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Introduction: Compliant mechanisms, especially continuum robots, are
becoming integral to advancements in minimally invasive surgery due to
their ability to autonomously navigate natural pathways, significantly reducing
collision severity. A major challenge lies in developing an effective control
strategy to accurately reflect their behavior for enhanced operational precision.

Methods: This study examines the trajectory tracking capabilities of a tendon-
driven continuum robot at its tip. We introduce a novel feedforward control
methodology that leverages a mathematical model based on Cosserat rod
theory. To mitigate the computational challenges inherent in such models,
we implement an implicit time discretization strategy. This approach simplifies
the governing equations into space-domain ordinary differential equations,
facilitating real-time computational efficiency. The control strategy is devised
to enable the robot tip to follow a dynamically prescribed trajectory in two
dimensions.

Results: The efficacy of the proposed control method was validated through
experimental tests on six different demand trajectories, with a motion capture
system employed to assess positional accuracy. The findings indicate that the
robot can track trajectories with an accuracy within 9.5%, showcasing consistent
repeatability across different runs.

Discussion: The results from this study mark a significant step towards
establishing an efficient and precise control methodology for compliant
continuum robots. The demonstrated accuracy and repeatability of the
control approach significantly enhance the potential of these robots in
minimally invasive surgical applications, paving the way for further research and
development in this field.
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1 Introduction

Over the 21st century, the inclusion of robotics in the medical field has
increased drastically, with far-reaching impact and many novel uses, including
fully humanoid robots for homecare (Azeta et al., 2017) and in surgeries (Beasley,
2012). Minimally invasive surgery (MIS), in which a surgeon uses tiny incisions
or natural orifices in place of large openings to perform surgery, has particularly
benefited from the use of robotics recently due to the precision and control they
offer. This approach additionally reduces the length of hospital stay, recovery
time, and pain levels throughout compared to traditional surgeries (Fuchs, 2002).
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Complaint continuum robots, also known as snake-arm robots
or flexible robots, which include end effectors to manipulate
and grasp objects, have sparked interest in the surgical field
in recent years. They have the potential to reach a surgical
site via natural orifices instead of incisions due to their flexible
nature, minimizing surgery invasiveness (Burgner-Kahrs et al.,
2015), whereas current traditional rigid-link instruments struggle
to traverse these pathways while avoiding collisions. Continuum
robots for applications in MIS can be actuated through multiple
methods, with the most prominent being pneumatic-driven or
tendon-driven actuation. Prototype systems have been developed;
however, they have yet to reach clinical trials. The majority of
research has utilized in vivo or ex vivo tissue experiments or an
in vitro environment (Burgner-Kahrs et al., 2015). Nevertheless,
these have shown promise in many areas, including colonoscopies
(Chen et al., 2009), otolaryngology (Yoon et al., 2011), and cardiac
surgery (Gosline et al., 2012).

For a continuum robot to run autonomously, a robust control
methodology must be developed. One approach is to utilize a
model-based controller, for which a representative mathematical
model is required that takes into account the system dynamics.
The flexibility of the robot results in it theoretically having infinite
degrees of freedom, which leads to modeling complexities that
are computationally expensive to solve. Therefore, a compromise
between the result accuracy and computation time is usually
necessary (Wang et al., 2020). However, for the application of
MIS, both accuracy and minimal computation time are necessary.
Although some progress has been made, a fully developed solution
is not yet available in the open literature.

Multiple approaches to model continuum robots have been
studied, with the constant curvature approach and Cosserat theory
being the most prevalent. The constant curvature approach is
the most common in the literature due to the simplicity of the
derived model, resulting in a computational scheme of relatively
low complexity (Webster and Jones, 2010). The approach splits
the continuum robot into small sections, each of which assumes
constant curvature in space. The governing equations are then
solved by the first-order method (Burgner-Kahrs et al., 2015). This
produces low-accuracy predictions compared to other methods,
particularly when torsion, extension, or shear acts on the continuum
robot (Sadati et al., 2017). This scenario is likely in surgical
application through interactions with tissue or procedures using an
end effector. Advancements to improve the accuracy of predictions
have been proposed, but they typically involve extremely small
segment sizes (Rone and Ben-Tzvi, 2014), and as the constant
curvature approach scales poorly in space (Godage et al., 2016), this
is not a feasible solution.

