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In human-robot collaboration, failures are bound to occur. A thorough
understanding of potential errors is necessary so that robotic system designers
can develop systems that remedy failure cases. In this work, we study failures that
occur when participants interact with a working system and focus especially on
errors in a robotic system’s knowledge base of which the system is not aware.
A human interaction partner can be part of the error detection process if they
are given insight into the robot’s knowledge and decision-making process. We
investigate different communication modalities and the design of shared task
representations in a joint human-robot object organization task. We conducted
a user study (N = 31) in which the participants showed a Pepper robot how to
organize objects, and the robot communicated the learned object configuration
to the participants by means of speech, visualization, or a combination of
speech and visualization. The multimodal, combined condition was preferred
by 23 participants, followed by seven participants preferring the visualization.
Based on the interviews, the errors that occurred, and the object configurations
generated by the participants, we conclude that participants tend to test the
system’s limitations by making the task more complex, which provokes errors.
This trial-and-error behavior has a productive purpose and demonstrates that
failures occur that arise from the combination of robot capabilities, the user’s
understanding and actions, and interaction in the environment. Moreover, it
demonstrates that failure can have a productive purpose in establishing better
user mental models of the technology.

KEYWORDS

human-robot interaction, multimodal interfaces, transparency, failure, errors, human-
robot interaction design

1 Introduction

In Human-Robot Interaction (HRI) scenarios, failure situations invariably arise
despite the best efforts of system designers. These failures can be caused by multiple
factors, such as sensor noise or misinterpreted user input. A human interaction
partner may be able to remedy errors. Existing work dealing with failure with
the help of a human interaction partner often focuses on the communication of
robot failures that the robotic system is assumed to be aware of. For example, in
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the works by Van Waveren et al. (2022), Das et al. (2021), Das and
Chernova (2021), failure is modeled as a failure state during plan
execution by a robot, for instance, getting stuck on a carpet while
navigating (Van Waveren et al., 2022), or being unable to pick up an
object as it is located underneath another one (Das and Chernova,
2021). However, there is a gap in the literature when it comes to
designing robot communication that makes it possible for the user
to spot errors that went undetected by the system itself.

Our general focus is on situations where there is an error in the
system’s knowledge base that the system is unaware of but that a
user may notice. This requires that a human user is aware of the
current state of knowledge of the robotic interaction partner. When
the robot’s knowledge is conveyed to a human user by means of a
shared task representation, this representation can subsequently be
inspected, verified, and corrected by the user, if necessary.

We consider the specific scenario of a robot at a user’s homewith
the task of tidying up. It needs to knowwhere each object is supposed
to go, i.e., this user’s personal preferences. When building a system
for performing household tasks, it is necessary to consider how to
represent the robot’s knowledge to a human user and what types of
failures can be expected to occur. In our study, a human shows a
robot where to place certain household objects on a shelf.

Our work has two main aims. Our first aim is to
find out how to support human-in-the-loop error detection
in an object organization task with a robot through the
communication of the robot’s knowledge base. Our second
aim is to investigate if and how the errors that occur with a
functional system fit into the current understanding of failure in
HRI scenarios.

Towards the first aim of supporting human-in-the-loop error
detection, we developed representations of a robot’s knowledge base
for an object organization scenario. We conducted a user study in
which the robot communicates a representation of its knowledge
base (spatial locations of the organized object) to the user. In the
study, we asked the participants to organize common household
objects on a shelf. The robot then communicated its understanding
to the user in one of three conditions; using 1) a visualization on
its tablet, 2) speech, or 3) a multimodal condition combining both
speech and visualization. See Figure 1 for an overview. We compare
different output modalities, as it is not self-evident which modality
will be preferred due to the spatial nature of the task involving
an embodied robotic platform and objects organized at different
spatial locations. Speech has an advantage, as it allows a user to focus
their visual attention on the configuration of objects, while listening
to the robot verbally indicating the objects’ locations. A potential
disadvantage is that speechmay be perceived as slow, and thus, visual
communication may be preferred. Combining the modalities may
result in information overload and/or combine the disadvantages
of both modalities. Hence, it is important to investigate this issue
empirically. We analyzed the results to understand the advantages
and disadvantages of different interaction modalities and errors that
occur in such scenarios.

Our second aim is to investigate if the errors that occur in a
study with a functional system fit current failure understanding in
HRI. Often, pre-programmed, pre-determined or wizarded errors
are used in studies on failure in HRI without studying other
potential errors (see, e.g., Hamacher et al., 2016; Mirnig et al., 2017;
Kontogiorgos et al., 2020a; Hald et al., 2021; Nesset et al., 2021).

This means that the failures that occur in such experiments do not
include potential user errors or errors that arise from interaction
with the environment but rather focus on hypothesized robot
failures. Working with a functional system that incorporates object
detection allows for amore realistic investigation of errors that occur
in service robotics (and in object organization tasks specifically)
and to determine which representation design is adequate in a
naturalistic task setup. In our study, we did not pre-plan the
failure situations. We programmed the robot to go through the
interaction script and perform an object detection routine fully
automatically. As we used a functional object detection system in
which participants were not constrained in the way they organized
objects or interacted with the system, we were able to find out
which types of errors actually occur. A subset of encountered
failure cases arose from user curiosity regarding the capabilities
of the system and do not fit into current failure taxonomies in
HRI, which often assume a single source of failure. In the user
study, we encountered failure cases that have a function in user
learning. While these cases are failures in terms of not achieving
the performance of the intended function or task, they do perform
a productive purpose in terms of contributing to user learning or
satisfying user curiosity. The cases we observed describe a type
of failures that arises from a combination of user actions on the
environment, user expectations, and robot capabilities/limitations,
which extends current understanding of failure in HRI.

In line with the aims sketched above, our work is guided by the
following research questions:

RQ1 How to support human-in-the-loop error detection in an
object organization task with a robot?

RQ2 How do the failures that occur with a functional system fit into
current understanding of failure in HRI?

The contributions of this paper are as follows:

1. We present proposals for the design of representations of robot
knowledge of object arrangements to human users bymeans of
speech and/or visualization (Sections 3.3, 3.4), towards RQ1;

2. We present findings from a user study regarding user
preferences on communication of robot knowledge in a
human-in-the-loop error detection task (Sections 5, 6.1),
towards RQ1;

3. We introduce the concept of productive failure in HRI, which
is not part of any existingHRI failure taxonomies (Section 6.2),
towards RQ2;

4. We argue for an understanding of failure in HRI as an
interconnected phenomenon that develops over time and that
can involve humans, robots, other agents, objects acting in the
environment, which extends the understanding of failure in
HRI failure taxonomies beyond one that considers failures as
having a single source of origin (Section 6.2), towards RQ2.

2 Related work

In this section, we discuss related work on multimodal and
transparent interfaces for robotic systems in Section 2.1, in line with
our first aim. In Section 2.2, we outline concepts of failure and failure
taxonomies in HRI, in line with our second research objective.
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FIGURE 1
Overview of the system, setting, and study conditions. The task for the user is to arrange objects on a shelf to teach the robot the preferred
configuration. The robot detects the position of the objects (Object Detection and Localization) and communicates the learned object configuration to
the user. We compare three different types of output: Speech, Visualization, and a combination of speech and visualization (Multimodal). The user
checks the output of the robot to detect errors (Error detection).

