in using the presented ones in non-flat, application-specific
“coordination hierarchies.”

One reason for introducing such “non-flat” coordination is
to address the coordination logic errors of the previous item.
In addition to the deadlock/livelock monitors mentioned above,
system designs can be made more robust by introducing pre-
emption: the Petri net and/or finite state machines are extended
with places/states that represent a phase in the coordination where
that coordination can be pre-empted. In any case, such pre-
emption needs coordination itself because all coordinated activities
must somehow be brought back into a known and consistent
interaction state.

This “hierarchical coordination” topic is beyond the scope of
this paper.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

Author contributions

MA: conceptualization, investigation, methodology, software,
validation, writing–original draft, and writing–review and
editing. RR: conceptualization, methodology, software, validation,
writing–original draft, and writing–review and editing. LV:
software, writing–original draft, and writing–review and editing.
HB: conceptualization, methodology, writing–original draft, and
writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was supported by the Flanders Make projects AssemblyRecon
(“Decision Framework for Assembly System Reconfiguration”),
HySLAM (“A Hybrid SLAM approach for autonomous mobile
systems”), and CTO action on Cooperative motions and by the
European Horizon 2020 project RobMoSys (“Composable Models
and Software for Robotic Systems”) under grant agreement
No. 732410.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Artigas et al. 10.3389/frobt.2024.1363041

that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may

be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1363041/full#supplementary-material

References

Abdellatif, T., Combaz, J., and Sifakis, J. (2013). Rigorous implementation of real-
time systems—from theory to application. Math. Struct. Comput. Sci. 23, 882–914.
doi:10.1017/s096012951200028x

Barylska, K., Best, E., Schlachter, U., and Spreckels, V. (2017). Properties of plain,
pure, and safe Petri nets. Trans. Petri Nets Other Models concurrecncy. Vol 10470 Lect.
notes Comput. Sci., 1–18. doi:10.1007/978-3-662-55862-1_1

Berthomieu, B., Ribet, P.-O., and Vernadat, F. (2004). The tool tina–construction of
abstract state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42, 2741–2756.
doi:10.1080/00207540412331312688

Brugali, D., and Scandurra, P. (2009). Component-based robotic engineering (Part I)
[Tutorial]. IEEE Robotics Automation Mag. 16, 84–96. doi:10.1109/MRA.2009.934837

Brugali, D., and Shakhimardanov, A. (2010). Component-based robotic engineering
(Part II). IEEE Robotics Automation Mag. 17, 100–112. doi:10.1109/MRA.2010.935798

Bruyninckx, H. (2023). Building blocks for complicated and situational aware robotic
and cyber-physical systems. KU Leuven: Department of Mechanical Engineering.

Costelha, H., and Lima, P. (2007). “Modelling, analysis and execution of robotic
tasks using petri nets,” in 2007 IEEE/RSJ international conference on intelligent
robots and systems, San Diego, CA, October 29–Novamber 02, 2007 (IEEE),
1449–1454.

Davidrajuh, R. (2010). Gpensim: a new Petri Net simulator (InTech).

Delanote, D., Van Baelen, S., Joosen, W., and Berbers, Y. (2008). “Using AADL to
model a protocol stack,” in IEEE international conference on engineering of complex
computer systems, 277–281.

Desnoyers, M., and Dagenais, M. R. (2012). Lockless multi-core high-throughput
buffering scheme for kernel tracing. ACM SIGOPS Oper. Syst. Rev. 46, 65–81.
doi:10.1145/2421648.2421659

Dijkstra, E. W. (1982). “On the role of scientific thought,” in Selected writings on
computing: a personal perspective (Springer-Verlag), 60–66.

Dingle, N. J., Knottenbelt, W. J., and Suto, T. (2009). Pipe2: a tool for the performance
evaluation of generalised stochastic Petri nets. SIGMETRICS Perform. Eval. Rev. 36,
34–39. doi:10.1145/1530873.1530881

Figat, M., and Zieliński, C. (2022). Parameterised robotic system meta-
model expressed by hierarchical Petri nets. Robotics Aut. Syst. 150, 103987.
doi:10.1016/j.robot.2021.103987

Figat, M., Zieliński, C., and Hexel, R. (2017). “FSM based specification of robot
control system activities,” in 2017 11th international workshop on robot motion and
control RoMoCo (IEEE), 193–198.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements
of reusable object-oriented software

Gomes, L., Rebelo, R., Barros, J. P., Costa, A., and Pais, R. (2010). “From Petri
net models to C implementation of digital controllers,” in 2010 IEEE international
Symposium on industrial electronics (IEEE), 3057–3062.

Hrúz, B., and Zhou, M. (2007). Modeling and control of discrete-event dynamic
systems: with Petri Nets and other tools. Springer.