Another approach, based on the Cosserat theory, has been
growing in popularity due to its high accuracy, making it well-
suited for surgical applications. Additionally, it is independent of
any discretization strategy, which allows higher-order numerical
techniques to be applied, such as a fourth-order Runge–Kutta
scheme. Variations of the theory exist, with Rucker and Webster
coupling the Cosserat rod and Cosserat string models for a tendon-
driven continuum robot, enabling the distributed forces that the
tendons apply along the backbone to be accounted for (Rucker
and Webster, 2011). A simplified model for the static case of a
tendon-driven continuum robot was developed by Isbister et al.

(2021), providing a less computationally expensive numerical
implementation while maintaining good accuracy. Meanwhile,
Renda et al. (2014) presented a dynamic model for a tapered
continuum robot based on an octopus arm, showing a good
correlation to experimental results. A major drawback of these
approaches for the dynamic model is that the derived partial
differential equations (PDEs) are computationally expensive to solve
due to explicit time integration being implemented, making them
difficult to solve in real-time (Alqumsan et al., 2019). Till et al.
(2019) proposed a new time discretization scheme where the
time derivatives are first semi-discretized outside of a shooting
method using implicit differentiation, creating ordinary differential
equations (ODEs) in space leading to a boundary value problem.
Therefore, any numerical integration scheme utilizing a shooting
method or boundary value problem solver can be used at each
timestep. The stability of the implicit time discretization allows the
robot dynamics to be solved at real-time rates as relatively large
timesteps can be used.

A comparison of the representative papers on modeling the
forward dynamics of a tendon-driven robot, together with other
forms of actuation, is given by Till et al. (2019). However, for use in
a feedforward control strategy, the inverse dynamics are needed.

The development of inverse kinematics remains an open
problem in the literature, particularly for Cosserat theory. Most
studies are conducted using a constant curvature approach, with
Jones and Walker using it to form a well-developed formulation
of the inverse kinematics; however, it is not in a closed form
(Jones and Walker, 2006). On the other hand, Neppalli et al. (2009)
developed a closed-form solution for the inverse kinematics, again
using the constant curvature approach. However, these still suffer
the same inaccuracies as the forward dynamics for the constant
curvature approach.

In this paper, the formulation of the dynamic governing
equations of a tendon-driven continuum robot is provided in
Section 2. An implicit numerical scheme is formulated in Section 3
to provide computationally efficient results. In Section 4, the model
is extended to allow for computation of the inverse dynamics,
where the input of the model is a demanded continuum robot
tip trajectory and the output is the tendon tensions necessary
to achieve the demanded motion. This forms the basis of the
feedforward control of the tendon-driven continuum robot,
which is given in Section 5, together with the details of the
experimental facility. The results given in Section 6 show that a
2D trajectory can be accurately tracked to within 9.5% of the
movement area for six different demand paths, demonstrating
the good trajectory-tracking capabilities of a tendon-driven
continuum robot.

2 Mathematical model of the
continuum robot

The compliant continuum robot comprises a central backbone
with four tendons for actuation, as shown in the schematic in
Figure 1A. Two coordinate systems are given: a global coordinate
system denoted by subscript g and a local coordinate system with
subscript l. Support disks are used along the backbone to route
the tendons parallel to the backbone in the ±zg and ±xg directions
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FIGURE 1
Schematic of the continuum robot showing (A) key components including tendon numbering and (B) denoting key parameters of the system together
with the global and local coordinate systems.

before being fixed to the last disk. The tendons are numbered
counterclockwise when viewed end-on at the continuum robot. The
support disks are positioned at equal distances fromeach other along
the backbone.