2.1 Design of multimodal and transparent
interfaces in HRI

Previous research has investigated the use of individual
modalities in HRI scenarios, such as displaying facial expressions
for giving feedback (Mirnig et al., 2014), comparing unimodal
displays of emotion (Tsiourti et al., 2017), or investigating
preferences regarding a person-following robot’s auditory
feedback behavior (Olatunji et al., 2020). In a Human-Computer
Interaction context, multimodal input has been argued to
offer advantages such as supporting user preferences and user
learning, and reducing cognitive load and user errors when
fusing information from user input modes (Goodrich and
Schultz, 2007; Dumas et al., 2009). Advantages of multiple output
modalities for communication from system to the user may
be providing information in complementary forms (Park et al.,
2018) or improved inferring of past causal information (Han
and Yanco, 2023). In HRI, there is a gap regarding research
comparing multimodal with unimodal inputs/outputs. In our
work, we compare user preferences regarding the use of visual and
auditory modalities, and a combination of the two, for presenting
study participants with the configuration of objects detected
by a robot.

Research on information presentation in relation to object
configurations in HRI includes work on disambiguation or
grounding of human requests, for instance for the PR2 robot
(Guadarrama et al., 2013). Sibirtseva et al. (2018) argue that the
use of natural language can result in ambiguous requests, and
propose that using visualization can aid with disambiguation. In
their user study, participants verbally describe an object, and
the system visually indicates the inferred object by means of a
head-mounted device, projector, or screen. Doğan et al. (2023)
propose the Grad-CAM RGB method, which aims to identify
specific objects in RGB-D images for human-robot collaboration in
unstructured environments. They draw bounding boxes to indicate

image regions in response to textual queries. Das and Chernova
(2021) investigate semantically descriptive explanations of objects
in a scene to help end users identify reasons for robot failure to pick
up an object.

Such information presentation of a robot’s perception and
processing is a form of transparency. Transparency refers to
information being provided by a system with the aim to give a
human end user a better understanding of what the system is
doing and why (Frijns et al., 2023). This can concern information
regarding a robot’s internal processes, for example, inferred
commands (Perlmutter et al., 2016), robot plan representation
(Wortham et al., 2016), learned words for objects and verbs
(Hirschmanner et al., 2021), or providing a rationale for robot
decision-making (Nesset et al., 2021). Hence, human interaction
partners can better assess the robot’s state and form more accurate
expectations regarding its behavior. Several works have investigated
the design of transparent interfaces in HRI. Wang et al. (2023)
developed an interface that visualizes the decision-making process
of a robotic system and allows for inspection and editing of the
knowledge graph. They argue that such an interface can support
the sensemaking of robot decision-making. Perlmutter et al. (2016)
performed a user study in which they compared a baseline of
transparency through speech, pointing and gaze to a combination
of the baseline with visualization-based transparency on screen,
and to a combination of the baseline with visualization in Virtual
Reality. The scenario concerns object manipulation and surface
cleaning by the PR2 robot in response to human commands. Visual
transparency enhanced the accuracy of commands and required
less time, and increased the number of observed pointing gestures
by participants. The screen-based visualization condition was
preferred by participants. Hirschmanner et al. (2021) investigated
a language-learning scenario of a human tutor teaching a Pepper
robot words for objects and actions. They compared different
transparency strategies, namely, pointing and gaze by the robot to
request information regarding particular objects, and visualization
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of learned words on Pepper’s tablet. The visualization led to a
higher self-assessed knowledge of the system state as compared to
pointing. Several studies looked at the connection between errors
and transparency, notably also in connection to trust (Hald et al.,
2021; Nesset et al., 2021). Hamacher et al. (2016) ran a user study
in which the BERT2 robot carried out a kitchen task, either with or
without an error, and with or without verbal communication when
correcting the error. They found support for their hypotheses that
higher transparency mitigates dissatisfaction in case of errors, and
that participants prefer a more communicative system.

In contrast to works that investigate how to communicate robot
failure (Das and Chernova, 2021; Das et al., 2021), we investigate
how to communicate a robot’s knowledge base so that the user
can inspect whether it is correct or a failure has in fact occurred.
This is similar to work on transparency, e.g., by Hirschmanner et al.
(2021), Perlmutter et al. (2016) who visualize recognized speech,
objects, and actions and compare different ways of communicating.
However, in our work, we explicitly focus on human-in-the-loop
error detection.

2.2 Failure and errors in HRI: concepts and
taxonomies

In the definition by Brooks (2017), a failure occurs at the level
of the task or functionality that a robotic system is supposed to
perform: “A “failure” refers to a degraded state of ability which causes
the behavior or service being performed by the system to deviate from
the ideal, normal, or correct functionality” (Brooks, 2017, p. 9). This
definition of failure is used for the taxonomies byZhang et al. (2023),
Honig and Oron-Gilad (2018). Similarly, failure has been defined as
“an event that occurs when the delivered service deviates from correct
service” (Steinbauer, 2013, p. 345) or the “inability of the robot or
the equipment used with the robot to function normally” (Carlson
and Murphy, 2005, p. 423). In the works by Van Waveren et al.
(2022), Das et al. (2021), Das and Chernova (2021), failures are
conceptualized as actions in a plan that fail, which results in a failure
or halting of the robotic system’s plan. Several authors describe a
relation between failures, errors and faults. According to Brooks
(2017), Carlson and Murphy (2005), Honig and Oron-Gilad (2018),
faults may lead to errors, which in turn may lead to failures.
Applying this description to the task in our study, we can describe
an object that is missing from the knowledge base representation
as a failure in the robot’s task to detect organized objects and
convey its knowledge base to the human interaction partner. This
can occur due to an object detection error (e.g., white glue bottle is
not detected), which can be caused by the fault of overexposure of
the camera image.

HRI failure taxonomies are categorizations of failures that
occur in HRI scenarios. Although it is unlikely that all possible
robot failures can be identified for mobile robots in changing
environments combined with a wide variety of possible interactions
(Honig and Oron-Gilad, 2018), several authors have proposed
failure taxonomies that aim to classify failures. See Supplementary
Table 1 for an overview of failure taxonomies in the HRI literature.
Honig and Oron-Gilad (2018), Carlson and Murphy (2005) classify
based on the source of failure. The taxonomy by Honig and

Oron-Gilad (2018) distinguishes between technical and interaction
failures. Human errors are a subcategory of interaction failures,
and can be mistakes, slips, lapses, or deliberate violations, based on
the work by Reason (2009). Carlson and Murphy (2005) propose
a taxonomy of failures for mobile ground robots (Unmanned
Ground Vehicles, UGVs).They categorize failures according to their
source, and failures are divided into physical and human failures.
Tolmeijer et al. (2020) classify trust-relevant failures in HRI based
on a different choice, namely, if the action of breaking trust was by
the system or the user, and if this agent was supposed to act this
way. They identify the failure types of Design, System, Expectation
and User.

Some authors argue that failure categorizations should be more
human-centered. Tian et al. (2021) write that the majority of HRI
research takes a robot-centric perspective on failure. They note
that failure is not only based on robot capabilities but also on
its alignment with the context and whether the robot’s behavior
is socially aware. Zhang et al. (2023) argue that while existing
typologies classify failures according to what technically caused the
failure, users do not know what caused the failure on a technical
level, but make an assessment based on the information they have.
They propose an output-oriented typology of performance failures,
classifying them into logic, semantic and syntax failures. They
classify performance failures in HRI based on expected versus actual
output. In their taxonomy of social errors in HRI, Tian and Oviatt
(2021) classify according to “five categories that humans adopt to
perceive socio-affective competence and social relationships” (Tian and
Oviatt, 2021, p.14) (see Supplementary Table 2).