Klotzbücher, M., Biggs, G., and Bruyninckx, H. (2012). “Pure coordination using the
Coordinator–Configurator pattern,” in Proceedings of the 3rd international workshop on
domain-specific languages and models for robotic systems, 1–4.

Kučera, E., Haffner, O., Drahoš, P., Leskovskỳ, R., and Cigánek, J. (2020).
PetriNet editor+ PetriNet engine: new software tool for modelling and control of
discrete event systems using Petri nets and code generation. Appl. Sci. 10, 7662.
doi:10.3390/app10217662

Lacerda, B., and Lima, P. U. (2019). Petri net based multi-robot task
coordination from temporal logic specifications. Robotics Aut. Syst. 122, 1–13.
doi:10.1016/j.robot.2019.103289

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34, 1045–1079. doi:10.1002/j.1538-7305.1955.tb03788.x

Murata, T. (1989). Petri nets: properties, analysis and applications. Proc. IEEE 77,
541–580. doi:10.1109/5.24143

Pereira, F., Moutinho, F., Costa, A., Barros, J.-P., Campos-Rebelo, R., and Gomes,
L. (2022). “Iopt-tools–from executable models to automatic code generation for
embedded controllers development,” in International conference on applications and
theory of Petri nets and concurrency (Springer), 127–138.

Piedrafita, R., and Villarroel, J. L. (2011). Performance evaluation of Petri nets
centralized implementation. the execution time controller.Discrete Event Dyn. Syst. 21,
139–169. doi:10.1007/s10626-010-0090-7

Radestock, M., and Eisenbach, S. (1996). “Coordination in evolving systems,” in
Trends in distributed systems. CORBA and beyond (Springer-Verlag), 162–176.

Samek, M., and Ward, R. (2006). Build a super simple tasker. Embed. Syst. Des. 19,
18–37.

Standardization committee C and C++ (2017). Memory barriers in the C standard.
CPP Reference.com.

Van Baelen, S., Peeters, G., Bruyninckx, H., Pilozzi, P., and Slaets, P. (2022).
Dynamic semantic world models and increased situational awareness for highly
automated inland waterway transport. Front. Robotics AI 8, 739062–739071.
doi:10.3389/frobt.2021.739062

Vanthienen, D., Klotzbücher, M., and Bruyninckx, H. (2014). The 5C-based
architectural Composition Pattern: lessons learned from re-developing the iTaSC
framework for constraint-based robot programming. J. Softw. Eng. Robotics 5, 17–35.
doi:10.6092/JOSER_2014_05_01_p17

Varghese, G., and Lauck, A. (1987). “Hashed and hierarchical timing wheels: data
structures for the efficient implementation of a timer facility,” in Proceedings of the
eleventh ACM symposium on operating systems principles, 25–38.

Zhou, H., Min, H., Lin, Y., and Zhang, S. (2017). “A robot architecture of hierarchical
finite state machine for autonomous mobile manipulator,” in Intelligent robotics and
applications: 10th international conference, ICIRA 2017, wuhan, China, august 16–18,
2017, proceedings, Part III 10 (Springer), 425–436.

Ziparo, V. A., Iocchi, L., Lima, P. U., Nardi, D., and Palamara, P. F. (2011). Petri net
plans: a framework for collaboration and coordination in multi-robot systems. Aut.
Agents Multi-Agent Syst. 23, 344–383. doi:10.1007/s10458-010-9146-1

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full#supplementary-material
https://doi.org/10.1017/s096012951200028x
https://doi.org/10.1007/978-3-662-55862-1_1
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1109/MRA.2009.934837
https://doi.org/10.1109/MRA.2010.935798
https://doi.org/10.1145/2421648.2421659
https://doi.org/10.1145/1530873.1530881
https://doi.org/10.1016/j.robot.2021.103987
https://doi.org/10.3390/app10217662
https://doi.org/10.1016/j.robot.2019.103289
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/s10626-010-0090-7
https://doi.org/10.3389/frobt.2021.739062
https://doi.org/10.6092/JOSER_2014_05_01_p17
https://doi.org/10.1007/s10458-010-9146-1
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Component
	1.2 Coordination
	1.3 Archetypical use cases
	1.4 Scope
	1.5 Contributions

	2 Related work
	3 Methodology
	3.1 Coordination mechanisms
	3.2 Communication mechanisms
	3.3 Configuration mechanisms

	4 Implementation
	4.1 Data structures
	4.2 Discussion
	4.3 Results for generation and execution performance

	5 Experimental validation
	5.1 Robot setup
	5.2 Coordinator setup
	5.3 Execution of experimental demonstration
	5.4 Secondary demonstration: area manager for heterogeneous AMRs

	6 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