A dynamic mathematical model for the backbone is derived
and coupled to a model for the tendon system, building upon
the static model presented by Isbister et al. (2021), following a
similar methodology to Rucker and Webster (2011). The governing
equations are derived usingCosserat rod theory, where the backbone
is considered to be a cantilevered elastic one-dimensional rod, which
is assumed to have a constant cross-sectional area that is straight
and horizontal when undeformed. The material’s properties are
assumed to be perfect.Thematerial damping and drag, togetherwith
the inertia and frictional effects from the tendons, are considered
negligible. Therefore, all state variables can be parameterized by the
reference arc length, s and time, t.Themaximum arc length is s = sm,
where the length of the backbone is sm in an undeformed state.

The centroid position along the backbone in global coordinates
is given by r(s) and is shown in Figure 1B together with the arc
length, s.The local angular and linear rate of change of the backbone
position are denoted byΩ(s) and u(s), respectively, with the form in
Eq. 1.

r (s) =(

rx
ry
rz

), Ω̂ =(

Ωx

Ωy

Ωz

), u (s) =(

ux
uy
uz

). (1)

To transform points from the local to the global coordinate
system, the rotation matrix R(s) is utilized, which is given in Eq. 2.

R (s) = (
cos ϕ cos θ cos ψ sin θ sin ϕ cos ψ sin θ cos ϕ+ sin ψ sin ϕ
sin ψ cos θ sin ψ sin θ sin ϕ+ cos ψ cos ϕ sin ϕ sin θ cos ϕ− cos ψ sin ϕ
− sin θ cos θ sin ϕ cos θ cos ϕ

),

(2)
where ψ, θ, and ϕ refer to the angles through which the local axes
have turned about the global xg , yg , and zg axes, respectively.

In the local frame, parameters v(t) and ω(t), which depend
only on time, are defined as the linear and angular velocity of the
backbone at position s, analogous to u(s) and Ω(s), respectively,
which have only spatial dependence.Therefore, the derivatives of the
position and rotationalmatrixwith respect to the arc length and time
are given by

∂r
∂t
= Rv, ∂R

∂t
= Rω̂, ∂r

∂s
= Ru, ∂R

∂s
= RΩ̂, (3)

whereRω̂ denotes the cross productR×ω, with the hat representing
the skew matrix form in Eq. 4

ω̂ =
[[[[

[

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]]]]

]

. (4)

Since ∂(∂r/∂t)/∂s = ∂(∂r/∂s)/∂t, using cross-product vector
identities, the equations in Eq. 3 can be differentiated to give

∂v
∂s
= ∂u

∂t
− Ω̂v+ ω̂u, ∂ω

∂s
= ∂Ω

∂t
+ Ω̂ω. (5)
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FIGURE 2
Free-body diagram of an arbitrary section of the backbone between s1
and s2 showing the internal forces and moments n andm, respectively,
together with the distributed force and moment f and l, respectively.

Equilibrium equations can be formed to represent the backbone.
In global coordinates, n(s) and m(s) are the internal forces and
moments within the backbone, while f(s) and l(s) are externally
distributed force and moment acting on the backbone, respectively,
as shown in Figure 2. Therefore, the governing equations are given
by

∂n
∂s
= ρAR(ω̂v+ ∂v

∂t
)− f,

∂m
∂s
= ∂
∂t
(RρJω) − ∂r

∂s
n̂− l = Rρ(J ∂ω

∂t
+ ω̂Jω)− ∂r

∂s
n̂− l, (6)

where A is the cross-sectional area, ρ is the backbone density,
and J is the matrix of the second moment of inertia tensor. In
the case of no actuation forces from the tendons, the only force
on the backbone will be from its weight, resulting in fg = ρAg,
where g is the gravitational force. The constitutive law dictates
that the internal forces and moments of the backbone can be
described using the deformed and undeformed states at arc length
s along the backbone; the undeformed state is assumed to be a
straight cylindrical rod extending in the local z-axis defined by
u∗ = (0,0,1)T andΩ∗ = (0,0,0)T , resulting in Eq. 7

n = R[Kse (u− u∗ )] , m = R[Kbt (Ω−Ω∗ )] . (7)