Existing failure taxonomies and conceptions of what
failure entails influence study designs in HRI. For example,
Kontogiorgos et al. (2020a), Kontogiorgos et al. (2020b) performed
Wizard-of-Oz studies in which they based the failure types that
a robot made on the failure taxonomy by Honig and Oron-Gilad
(2018). This illustrates that the way failure is conceptualized in
taxonomies and definitions is important for the studies that will be
conducted and contribute to our knowledge of the topic of failure
in HRI, as well as the mitigation strategies that are proposed for
robotic systems that encounter failure situations. In our work, we
investigate how the errors and failures we encountered in our user
study fit in current understandings of failure in the HRI literature,
and argue how this understanding should be extended. In contrast
to existing taxonomies that classify failures based on their source, we
argue that HRI understanding of failure should acknowledge failure
cases that arise due to a combination of technical capabilities (and
limitations), human understanding and behavior, and interaction
with the environment and other agents and objects in the context.
Moreover, in our study, we observe user actions that do not fit
neatly into the way “human errors” are currently described in such
taxonomies.

3 Designing a system that conveys
detected objects to a user

Our goal was to compare different ways of communicating robot
knowledge of object configurations. In the envisioned scenario, a
study participant organizes objects at a particular location. The
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robot learns user preferences from observations. The robot stores
the object locations and conveys the configurations back to the user,
who checks if these are correct, so the robot can (hypothetically)
organize the objects by itself later. We investigated different ways
of communicating the stored object locations. The communication
of the stored object locations thus functions as a shared task
representation. The concept of shared task representations has
been proposed as a way to reduce common ground uncertainty in
human-robot joint activities (Clodic et al., 2017; Frijns et al., 2023).
Common ground (Clark, 1996) refers to a set of mutual or shared
beliefs held by the human(s) and robot(s) involved in the interaction.
We investigated how to design shared task representations and
which interaction modalities are suitable for human-in-the-loop
error detection.

3.1 Object detection

For object detection, we integrated a YOLOv5 (Jocher et al.,
2022) implementation with ROS Noetic. The model was trained
to recognize 11 objects (tools and objects commonly found at a
workshop, e.g., measuring tape and wood glue). We used the copy-
paste data augmentation technique to generate a diverse dataset
by pasting images on random backgrounds (Ghiasi et al., 2021).
We recorded 100 images per object from multiple viewpoints. We
applied the DINO-ViT algorithm (Amir et al., 2022) to generate
object masks. After filtering corrupted masks due to reflections,
20–50 image-mask pairs were kept per object, which was sufficient
to cover the full surface of each object. The masked objects
were randomly pasted onto backgrounds from the COCO dataset
(Lin et al., 2014), resulting in 50,000 images with more than 3,000
instances per class. YOLOv5 was trained using the parameters set
as suggested by the original implementation of Jocher et al. (2022).
From the 11 objects on which the detector was trained, we used the
6 objects with the most reliable object detection performance in the
specific setup of the experimental study. We used OpenCV’s ArUco
marker detection (OpenCV, 2023) to detect the location of the shelf
to determine the object positions in relation to it. Object locations
were detected in 2D image space.

See Figure 2 for an example of the object detection running
on the camera stream from one of Pepper’s cameras. During the
experiment, the area in which the robot had to detect objects in
the cupboard required the robot to move its head up and down to
cover the area.The images from the camera streamhad somemotion
blur. We combined the detection results from multiple camera
images that covered the detection area, which took approximately
10 s. To give an idea of the system’s task performance, in the
experiment there were 122 runs of the object detection routine, and
in each of these runs 6 objects should be detected (732 in total).
Excluding the 6 cases in which an object was fully hidden from
view, we had 63 cases in which an object went undetected, yielding
a performance of (1− 63/726)∗100% ≈ 91.3% on the experiment
task. The coil was detected 93.4% of the runs, the wood glue for
87.7%, the glue 84.4%, the tape 95.9%, the measuring tape 86.9%
and the multimeter 100%. Note that in some of these cases, objects
were partially hidden behind other objects. See Section 5.3.1 for
more details.

FIGURE 2
Example of the object detection using an inbuilt camera on the
Pepper robot.

3.2 Robot behavior

We programmed a Pepper robot to speak, perform gestures,
and display information on its tablet with the Python SDK with
NAOqi (SoftBank Robotics, 2023). The robot was programmed to
execute slightmotions to indicate that it is active, perform co-speech
gesture and look at the participant (using face detection), which
was implemented with the NAOqi API modules ALBasicAwareness
and ALAnimatedSpeech. During object detection, the robot oriented
itself to face the cupboard and moved its head up and down,
verbally indicating that it was scanning the area. This behavior
was intended to be both functional and communicative; the
robot’s motion was used to collect image data of the full view
of the cupboard and also expressed that object detection is
being performed.

When the visualization was used, the robot turned to
face the participant so that the left side of the tablet visually
matched the left side of the cupboard from the participant’s
perspective. This way, the participant did not need to cross-compare
the visualization to the object configuration in the cupboard,
see Figure 3.

3.3 Speech modality

The spoken description of object configurations by Pepper was
based on research on descriptions of such configurations by native
German speakers (Tenbrink et al., 2011; Tenbrink et al., 2016).
Speakers tend to look for a salient object (a relatum), in relation
to which they can describe the location of the target object. If a
salient object is not available, theymay begin with a reference region
instead. Descriptions are usually sequential, following a continuous
trajectory (Tenbrink et al., 2011; Tenbrink et al., 2016).We designed
the speech condition as follows. We used two prepositions from
Guadarrama et al. (2013), namely, “to the left of” and “to the right of ”.
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FIGURE 3
Robot turns to face the participant in conditions with visualization.

A description was generated for each object. This is done on a per-
area basis (e.g., considering those objects that are on a single shelf).
When generating a description, the leftmost object was taken first
and described using the approximate location of the object relative to
the area, e.g., “on the left of,” “somewhat to the left of,” “in the middle
of,” “somewhat to the right of,” “on the right of ” + area name. Each
next object in the area was described by referencing the previously
described object plus the approximate location in the area. This
generated descriptions such as: “The wood glue is on the left of the
top shelf. Next to the wood glue is the measuring tape, which is in the
middle of the top shelf.”

3.4 Visualization modality

Visualization options that were considered include an abstracted
visualization with icons and text, a knowledge graph representation
that closely matches the robot’s internal representation (as in, e.g.,
Wang et al., 2023), or a camera stream with a visual overlay (e.g.,
Perlmutter et al., 2016). In our task scenario, a camera stream
representation would require either a static composition of multiple
images from the video stream (whichwould result in a cluttered view
that does not fit on the tablet in a way that individual objects can be
distinguished); or it would need to change dynamically (which we
expectedwouldmake itmore difficult to keep track of the knowledge
base). However, such a representation can be relevant for a follow-
up study that involves troubleshooting when participants want to
know why a particular object is wrongly detected or not detected.
An internal graph representation was considered, but expected to
result in a cluttered view as well. Therefore, we chose to represent
the scene with an abstracted visualization, in which icons with text
represent the objects. This representation provides an uncluttered
representation of the scene that fits the tablet dimensions, as shown
in Figure 4.

