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robots for audio interaction
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There have been significant advances in robotics, conversational AI, and spoken
dialogue systems (SDSs) over the past few years, but we still do not find social
robots in public spaces such as train stations, shopping malls, or hospital waiting
rooms. In this paper, we argue that early-stage collaboration between robot
designers and SDS researchers is crucial for creating social robots that can
legitimately be used in real-world environments. We draw from our experiences
running experiments with social robots, and the surrounding literature, to
highlight recurring issues. Robots need better speakers, a greater number of
high-quality microphones, quieter motors, and quieter fans to enable human-
robot spoken interaction in the wild. If a robot was designed to meet these
requirements, researchers could create SDSs that are more accessible, and
able to handle multi-party conversations in populated environments. Robust
robot joints are also needed to limit potential harm to older adults and other
more vulnerable groups. We suggest practical steps towards future real-world
deployments of conversational AI systems for human-robot interaction.
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1 Introduction

Social robots are not yet found in our public spaces, despite this vision being an
imminent reality over 25 years ago (Thrun, 1998). They do not roam our shopping malls
helping lost families find the bathroom, we do not bump into them providing departure
times in train stations and airports, and they are not helping patients in hospital waiting
rooms with their questions (see Figure 1).

Spoken dialogue systems (SDSs) have consistently improved over time (Glass, 1999;
Williams, 2009; Lemon, 2022), with many years of peer-reviewed papers containing
remarkable results. These models, however, are often evaluated automatically upon
collected data, or with users in highly controlled lab settings. Social robots work
wonderfully in the lab, but fail when deployed in the real world for experiments
or demonstration (Tian and Oviatt, 2021). Some of these failures stem from the
embedded SDS [for example: multi-party interactions (Addlesee et al., 2023a), socio-
affective competence (Tian and Oviatt, 2021), voice accessibility (Addlesee, 2023), or trust
failures (Tolmeijer et al., 2020)], but even interactions that the SDS should be able to
handle with ease go wrong. These failures are often caused by the design of the social
robot itself, classified by Honig and Oron-Gilad (2018) as technical hardware failures.
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FIGURE 1
A person asking for directions in a hospital.

The field of robotics has also seen incredible advancements over
the past years, today’s robots can navigate obstacle courses (Xiao et al.,
2022), manipulate objects in their environment (Chai et al., 2022),
generate human-like gestures (Tatarian et al., 2022), and follow
complex human instructions using large language models (LLMs)
(Ahn et al., 2022). Sadly, while collaboration between these two fields
is common, they often begin after the robot has been designed. In our
experiencefrommultiple internationalrobotdialogueprojects, spoken
interactionisnotconsideredduringtheinitialdesignphase.Thislackof
early-stagecollaborationbetweenrobotdesignersandSDSresearchers
leaves room for oversight of critical features for spoken interaction,
contributing to both performance and social errors (Tian and Oviatt,
2021). In this paper, we have combed the literature and drawn
from our own experiences to highlight underlying and fundamental
hardware problems that repeatedly surface when experimenting with
social robots and real users. We hope this paper sparks discussion
between both communities to create fully functioning social robots
that do genuinely work in public spaces in the future, enabling live
in-the-wild experiments.

2 People struggle to hear robots

The first issue that crops up commonly in the literature is the
limited volume of the robot’s voice. Robot designers simply attach a
speaker to the robot without considering the fact that the world is
noisy, and some users, such as older adults, may have hearing loss.

In recent work, researchers deployed a robot to interact
with real users in an assisted living facility. The robot had
to be fitted with an additional speaker that had a louder
maximum volume. The modification was necessary because the
users simply could not hear the robot’s voice, preventing any basic
interaction (Stegner et al., 2023).

This issue is not constrained to this particular setting, or
to one particular robot. For example, researchers had to repeat
every sentence the robot said in the lobby of a concert hall, as
participants could not hear it Langedijk et al. (2020). In various
school environments, the robot’s volume was not loud enough to
enable effective interaction, so external speakers had to be fitted
(Nikolopoulos et al., 2011). When guiding people in an elder care
facility, the robot’s single speaker faced the wrong direction, so
users could not hear it Langedijk et al. (2020). Another robot was
deployed in the homes of a few older adults, and they noted that
its volume was not loud enough. People could not hear a social
robot in a gym (Sackl et al., 2022), and the list goes on.

Robots are expensive, but the speakers that researchers had
to retrofit to the robots were inexpensive and readily available.
This low-cost change was simple, yet crucial, to enable effective
communication with a user in a real-world setting. When designing
robots for spoken interaction, we recommend fitting multiple
speakers (facing various directions) that have a loud maximum
volume. This will guarantee that the robot can be heard in public
spaces, and ensure its accessibility for people with limited hearing. In
the future, parametric array loudspeakers (PALs) could be installed
to use ultrasonic transducers (Yang et al., 2005; Bhorge et al., 2023).
PALs are unidirectional, using the nonlinear interactions between
soundwaves to enable directed personal communication to a specific
user in a populated environment (Zhu et al., 2023).

3 Robots struggle to hear people

There is another conversation participant that cannot properly
hear what their interlocutor is saying–the robot. This problem is
similar to the one in Section 2, and is also frequently found in
the literature. A social robot struggled to hear users in a hotel
lobby, for example (Hahkio, 2020). Many researchers retrofit better
microphones to the robot (Villalpando et al., 2018), or next to
the robot (Wagner et al., 2023), in order to hear the usermore clearly.