Eq. 8 gives the stiffness matrices Kse and Kbt represent the
shear/extension and bending/twisting, respectively, with the form

Kse =
[[[[

[

G 0 0

0 G 0

0 0 E

]]]]

]

A, Kbt =
[[[[

[

E 0 0

0 E 0

0 0 G

]]]]

]

J, (8)

where E and G are Young’s and shear moduli, respectively.

2.1 Coupling the backbone to actuating
tendons

The backbone model is coupled to the tendon system, which is
used to actuate the continuum robot. A separate reference plane,
parallel to the backbone cross-sectional area, is defined for the
tendon routing. At any point along the arc length s, the offset
of a tendon from the backbone in local coordinates is given
by hi(s) = (xi(s),yi(s),0)

T, where i = 1,2,3,4 refers to the tendon
number, as shown in Figure 1A. In global coordinates, the tendon
position is given by ri(s) = R(s)hi(s) + r(s). The tendons are assumed
to be perfectly flexible, with negligible shear forces or internal

moments. This leads to only tension forces being considered,
and as frictional effects are neglected between the tendons and
support disks, the tension is constant along the tendon. Both a
distributed force/moment along the length of the backbone and
point forces/moments, where the tendons attach to the final support
disk, are considered.

It is assumed that the distributed force experienced by the
backbone is equal to and opposite to the forces generated by the
tendons. A static model for the tendons is considered in Eq. 9 with
the derivative of the static equilibrium condition for a finite section
leading to

∂ni (s)
∂s
+ fi (s) = 0, (9)

where ni(s) is the internal force in tendon i and fi(s) is the distributed
force applied. The only internal force in the tendon is considered to
be tension, which is denoted by τi. Eq. 10 shows the internal force
being tangential to the backbone at all times, giving

∂ni (s)
∂s
= τi

∂ri
∂s

| ∂ri
∂s
|
. (10)

Thus, the distributed force ften from the tendons on the backbone
in the global frame has the form

ften = −
4

∑
i=1

fi where fi = −
∂ni (s)
∂s
= τi

∂r̂i
∂s

2

| ∂ri
∂s
|3
∂2ri
∂s2
.

(11)

The total distributedmoment experienced by the backbone is the
sumof the cross product of each perpendicular distance between the
tendon and backbone with each force, resulting in

lten = −
4

∑
i=1
(R (s)hi × fi) . (12)

Rewriting the expressions in Eqs 11, 12 in terms of the kinematic
variables of the backbone, after considerable algebraicmanipulation,
gives

ften = R(a+A
∂u
∂s
+G∂Ω

∂s
),

lten = R(b+B
∂u
∂s
+H∂Ω

∂s
), (13)

where

a =
k
∑
i=1

ai, b =
k
∑
i=1

bi, A =
k
∑
i=1

Ai, B =
k
∑
i=1

ĥiAi,

G =
k
∑
i=1

Aiĥi, H =
k
∑
i=1

ĥiAiĥi,

ai = −Ai(Ω̂((
∂r
∂s)

ζ
+ ∂hi∂s )+

∂2hi
∂s2
), bi = ̂riai,

(∂ri∂s )
ζ
= Ω̂hi +

∂hi
∂s + u, Ai = −τi

(( ∂ ̂ri
∂s
)
ζ
)
2

|( ∂ri
∂s
)
ζ
|
3 .