We used a JavaScript library (Lehni and Puckey, 2011) in a
Choregraphe application package for the visualization, which could
be dynamically adapted using Python commands. The visualization
consisted of icons and names of the detected objects. Objects were

FIGURE 4
Example visualization in the Visualization condition.

displayed at a particular location, assigned to an area in a similar way
as with speech (Section 3.3).

4 Study: human-in-the-loop error
detection

A within-subjects study was conducted in which participants
interacted with a Pepper robot in three conditions. The participant
placed objects on a shelf to “teach” the robot their desired locations.
After the objects were placed, the robot either communicated
the object locations verbally [condition Speech (S)], by means
of a visualization on its tablet [condition Visualization (V),
see Figure 4], or using both visualization and speech [condition
Multimodal (M)]. The communication of object configurations
was done across communication channels that were additional to
the robot’s nonverbal functional behavior (performing the object
detection routine, Section 3.2), interactive behavior and verbal
instructions to the participant.

We investigated the issue of human-in-the-loop error detection
from different angles, namely, by considering participant behavior,
participant interpretation of the system, failures that occurred with a
functional object detection system, and participant preferences. The
study research questions were as follows:

RQ-Participant preference: Which condition do participants
prefer? Why?
RQ-Task Load: Do participants perceive a different workload
between conditions?
RQ-Error: Do participants notice all errors? Is there a difference
between conditions?
RQ-Mental model: How do participants construe the way the
system works?
RQ-Participant behavior: Do participants use strategies to test the
system, and when do they do so?

4.1 Study protocol

The experiment took place in a museum of science and
technology in Vienna, Austria, in a separate room from the
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FIGURE 5
During the explanation (A); after the participant arranged objects (B).

exhibition space. The interaction with the robot, questionnaires,
and study procedure were in German. The study procedure
and informed consent process were peer reviewed by the Ethics
Committee at our university. The protocol included an explanation
of the study, informed consent, interaction with the system in
three conditions including completion of a survey form, and an
exit interview.

First, participants were informed regarding the purpose of the
study, data collection and storage, that they could opt out of the study
at any time, and they were given researchers’ contact information.
This information was included on informed consent and data
consent forms that participants were asked to sign. Participants were
asked to complete a short personal information questionnaire, and
were introduced to the robot, how it worked, and its different sensors
(Figure 5). The robot was programmed to indicate its sensors and
describe their function, which was then repeated and explained by
one of the researchers. This introduced the participant to the robot’s
movement and enabled us to check that the robot’s speech volume
was adequate for the participant. The researcher answered questions
and explained the task.

In each interaction condition, the task for the participant was
to place several objects on the shelves of a cupboard. First, the robot
greeted the participant and announced it would scan the area. It then
“scanned” the area by moving its head up and then down. Then, the
robot asked the participant to arrange the objects in the cupboard
and to indicate when the task was complete. The participant put
the objects in the cupboard (wood glue, tape, measuring tape, a
multimeter, a glue package, soldering tin) (Figure 5). When the
participant said they were done (when the speech recognition
detected the word “fertig”/done), the robot asked the participant
to step aside. The robot performed the scanning motion again,
during which object detection was running on the video stream

of one of Pepper’s cameras. Depending on the condition, the
robot spoke out the object locations (Speech), displayed them
on the tablet (Visualization), or conveyed them by both speech
and visualization (Multimodal). The robot asked the participant
to confirm whether it was correct. If the participant confirmed,
the robot thanked the participant, concluding the interaction. If
the participant indicated it was incorrect, the robot announced it
would scan the scene again from another perspective. It moved
to the right and scanned the scene again, conveyed the object
locations, and again asked the participant to confirm. If still
incorrect, the robot stated it could not resolve the error. In either
case, the robot thanked the participant, concluding the interaction.
After each condition, participants completed a questionnaire. After
interacting in all three conditions, participants were asked if
they had time for an interview and were explained how the
system worked.

The interaction with the robot was programmed to function
fully automatically. As it was not the focus of our study, we
chose to trigger the speech detection remotely if the built-in
speech recognition did not function after the first two tries by the
participant.

4.2 Measures

The interaction of participants with the robot was video and
audio recorded. While the robot was performing object detection,
a recording was made of its camera stream. An interaction
log was kept automatically. Prior to the experiment, participants
completed a questionnaire on personal information. After every
condition, participants completed a questionnaire asking if the
robot made mistakes regarding the locations of objects, and
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if yes, which. Other questions on the survey included if the
robot made any other mistakes, how the robot communicated
the information, and Raw NASA-TLX (Hart, 2006) translated
to German (Flägel et al., 2019), to measure the users’ task load,
which contains subscales for mental, physical and temporal
demand, performance, effort, and frustration. After each participant
interacted with the robot in all three conditions, they completed a
final questionnaire on their preferred condition and the perceived
condition order as a manipulation check. Questions in the
structured exit interview included Which version did you prefer
and why? How did the robot learn the locations of the objects?
See Supplementary Table 3.

4.3 Pilot study

A pilot study was conducted at a museum of science and
technology (N = 4, one woman, three men, age M = 35.25,
SD = 6.02). The protocol as described in Section 4.1 was followed.
One participant preferred condition Multimodal, stating it was the
clearest, while three preferred Speech due to either not being able
to see well on the screen, a concern that the visualization may
not be clear enough in case the objects would be organized in
a chaotic way, or feeling stressed with the combination and not
always trusting the way it was displayed. After the pilot, minor
changes were made to the questionnaire and the robot behavior.
The robot’s behavior was changed so that it introduced itself and
its sensors (instead of a researcher introducing the robot), which
also allowed for checking if the robot’s speech volume was set
at an adequate level for the participant prior to interaction in
an experimental condition. The questionnaire was changed to ask
the participant if the robot made an error in two different ways
instead of once. After the revision, it asked whether the robot
made an error both in terms of the object positions or if it made
any other error.

4.4 Participants

For the main study, 33 participants were recruited in a museum
of science and technology. Conditions were counterbalanced for 33
participants; the order of execution of counterbalanced conditions
was randomized across all participants. This meant that five
participants interacted in each of the condition orders VMS, SMV,
and MSV, and six in each of the condition orders VSM, MVS,
and SVM. Two of them did not pass the manipulation check: they
did not correctly identify how the robot communicated the object
positions on the survey forms after each interaction, nor on the final
survey form.

In Section 5, we report on the data of the remaining 31
participants (16 men, 15 women). Their ages (M = 39.1 SD = 15.87)
ranged from 17 (with parental consent) to 76. Nine participants
indicated they had a robot at home (vacuum cleaner robot or
LEGO). Nineteen participants stated having seen a robot, nine of
whom had interacted with a robot, and two had programmed a
robot (LEGO Mindstorms). Self-assessed computer programming
experience was rated by 18 participants to be 1 (very inexperienced,
i.e., have not programmed anything before), by 5 participants

to be 2, by 1 participant to be 3, by 5 participants to be 4,
and by 2 participants to be 5 (very experienced, i.e., professional
programming knowledge).

5 Results

Thirty-one participants interacted with the system in all
three conditions, yielding 93 interactions. The object detection
routine would run once or twice per interaction, depending
on the participants’ response to Pepper’s question whether the
representation was correct after the first run of the object detection
routine; if not, this routine would be performed again. This resulted
in 122 runs of the object detection routine. Some interviews
could not be used due to equipment failure. We decided to keep
these participants in the analysis of the main study, since the
equipment failure did not interfere with the interaction or the
questionnaires. Additionally, the interview was designed to be
voluntary (and presented as such to participants) to give participants
the opportunity to clarify their questionnaire responses. The
interview responses of twenty-four participants were transcribed
and analyzed by coding the responses to the individual interview
questions on preferred condition, the way the system works, and the
way participants organized objects.

The interview analysis was conducted as follows. The first and
the second author first familiarized themselves individually with
the data, proposed a coding scheme, discussed the coding schemes
together and then agreed on a coding scheme. See Supplementary
Table 4 for an overview of the final coding scheme. Each of
them individually coded the responses of the participants to the
interview questions 2–5. For 89.7% of the 194 assigned codes
the coders were in agreement (meaning that the two coders
assigned the same code to the response). Coding differences were
resolved by discussing each of the differences to arrive at a final
joint coding.

5.1 Participant preference for interaction
modality

To answer RQ-Participant preference, we looked at the
questionnaire results and interview responses regarding the
preferred condition. On the final questionnaire, 23 participants
preferred conditionMultimodal, 7 preferred conditionVisualization,
and one preferred condition Speech. A multinomial test (Robertson
and Kaptein, 2016, p.142) yielded a p-value of p = 2.315∗10–6,
thus we should reject the null hypothesis that each condition is
preferred equally. An exploratory data analysis showed a difference
in self-reported computer programming experience for participants
who preferred the condition Multimodal (M = 1.57, SD = 1.16)
and for participants who preferred the condition Visualization
(M = 3.29, SD = 1.38). We performed multinomial logistic
regression to check if “Programming Knowledge” can be used as
a predictor variable for the preferred condition. The likelihood
ratio test resulted in a p < 0.05 indicating that the model including
programming knowledge as the predictor variable is significantly
better than the null model. The coefficient for “Programming
Experience” was 0.9052 (std err = 0.353,z = 2.566,p < 0.05),
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FIGURE 6
NASA-TLX subscale score averages of all participants (N = 31).∗p < 0.01667.

indicating that for every unit increase in “ProgrammingExperience,”
the log likelihood of participants preferring Visualization as
compared to Multimodal increases by 0.9052. In a model comparing
preference for Visualization to preference for condition Multimodal
that included gender and age besides programming experience,
the programming experience was the only predictor variable
with p < 0.05.

In the interviews, participants stated a variety of reasons for
preferring a specific condition. Reasons for preferring Multimodal
included that it was a double confirmation regarding what the
robot saw, it being clearest, having to make more of an effort
to think along with speech-only or the risk of forgetting or
mishearing with speech-only, being better able to compare it, the
participant having a left-right weakness so seeing makes it easier,
it reducing the chance of making mistakes, and the combination
resulting inmore humanlike communication. Reasons for preferring
Visualization included that it is faster, being used to tablets, finding
it easier to see rather than hear, and it being more effort to
check if both visualization and speech were correct. A reason for
preferring Speech included that seeing it on the tablet was too
much information.

5.2 Task load

The range for the 6 NASA-TLX subscales are from 0 (low) to 100
(high), and so are the total NASA-TLX scores that are calculated
here by summing the subscale scores and dividing by 6. The total
NASA-TLX means per condition (calculated using the scores of all
participants) were as follows. For Visualization, the score was M
= 12.69 (SD = 8.00), for Speech M = 14.41 (SD = 10.46) and for
Multimodal M=10.78 (SD= 6.43).The ratingswere rather low for all
three conditions; we observed a floor effect that makes it difficult to
differentiate between groups. This tendency was not observed in the
pilot study. See Figure 6 for an overview of subscale ratings averaged
across all participants.

We performed Friedman tests (Robertson and Kaptein, 2016, p.
154) with Python (The SciPy community, 2008) for the total NASA-
TLX scores and the subscales.We used the Friedman test, as the data
is ordinal, and it is a repeated-measure (the study is within-subjects).
We did a Bonferroni correction on the α level (0.05/7 = 0.007). The
Friedman test for Frustration yielded a p-value of 0.0029<0.007. The
other tests were not significant.

The mean scores for Frustration were as follows: for
the Visualization condition M = 15.32 (SD = 18.21), for
the Speech condition M = 14.68 (SD = 13.72), and for the
Both condition M = 9.52 (SD = 9.07). As the Friedman
test yielded a significant difference in Frustration among
the different conditions, we did three Wilcoxon signed-rank
pairwise comparisons for Frustration (following Robertson
and Kaptein, 2016, p.155), applying a Bonferroni correction:
0.05/3 = 0.01667. We found no significant difference between
Visualization and Speech (Z = 52.0,p = 0.6456).We found significant
differences in the comparison of the Speech and Multimodal
conditions (Z = 2.0,p = 0.0035 < 0.01667) and the Visualization
and Multimodal conditions (Z = 3.5,p = 0.0030 < 0.01667). We can
use r = Z/√N to calculate the effect size for non-parametric tests
(Robertson and Kaptein, 2016), which gives us a medium effect
(0.36) for the comparison between the Speech and Multimodal
condition and a large effect (0.63) for the comparison between
the Visualization and the Multimodal condition.

To get an indication whether this may be due to one condition
having more perceived error occurrences, we performed two
Cochran’s Q tests (using Perktold et al., 2023). We performed a
Cochran’s Q test to determine if there were differences between
conditions whether participants reported errors or not, and a
Cochran’s Q test if there were differences between conditions
regarding whether there were any object detection errors or not.
Interactions by participants with the system in which errors
occurred were coded with a 0, and cases in which no error occurred
were coded with a 1. We found no differences between conditions
regarding the (perceived) occurrence of errors.
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To answer RQ-Task Load, we found no significant difference
between the total NASA-TLX scores. However, we did find
differences for Frustration between the Multimodal condition
and the Speech condition, and between the Multimodal and the
Visualization condition.

5.3 Errors

To answer RQ-Error, we investigated whether participants
noticed all errors and if this depended on the condition. This
required identifying which errors occurred and comparing them
to the errors that were reported by participants. We observed that
participants were able to identify most errors in all conditions. In a
few cases, participants did not notice errors, but these cases were too
few to distinguish between conditions. We identify some modality-
specific limitations. Further discussion is included in Section 6.1.

From the 93 interactions, in 41 cases the participant correctly
identified that no errors occurred, while in 31 cases the participant
correctly identified the errors that occurred. In 7 of those 31 cases,
the participant responded to the robot that the representation was
correct, but afterwards stated on the questionnaire that there was
an error. In 12 cases, the participant stated there is an error but
there was no object detection error per se (in those cases, only
errors such as speech recognition errors occurred). In 9 cases, errors,
inaccuracies or mismatches in the participant’s judgement were
observed (Section 5.3.3).