The superscript ζ represents the local frame representation of a
variable. Using Eq. 5 and Substituting the equations from Eq. 13 into
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∂n/∂s and ∂m/∂s in Eq. 6 gives the final set of PDEs to describe a
tendon-driven continuum robot as

∂r
∂s
= Ru, ∂R

∂s
= RΩ̂,

[[

[

∂u
∂s
∂Ω
∂s

]]

]

= [

[

Kse +A G

B Kbt +H
]

]

−1

[

[

c

d
]

]
∂v
∂s
= ∂u

∂t
− Ω̂v+ ω̂u, ∂ω

∂s
= ∂Ω

∂t
− Ω̂ω, (14)

where

c = ρAω̂v+ ρA∂v
∂t
− Ω̂Kse (u− u∗ ) −RTρAG− a,

d = ρJ ∂ω
∂t
+ ω̂ρJω− Ω̂Kbt (Ω−Ω∗ ) − ûKse (u− u∗ ) − b. (15)

In addition to the distributed forces along the tendon, the point
forces are considered at the last support disk where the tendon
terminates. A set of forces and moments is applied to the backbone
that are equal to and opposite to those internal to the tendon, which
have the form

Fi (sm) = −ni (sm) = −τi

∂ri
∂s
(sm)

| ∂ri
∂s
(sm) |
,

Li (sm) = −mi (sm) = −τiR(sm) ĥi (sm) ×

∂ri
∂si
(sm)

| ∂ri
∂s
(sm) |
. (16)

These will be applied as a boundary condition when solving the
system of equations in Eq. 14. However, the axial point force from
the tendons on the last support disk is assumed to be negligible,
as it is expected to be at least an order of magnitude smaller
(Gravagne et al., 2003).

3 Numerical technique

Initially, the PDEs in Eqs 14, 16 are discretized in time using an
implicit differentiation formula, resulting in a system of ODEs in
space. For a first-order derivative, Eq. 17 shows the general form of
grouping of terms dependent on the previous timestep

∂γj

∂t
≃ α0γj +

∞

∑
κ=1
(ακγj−κ + βκ

∂γj−κ

∂t
) = α0γj + γp, (17)

where γp represents the sum of all the terms dependent on previous
timesteps and γj represents the sum of all the terms dependent on
the current timestep. This approach is applied to the set of PDEs in
Eq. 14 to transform it into a set of ODEs. This has the advantage of
the time discretization being decoupled from the spatial solver, such
that the spatial solver has a new constant value for γj at each timestep,
reducing the computations needed at each timestep.

Therefore, the two time derivatives in Eq. 14 become

∂u
∂t
= αuu+ up,

∂Ω
∂t
= αΩΩ+Ωp, (18)

and the time derivative terms ∂v/∂t and ∂ω/∂t contained within
c and d in Eq. 15 have a similar form. As a compromise between
solution accuracy and computational time, a backward Euler
method for the implicit discretization schemes is implemented;

numerical damping is considered negligible due to the slow-moving
nature of a continuum robot.

Therefore, the system of equations in Eq. 14 has been
transformed, through discretization, into a set of ODEs at each
timestep. A numerical technique utilizing a shooting method solver
based on the fourth-order Runge–Kutta method is implemented.
Thus, the boundary value problem is reduced to an initial value
problem, where the solution iterates until the boundary conditions
are satisfied. A trust-region dog-leg algorithm is utilized to identify
if the solution has converged to the prescribed tolerance.

4 Trajectory tracking

Currently, the mathematical model has an input of tendon
tensions over time, and the output is the backbone position in space
and time. However, for a scenario where the end of the backbone is
required to follow a given trajectory, the reverse is needed.Therefore,
the model is modified to allow a demand trajectory of the backbone
tip to be the model input, with the necessary tendon tensions to
achieve this demanded trajectory being the model output.