5.3.1 Object detection errors
We identified object detection errors (e.g., missing objects)

by comparing the camera stream during object detection to the
interaction log, which contained the results of the object detection.
This was analyzed for each of the 122 times the object detection
routine was performed. In 58 of these instances, one or more errors
occurred. The main error concerned objects not being detected
(69x), followed by detection of objects that were not there: in 7 cases,
objects were detected that were in the data set but not in the set
that participants were asked to organize (5x a marker, 2x pliers).
Four object location errors occurred.The number of participants for
whomone ormore errors occurredwas 11 (out of 31) during the first
interaction, 11 for the second interaction, and 17 for the third and
last interaction.

5.3.2 Errors according to the study participants
Participants were asked to indicate on the survey form if the

robot made (1) an error regarding the object locations or (2) any
other errors, and if so, which ones, see Table 1. In addition to the
object detection errors described above (Section 5.3.1), participants
also reported speech recognition errors and social interaction errors
(e.g., not turning towards the participant while speaking, long
response times).

5.3.3 Errors and inaccuracies in participant
judgement

In 9 of 93 cases there was an error or inaccuracy in
participant judgement based on the survey form results and their
response to the robot (5x Speech, 2x Visualization, 2x Multimodal).

TABLE 1 Errors as indicated by participants on the survey form.

Error Number of times
mentioned on a survey

form

Unspecified 3

Object detection errors

Object(s) not
detected/recognized/shown

20

Hidden object not detected 4

Could not show that an object was
placed behind another

3

Wrong object mentioned 2

Additional object shown 2

Object position error 1

Interaction errors

Speech recognition error 4

Next behavior triggered too soon
before participant spoke

4

Speech was recognized too late 2

Response time too long 1

It confirmed twice 1

Robot did not turn itself to me 1

However, participants were observed to make statements towards
the researcher or display nonverbal behavior that is indicative of
them noticing an error in some of these cases. We list the specific
cases below:

• Twice (in the Speech condition) objects were not detected but
the participant said there was no error (to the robot and on
the form). In one case, three objects were missing. In the
video footage, this participant addressed the researcher in a
questioningway, saying that objects weremissing, but that other
objects the robot talked about were correct.
• One participant indicated twice (in the Speech and Multimodal

conditions) that there was an error and indicated one missing
object, but an additional object was also missing.
• Twice, an additional “unknown” object was detected that was

not part of the objects participants were asked to organize,
but that was part of the dataset (pliers, marker), without the
participant indicating on the form or to the robot that there
was an error. However, on the video data, one participant
(Visualization) verbally remarked to the researcher that there
was a marker, and one participant (Speech) initially nodded
in response to each of the robot’s statements about object
positions, but stopped nodding once the robot mentioned
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pliers, which could indicate that the participant noticed
something was wrong.
• Twice (Multimodal, Visualization), a participant noted that the

robot could not indicate that objects were placed behind each
other, but in principle no object detection error occurred.
In the Multimodal case, one object was missing from the
representation during the second scan, whichwas not remarked
on by the participant on the survey form; the participant
remarked that the robot was not able to recognize that
objects were placed behind each other or on top of each
other.
• Once in the Speech condition, a participant stated that there was

an error without specifying, but no error could be identified by
us.

5.4 Mental model: participant
interpretation of the object detection
system

To answerRQ-Mentalmodel, we coded the interview responses
to the question “How did the robot learn the positions of the objects?”
The participants made reference to scanning (12 participants),
cameras or photography (7 participants), the objects being pre-
programmed or the robot having an existing representation of the
objects (6), the markers (5), seeing or eyes (3), the shape of the
objects (3), with the text on the object (2), sensors (2), programming
(1), the size of the object (1), the ultrasound and infrared sensors (1),
or that it was done by a human (1).

In other words, participants explained how the robot detected
objects by referring to the words used by the robot, to its behavior,
what they could observe in the space, on the objects and in relation to
the robot, and somemade reference to its humanlike capabilities like
seeing and reading. Participants hadmultiple sources of information
available to them about the way the system worked: what the
researchers told them at the start of the experiment regarding the
robot’s sensors and the task, the words and behavior of the robot,
what could be observed by the participants (e.g., ArUco markers on
the cupboard), and the events during the trials. For example, the
mention of scanning can be connected to the robot stating it was
“scanning the area”. Some of the theories participants constructed
were (partially) incorrect. For example, one participant stated: “It
obviously has a database of those objects, and it looks for those exact
objects every time where they are. Last time I forgot the soldering tin
outside. Then he didn’t realize that the soldering tin wasn’t there at
all. So, obviously, he looks for exactly these objects every time on the
shelf. And if one of them is not quite there, i.e., it’s not on the shelf,
but it’s on the side, then he recognizes it as being on the shelf. Even if
it is not on the shelf.” This illustrates how accidental events during
the trial influenced the participant’s understanding of the system.
There was a technical failure during the trial: the soldering tin was
detected as being on the shelf because the shelf area had been defined
to be a bit wider than it actually was. So the soldering tin, which
was forgotten by the participant and left next to one of the shelves,
was also assigned to being on the shelf. This resulted in inaccurate
understanding of the participant; the robot does not actively look for
those exact objects.

5.5 Participant behavior: object
arrangements

To answer RQ-Participant behavior, we analyzed both
participants’ object organization strategies as well as their answers
to the interview question that asked if they had a specific reason
for the way they organized the objects. The strategies that were
mentioned by participants in the interviews were coded, as
were the strategies that were observed with regard to the object
configurations.

In the interviews, several strategies were mentioned. Eleven
participants mentioned testing the system in some way, for instance,
by placing an object inside or behind another object, or rotating
an object, to see if the system would still be able to detect
the configuration. Ten participants mentioned organizing objects
without any specific intention in mind. Five reported ordering
objects by category (e.g., grouping adhesives or measurement tools).
One other mentioned reason was making a clear, symmetrical
arrangement. One participant stated: “I thought I would give him
easier tasks at the beginning and then more difficult ones. That’s just
the way it is with a child. You just increase it.” Another: “So the
first time I thought, nice and symmetrical, clear. The second time I
made it a little harder, I think for him, because then I also put two
things next to each other. And the third time, I turned the tube of
glue on its side because I thought that if he only had the [brand
name] as a pattern, he might stumble, and he did. It was mean, wasn’t
it?”

For analysis of the object organization strategies, the first and
third author agreed on a classification and then coded screenshots of
the organized cupboard (inter-rater agreement 92.1%, mismatches
were resolved jointly). We distinguished several strategies that
participants may have thought would make it more difficult for the
robot to detect objects, which were also reflected on during the
interviews. See Figure 7 for an example. The number of times this
happened increased from the first interaction. Strategies identified
included stacking an object on top of another, placing more than
three objects on a shelf, rotating objects, hiding objects from the
robot’s perspective or placing them in a way that they overlapped
one another, and placing objects at different depths on the shelf. See
Figure 8.

In the first interaction, an object was hidden behind another
object zero times (0x), in the second interaction 4x, and in
the third interaction 5x. Objects were placed in a way that one
object overlapped another from the robot’s camera perspective
3x in the first interaction, 6x in the second interaction, and
10x in the third interaction. Placing more than three objects
on a single shelf occurred 0x for the first interaction, 3x for
the second, and 5x for the third. Stacking of objects only
occurred two times, both in the third interaction. For rotation,
the coding required distinguishing between canonical and non-
canonical views, where canonical views would be those views that
people find more typical or easier to recognize (Peters, 2001).
Rotation of objects (a non-canonical view) remained more or
less similar across interactions, with an object being rotated 12x
for the first interaction, 8x for the second, and 16x for the
third interaction (excluding measuring tape as it lacks a clear
orientation).
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FIGURE 7
Example of an object configuration by a participant in which the
objects are more difficult to detect by the system.