The trajectory demand is given in the zg and xg coordinates over
a fixed time period, withmotion in the yg coordinate unconstrained.
Thus, the demand is given by (zd(t),xd(t))).

Two additional equations are added to the set of equations in
Eq. 14.

dzg
ds
= 0,

dxg
ds
= 0, (19)

with the corresponding boundary conditions

zg (sm) = zd, xg (sm) = xd. (20)

The solution of this extended set of governing equations, Eq.
14, Eqs 18−20, with an initial guess for the tendon tensions at each
timestep, will result in the identification of the tendon tensions
needed to achieve the demanded trajectory.

5 Experimental facility

The tendon-driven continuum robot utilized for the
experiments is shown in Figure 3 with details of its manufacturing
given by Isbister et al. (2021). Here, a short description of the key
elements that are related to the work at hand will be given. The
backbone is made from ASTMA228 spring steel, a flexible steel that
can bend elastically at high curvatures with a length of sm = 227 mm.
Four 0.28-mm-diameter Dyneema wire tendons, which provide
high fracture stress while minimizing possible elongation, run
through 12 Teflon-coated acrylic support disks. The support disks
are spaced 20 mm apart along the backbone and have a 20 mm
diameter and 1.5 mm thickness.The offset from the backbone to the
tendon is 8 mm.TheYoung’smodulus of the backbonewas identified
to be E = 168 GPa, which was found experimentally [Isbister et al.
(2021)].

The four tendons are numbered as in the model (Figure 1A) and
are actuated independently using lead screw mechanisms driven by
steppermotors. Each steppermotor has a resolution of 0.05625°, and
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FIGURE 3
Continuum robot rig where the central backbone is actuated by tendons running through the support disks, driven by stepper motors and lead screws.
Cantilever load cells measure the tension in the tendons. OptiTrack spherical markers are positioned along the length of the backbone for position
identification.

FIGURE 4
Block diagram of the closed-loop control for regulating the tendon tension. The dashed box gives the additional part of the control scheme needed
when the input is the backbone tip position instead of the tendon tension demand. The control loop runs at 100 Hz and is a PI controller based on the
error between the demand and tendon tension feedback. The control signals are pulses for the motor driver, which generates the current to run the
stepper motor. The lead screw mechanism applies the tension to the tendon via the cantilever load cell. The measurements from the latter are
amplified and sampled from the ADC at the rate of the control loop.

combined with the lead screw providing 0.008 m of translation per
rotation, this results in a linear resolution of 1.25× 10−5 mmper step.
A V-slot linear rail and carriage system is utilized to ensure stability
and pure linear translation of the lead screw nut. A benefit of this
approach is that minimal friction will occur in the actuation system,
which is necessary for the high tendon tension case. A cantilever load
cell is fixed to the V-slot linear rail carriage, which is then connected
to the tendon, which enables feedback for each tendon. A 1 kg load
cell was chosen as a compromise between the maximum expected
tendon tension and resolution.

To collect positional data for the backbone using contactless
technology, an OptiTrack motion capture vision system was used.
A six-camera setup was calibrated to ensure that the maximum
tracking error was not more than 0.1 mm. Seven reflective markers
of 6 mm diameter were placed along the robot backbone at each
tendon support disk for the cameras to track and then compared
with the simulation data.

The model was run in MATLAB off-line, and the resulting
tendon demands for the entire experiment run were sent to an

Arduino board.The tendon closed-loop controller was implemented
on an Arduino board and ran at 100 Hz. The block diagram of
the control system is presented in Figure 4 for both the forward
and reverse models. The control variable is the tension of the
tendons, Ti, with feedback control implemented via a PI controller.
The demand values are held via a zero-order hold, and the
tension feedback is provided by the load cell via an integrated
amplifier/ADC NAU7802, which is sampled at the control loop
frequency. The PI gains for the proportional and integral terms
were tuned primarily using the heuristic Ziegler–Nichols method
(Ziegler and Nichols, 1942) (Kp = 2000 and Tu = 120) to Kp = 2000
and Ki = 20, respectively. If a demand is given for the tendon
tensions, the control loop to the right of the dashed box in
Figure 4 is implemented. However, for the case of tracking a
demanded backbone tip position, the complete control loop in
Figure 4 is implemented, with the dashed box generating the
required tendon tension from the demanded backbone tip position
at each timestep, which is then passed to the low-level controller for
tendon control.
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FIGURE 5
Demand and realized trajectory at the tip of the continuum robot for all investigated paths. All paths are in the same quadrant, upper-left, as seen from
the front of the robot, which is plotted here.

6 Results

This section describes the experimental results of testing the
tracking ability of the continuum robot with the control path derived
from the mathematical model.

Six displacement paths were generated, demanding a given
position in (zg ,xg), i.e., the two global directions perpendicular to
the direction along the backbone at its base, as seen in the reference
frame in Figure 1A. The yg direction is left unconstrained and
calculated by the mathematical model or observed by the motion of
the mechanism in the experiments. In this section, the subscript g is
omitted as all demands and results are given in the global reference
system.The six demands are executed in the top-left quadrant of the
robot (as seen from the front) to require the tension of only two of
the four tendons, namely, tendons 2 and 3.Three repetitions of each
path demand are executed, where the paths are given by

• Horizontal line of length 0.08 m over 20 s.
• Vertical line of length 0.08 m over 20 s.
• Diagonal line of length 0.113 m (covering a vertical and
horizontal distance of 0.08 m) over 20 s.

• Circle of diameter 0.08 m over 20 s.
• Square with sides of length 0.08 m over 40 s.
• S-shaped path moving a distance of 0.08 m horizontally and
0.08 m vertically in two, 0.04 m, stages over 100 s.

Figure 5 presents the tip positional tracking of the simulation, in
red, and one of the repetitions of the experimental result, in blue. It
should be noted that the simulation result is plotted rather than the
demanded path, as both have the same (z,x) coordinates; however,
the y coordinate must be found by solving the mathematical model.
Thus, the simulation path is the tip-most positional information of
the backbone, while the experimental data consists of the tip-most
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FIGURE 6
Detailed view of the demand paths and tracking error for Horizontal with the minimum average error, shown in (A), and the Square with the maximum
average error, shown in (B). (A) Horizontal demand path. (B) Square demand path.

reflective marker 3D information as detected by the optical tracking
system (OptiTrack).

The results show that the continuum robot tracks the demanded
path; however, the further away from its resting position it
becomes, the larger the divergence with the simulation. A potential
explanation of this behavior is due to the increased friction caused
by the higher tension applied to the backbone, the support disks, and
the actuation elements.

Figure 6 shows a detailed view of the demand and each of
the three experimental response values for (z,x) coordinates, as
well as the y coordinate given by the simulation prediction and
experimental results. This is due to z and x being actively tracked,
while y is passively affected by the geometry and robot motion. For
reasons of clarity, we include only the Horizontal and Square paths.
The tracking error is also presented, calculated as the Cartesian
distance between the tip-most OptiTrack marker and the tip-most
backbone point from the simulation at each timestep. The average
error for all three experiments on a given path is included (as a
dashed line) as an easier measure to evaluate performance.

Similar to the overall behavior seen in Figure 5, the tracking
error is variable in time and increases as the motion of the
continuum robot moves further from the resting position. For
example, in Figure 6A, z tracking fails to achieve the full desired
value at a maximum displacement of 0.08 mm. Similar behavior can
be seen for x and z coordinates in Figure 6B. Moreover, Figure 6A
shows that the x coordinate also fluctuates for a static demand of
0 N,which implies that the effects of the physical tension application,
including calibration and friction, influence the system’s behavior
and affect the tracking error.For completeness, the average error
for each of the six paths over the three repeats is given in Table 1.
Additionally, the error as a percentage of the top-left quadrant
diagonal, i.e., 0.113 m, is also given. This metric was selected to
allow easier comparison of tracking performance between different
demand paths.