6 Discussion

In this section, we discuss our findings regarding human-in-
the-loop error detection to answer RQ1 (Section 6.1) and how
the observed failure cases align with current HRI understanding
of failure to answer RQ2 (Section 6.2) in line with the research
objectives stated in the Introduction.

6.1 Supporting human-in-the-loop error
detection

In this section, we discuss how to support human-in-the-loop
error detection in an object organization task with a robot. Most
participants (71.9%) preferred to get the representation of the robot’s
knowledge both as a visualization and through speech, as this was a
double confirmation. Moreover, the NASA-TLX subscale score for
Frustration was lower in the Multimodal condition as compared to
the single-modality conditions. As participants correctly identified
whether the robot made an object detection error or not in 90.3% of
cases (Section 5.3), this shows that all three conditions can support
error detection by users. However, modality-specific advantages and
limitations exist, as described below.

Regarding advantages and limitations of the visual modality,
the persistent nature of the visual representation makes it easier
to keep track, compared to only speech, as reported in participant
interviews. An advantage of the Visualization is that it is seen as
faster by some, while disadvantages are that it requires being able
to see well and its limitations for representing complex scenes. In
the visualization condition, it is important to be able to handle all
possible object configurations, as some visualization-specific errors
were reported. The robot that was used in the experiment was the
Pepper robot, which has a built-in tablet. One solution to transfer
our findings to other (humanoid) robots that do not have an in-built
screen is by developing a smartphone or tablet app that performs a
similar function.

Regarding the auditory modality, the speech representation
resulted in uncertainty in some cases. Once in the Speech condition,
a participant wrote on the form that they were unsure whether an
object was missing (this was counted as reporting an error). As
described in Section 5.3.3, in two cases in the Speech condition,
objects were not detected but the participant said there was no
error (to the robot and on the form). In one case in the Speech
condition, the appearance of unknown objects was not remarked
on to the robot or on the survey form. This suggests some errors
were missed or participants were unsure due to the representation
in the Speech condition not being persistent. The response of the
participant for whom three objects were missing arose due to
the nature of the representation; asking whether a speech-only
representation is correct has the risk of the participant confirming its
correctness, when the representation only partially covers the object
arrangement. Uttering one true statement can be interpreted as the
representation being correct, even if there is missing information;
if that statement is correct, the missing information does not make
the representation incorrect. For example, when the robot only
mentions one of the objects at the correct location, this can be
seen as a correct statement even if other objects are not mentioned.
However, this may change if participants are more motivated to
ensure the full representation is correct. With visualization, on
the other hand, there may be more of an expectation that the
representation completely matches the scene when asked to confirm
its correctness.

An exploratory data analysis indicated that participants with
higher self-reported computer programming experience were more
likely to prefer the visualization-only condition as compared to
a combination of visualization and speech. This indicates that
novice users may prefer both interaction modalities while advanced
users who are familiar with the system might prefer visualization
only. We assume that the reason for this is that participants with
more computer programming experience are more familiar with
tablets and data visualizations on screens. Our results suggest
to communicate information using both visualization and speech
when a user starts interacting with a device and to offer the
possibility to disable one of these at a later point. In our
interviews, the multimodal condition was preferred as it was a
double confirmation, which enhances certainty. Starting with both
modalities would also be preferable in terms of accessibility. Speech
can be helpful in case a user does not see well, and visualization
in case a user has difficulty hearing. This should be considered
in the design of robot embodiments; not all robots intended for
human interaction include a built-in screen. A built-in screen or a
connection to an external tablet allows for supporting human-robot
joint activities with a visual shared representation.

A general observation for experiments in which participants are
asked to detect errors is that participants should be asked if there
are errors in several different ways, as they may respond differently
to a robot than what they report on a form or to a researcher.
Moreover, participantsmay have difficulty noticing additional errors
after they have noticed an error. As described in Section 5.3.3,
in three cases multiple errors occurred but the participant only
reported on one of the errors. This could indicate that some
participantsmay have focused on one error and did not pay attention
to other potential errors that could have occurred, once they
encountered an error.
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FIGURE 8
Number of times per interaction that participants applied object organization strategies with increased complexity, which made object detection more
difficult. The strategies are summed up across all participants for the first, second and third time they interacted with the system. The frequency of
complex strategies increased from the first to the third interaction (meaning that participants applied more strategies to “test the system” in the second
trial as compared to the first, and applied even more strategies in the third and final trial). In other words, participants increasingly displayed
testing behavior.

6.2 How do the observed failure cases
align with HRI understanding of failure?

In this section, we describe how the errors that occurred
in the user study fit into current HRI failure taxonomies and
understanding of failure in HRI. When looking at the errors from a
technical perspective in Section 5.3.1, the resulting failures (objects
beingmissing as theywere not detected) can be described as software
failures according to, e.g., the taxonomy by Honig and Oron-Gilad
(2018). However, when we take errors reported by participants and
participant behavior into account, a more complex picture emerges
of the failures that occurred. In line with the calls by Tian and Oviatt
(2021), Zhang et al. (2023), a more human-centered perspective
on errors comes to the fore. The interaction errors according to
the study participants as described in Table 1, namely, speech
recognition errors, next behaviors triggered too soon, speech being
recognized too late, long response times, confirming twice, and the
robot not turning itself to the participant can be classified as social
norm violations in the human-robot failure taxonomy (Honig and
Oron-Gilad, 2018), or as social errors according to the taxonomy of
social errors in HRI (Tian andOviatt, 2021). However, adding social
norm violations to a taxonomy is not enough to adequately describe
all potential failure situations.

During our main study, we observed participant behavior that
made the object detectionmore difficult (Section 5.5).This behavior
was seen to increase as the interactions progressed. This may also
have contributed to the increase in errors between the last and the
first interaction (Section 5.3). Such behavior could be interpreted
as the participants having a mental model of how the object
detection works, forming a question in their mind (e.g., “will the
robot recognize the object if I hide it?”), and then testing it in
subsequent interactions. Participants also reported that they were
testing the system (Section 5.5). Errors that were mentioned on the
survey forms (Section 5.3.2) included that “hidden objects” were
not detected. This shows that a subcategory of “human errors”

exists that arise due to the human uncertainty about the potential
effects of their actions (and neither due to deliberately acting in
a way that sabotages the system, nor due to acting without any
intentionwhatsoever). It also shows that errors exist that arise from a
combination of technical and system design limitations, participant
behavior, participant expectations and understanding of the system,
and the configuration of objects in the environment. This makes it
difficult to classify such failures according to the source of failure,
which is the foundation of several failure taxonomies (Honig and
Oron-Gilad (2018); Carlson and Murphy (2005); see Section 2.2).