TABLE 1 Average error for the six demand paths.

Demand path Average error
(10−3 m)

Percentage of
quadrant

diagonal (%)

Vertical 7.466 6.61

Horizontal 5.048 4.47

Diagonal 7.974 7.06

Circle 8.280 7.33

Square 10.47 9.27

S-shape 8.768 7.76

It can be seen that the minimum average error calculated is
achieved by theHorizontal path with 5.048× 10−3 m, while the next
best performance is the Vertical path with 7.466× 10−3 m. Given
that both are linear trajectories of 8 mm, the difference can be
attributed to the effect of gravity, since the latter path is against
it. The trend remains with increasing average error for increasing
complexity of motion, with the order being Diagonal, Circle, S-
shape, and Square. It is observed that the square exhibits the
highest average error at 10.470× 10−3 m, and potential reasoning
has to do with the fact that the cornering required to achieve
the path is the highest of all demands. Nevertheless, the error
is still only 9.27% of the quadrant diagonal, i.e., the maximum
displacement that can be requested. This value is close to previously
reported results (10.46%) for similar mechanism architectures
(tendon-driven continuum robot) as compared to a model of a
similar modeling approach (forward dynamic Cosserat rod theory
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FIGURE 7
Comparison of compliant backbone tracking for two examples, Horizontal, shown in (A), and Square, shown in (B). (A) Horizontal demand path. (B)
Square demand path.

model) with similar trajectories (time-varying tension demands for
bending) (Renda et al., 2014).

In Figure 7, the backbone tracking performance is presented
along the length of the backbone for visual confirmation of
the continuum robots’ tracking ability. Similarly, only two
demand paths are given, namely, the Horizontal and Square
paths. The positions along the backbone that correspond to
the locations of the OptiTrack markers are represented by
circles. There are multiple positions in time that could be
selected for examination, with four selected for reasons of clarity.
The four positions aim to cover the maximum spread of the
movement to illustrate the comparison between the simulated and
experimental data.

This is a visual confirmation of the observations seen above
in this study. It can be seen that the continuum robot can track
the demand and thus confirm the predictions of the mathematical
model. As already seen, the tracking accuracy decreases further
from the resting position as the robot moves. In this work, the
decision was taken to not use any shape accuracy metric for
the entire backbone; instead, tip tracking is considered a good
approximation for the overall performance since all other points
on the backbone are being traced in a very similar fashion. The
information included in backbone tracking clearly shows that
the mathematical model can predict the actual backbone with
the necessary adjustments, considering physical parameters, such
as friction.

7 Conclusion

In this work, the development and validation of a feedforward
control methodology utilizing a mathematical model based on
Cosserat rod theory for a tendon-driven continuum robot is
presented. The mathematical model and numerical technique are
designed to enable accurate results to be achieved with reduced

computation time by employing an implicit time discretization
scheme. The ability of the continuum robot to track a prescribed
trajectory at the tip position was examined for six different paths,
where the motion of the robot was identified using a motion
capture system. The results show good trajectory tracking for
all paths, with errors less than 9.5% and consistent repeatability
between runs.

The proposed approach was not only able to control the
tip trajectory of the continuum robot, but it was also able to
predict the overall shape of the mechanism as it tracked the
demanded path. This work demonstrates that the most common
challenges of model-based control for continuum robots, such
as the computational complexity of real-time control, can be
overcome, and a reliable, precise control methodology can be
achieved. With the current capacity demonstrated, endoscopic
applications are a promising proposal when utilizing the
identified intrinsic parameters of the robot and accounting for
a smaller size. This will provide the ability to track arbitrary
backbone shapes, providing an efficient and accurate approach
for controlling the robot and navigating natural pathways in
the body.
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