Human errors in the taxonomybyHonig andOron-Gilad (2018)
include mistakes, slips, lapses, and deliberate violations, which are
described as “intentional illegitimate actions (e.g., directing the robot
to run into a wall)” (Tian and Oviatt, 2021, p.3). We argue that
the testing behavior is a deliberate action, but it is not a deliberate
violation per se; it is not an action that has the sole aim to make
the system fail but rather to find out if a particular situation will
result in a technical failure. This is desirable user behavior in low-
risk situations, as it will improve user understanding of the way the
system works. If a failure occurs, it is the result of an intentional
action that serves a productive purpose, e.g., improving the user’s
understanding of the system. This is related to the concept of trial-
and-error behavior and its importance for user learning (Cakmak
and Takayama, 2014). We argue that the opportunity for playful
trial-and-error behavior, or productive failure, is something that
should be considered in systems design and failure understanding in
HRI.This concept is not a part of the currentHRI failure taxonomies
(e.g., Honig and Oron-Gilad, 2018; Tian and Oviatt, 2021). Usually,
learning is not explicitly considered in HRI failure taxonomies.
Learning mistakes are considered in taxonomies in other domains
such as e-learning (Priem, 2010), where e-learning errors have been
construed as potentially harmful by some authors, as it may lead
to low computer self-efficacy or computer anxiety, while others
construe error in a more positive light and see it as a part of the
learning process. In low-risk HRI scenarios, we argue that errors in
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the context of trial-and-error behavior perform a positive role for
user learning.

User learning to establish a more accurate mental model
of the way the technology functions is especially relevant in
the HRI context. The disconnect between people’s estimates of
robot perception and reasoning capabilities and the robot’s actual
capabilities has been referred to as mental model discrepancy
(Perlmutter et al., 2016), asymmetry in perception (Frijns et al.,
2023), and the perceptual belief problem in HRI (Thellman and
Ziemke, 2020). As we observed that the way the robot’s behavior
was designed impacted participant understanding of the way the
system works (Section 5.4), we argue that interaction design can
scaffold trial-and-error behavior and the development of a correct
mental model of system function. To facilitate the user in gradually
developing a more accurate model of the robotic system, it is
important that the robot gives appropriate behavioral cues. Similarly,
Tolmeijer et al. (2020) mention training and interaction design as
potential failure mitigation strategies when a trust violation occurs.
Interaction design can support user learning during interactions
with a robotic system, where human interaction partners gradually
develop a better understanding and expectations of the robotic
system. For instance, this can be done through initial interactions in
which object detection limitations are demonstrated, or by providing
sensor information when the user detects an error.

7 Limitations of the study

Our study does not address long-term effects, as the participants
were asked to organize the objects only three times. Moreover, the
realism of the scenario was limited. The shelf was initially empty,
and the participants were asked to place a limited set of objects on
the shelf. In amore realistic setup, the cupboardmay already contain
some objects. In such situations, it makes sense to display only newly
added objects. Another limitationwas that the robot was not capable
of performing object manipulation. This may have impacted the
participants’ motivation to ensure that the robot correctly detected
the objects. Honig and Oron-Gilad (2018) discuss motivation as an
important aspect for solving failures and mention the mitigation
strategy of setting expectations regarding potential errors. Fewer
errors may occur if participants have a higher level of motivation,
if they are given more specific instructions for object organization,
or given insight into the robot’s perceptual processing. A different
experimental setup, in which participants would be required to
complete the task as fast as possible, may have led to a situation
in which participants would not display trial-and-error behavior.
The low task complexity andmissing robotmanipulation capabilities
may have contributed to the observed floor effect for task load scores.
Future work should investigate if higher task complexity will lead
to more pronounced differences between conditions. As we ran the
experiment with visitors to a museum of science and technology,
there were regularly other people present in the room, e.g., friends
and relatives. This could have influenced the participants’ behavior,
for which the video data may be analyzed (see, e.g., Giuliani et al.,
2015). Moreover, that the study took place in a museum of science
and technology may also have contributed to the participants’

motivation to test the system’s capabilities and learn more about
it, or this may have resulted in selection of participants with an
interest in technology. Advantages of the study location were that
the study participant pool was balanced in terms of gender and had a
wide range in terms of participant age and programming experience.
At the same time, the study was restricted to German speaking
participants in Vienna, Austria. The number of participants was
restricted due to practical constraints, which means the quantitative
data gives limited information. However, the aim of the experiment
was to gather qualitative data on interactions of participants with a
system that produces non-wizarded errors.

8 Future work

Future work for human-in-the-loop error detection should
include studying the efficacy of alternate visualizations. For example,
the user could be shown the camera stream with bounding boxes
around detected objects when the user detects a failure (different
from the one chosen in our study, as explained in Section 3.4). The
human interaction partner may also be offered follow-up actions
such as repositioning the robot, an option to manually correct
learned object locations, or to view sensor data. The system can
be extended by incorporating capabilities to detect and represent
more complex object configurations (using all spatial prepositions
mentioned by Guadarrama et al., 2013), or object pose estimation
to cover 3D. However, errors can still occur (e.g., due to occlusions).
To deal with such limitations in technical systems, ourwork provides
suggestions on how to support human-in-the-loop error detection.
Future research needs to investigate how interaction design can
support the user in developing a more accurate mental model of the
robotic system.

9 Conclusion

In this work, we considered the problem of supporting human-
in-the-loop error detection in an object organization task involving
object detection functionality, a robotic system, and a human
who organizes objects. In our study, we investigated if shared
representations can support the participant’s error detection task.
We evaluated efficacy of different output modalities for the design
of shared representations that the end user can inspect to detect
errors of which the system is not aware. We used a functional object
detection system in our study, to investigate the types of errors that
are likely to occur in practice.

We found that visualization, speech and a combined condition
all supported error detection. For the speech-only condition, we
observed most cases of uncertainty of participants. However,
this condition also sufficiently supported error detection. Most
participants preferred the combined condition. An exploratory
analysis of our results suggests that users with more programming
expertise prefer visualization; but this needs to be investigated
further. We recommend using both speech and visualization to
decrease uncertainty, especially at the start of the interaction,
and offer the option to switch off one of these modalities as
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the interaction proceeds. Moreover, using both modalities has
advantages in terms of accessibility. Our study shows that a
visualization of the robot’s knowledge base, in addition to speech or
by itself, is highly preferred in the context of a task that requires a
human interaction partner of the robot’s internal state. Thus, a built-
in screen or external tabletwith a visualization of the knowledge base
supports human-robot joint activities.

Secondly, as participants were able to freely interact with our
system, we were able to observe failure cases that play a role in
user learning. Participants were observed to gradually make the
task more difficult for the robot, to test and better understand the
system. Failures arose due to participants’ interpretation of and
uncertainties regarding the robot’s behavior, their motivation to
find out whether their interpretation is correct, participant actions
on the environment and the robot’s subsequent perception of the
environment. Such failure cases are not considered in current
HRI failure taxonomies. When the user is sufficiently supported
through the system’s interaction design, these types of failures
are likely to positively contribute to the user’s understanding of
the way the system works. Supporting trial-and-error behavior
and designing robotic systems so that they help the user improve
their mental model of the way the system works will help
prevent failure in the long run. A related point we want to
make, is that current failure taxonomies in HRI that categorize
failures based on their source (e.g., a sensor or an action
by a human) are likely to overlook how multiple sources can
together lead to failure situations, or to miss certain failure cases
altogether (e.g., the productive failure/trial-and-error behavior
that we describe in this paper). We argue that failure in HRI
should be understood as an interconnected phenomenon, where
combinations of actions by different agents in the environment lead
to failure.
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