In an assisted living facility, researchers had to resort
to listening to the user through an ajar door to run their
experiments. The microphone array could not reliably pick up what
users said (Stegner et al., 2023).

Home voice assistants do successfully hear people in noisy
environments, like family homes (Porcheron et al., 2018), however.
They can pick up what the user said when other conversations are
happening in the room, and when the TV or radio are on [we are
also finding this in ongoing work (Addlesee, 2022)]. Today’s social
robots typically have fourmicrophones1, butwe argue that this is far
too few. Apple’s Homepod originally had six microphones (Calore,
2019), and Amazon’s Alexa Echo had seven (Spekking, 2021). The
newest Homepod and Echo have reduced to four microphones for
two reasons: (1)These devices are incentivised to keep their device’s
costs low to encourage adoption by new users (Welch, 2023); and
(2) The device’s shape and internal component arrangements have

1 We checked the technical specifications of several commonly used social

robots, and robots that we have deployed ourselves. We are refraining

from naming specific robot creators, as this paper aims to encourage

collaboration, and not criticise specific robots.
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FIGURE 2
A social robot providing stability to an older adult.

been refined and optimised over many years through experiments
with millions of users (Wilson, 2020). Robots do not share either
of these features. Microphones are trivially inexpensive relative
to the price of a robot, and instead of helping microphones, the
robot’s shape actively hinders their performance. The body parts
of a social robot often sit between the user and the microphone
(for example, when the user is behind the robot, or in a wheelchair).
Robots also create a lot of noise themselves, called ego-noise.
Related research required high-quality audio input from a
noisy propellered UAV, so they attached sixteen microphones
in various locations around the device (Nakadai et al.,
2017), not just four.

Human-robot spoken communication can also be disrupted by
societal or linguistic phenomena, such as overlapping or poorly
formed turn-taking conditions (Skantze, 2021). Such conditions
include barging-in (Wagner et al., 2021) (where the user interrupts
the robot mid-sentence, but the robot fails to recognise that the
user started speaking), and poor end-of-turn detection (due to long
pauses or intermittent speech from the user). In our experience,
users sometimes barge-in because of high latency caused by limited
computational power onboard the robot, or on-site connectivity
issues, in addition to the SDS latency.

Potential approaches to this challenge include incremental
dialogueprocessing(Addleseeetal.,2020;Aylettetal.,2023),predictive
turn-taking (Inoue et al., 2024), or explicit turn-taking signals which
enable theuser tobetterunderstandwhentherobot isactually listening
to them. For instance, Foster et al. (2019) employed a tablet on the
robot’s torso that was showing “I am listening” and “I am speaking”
text to help guide the users in a noisy shopping mall setup.

We therefore recommend fitting multiple high-quality
microphones in various locations around the robot’s body, as well
as using appropriate signal processing techniques, such as beam-
forming (Adel et al., 2012). Latency issues must be addressed within

the SDS, and by increasing the robot’s computational capabilities.
These changes will again ensure thatmulti-party spoken interactions
can realistically take place in public spaces. Robot designers must
also consider microphone placement lower down on the robot for
shorter users, and for people in wheelchairs, as they are commonly
just placed on the top of the robot’s head.

3.1 Multi-party interaction

All of the above challenges assume that the interaction is
dyadic–that is, one person conversing with a single system/robot.
Conversational AI systems and SDSs are typically designed for
this setting, including commercial assistants like Alexa and Siri.
However, dyadic interactions can only be guaranteed in specific
environments, such as single-occupant homes (and even then,
there may be visitors). In the public spaces that social robots are
expected to roam in the future (see Section 1), groups of people may
approach the robot (Alameda-Pineda et al., 2024). In multi-party
conversations (MPCs), the SDS must track who said an utterance,
who the user was addressing, and then generate a suitable response,
depending on whether the robot is addressing an individual or the
whole group (Traum, 2004). The robot may also need to decide
to remain silent, for example if people are talking to each other,
but still monitor the content of their conversation in case it can
assist them. Additionally, MPCs introduce unique challenges such
as multi-party goal-tracking (Addlesee et al., 2023b). Groups may
have conflicting goals, or share goals (Eshghi and Healey, 2016).
Current social robots are not designed to enableMPCs, since speaker
diarization (tracking ‘who said what’) is critical (Addlesee et al.,
2023c; Schauer et al., 2023).The audio from the robot’s microphones
must not only be clear enough to perform ASR accurately, but clear
enough to determine who said an utterance (Cooper et al., 2023).
Ideally, the microphones would also provide the angle which the
audio originated from. This angle can be combined with the robot’s
vision to determine which person in view said an utterance. The
robot can then look at the user it is addressing when responding.

We recommend that social robots be designed with multi-party
interaction in mind–this means designing microphone arrays such
that speaker diarization is accurate, combining this with person-
tracking, and developing NLP systems that can understand and
manage multi-party conversations (Lemon, 2022).

4 Ego-noise

This issue of ego-noise, introduced in Section 3, is so
problematic that an entire field of research has grown to tackle it.
Researchers find that ego-noise, noise generated by the robot itself,
does not just negatively impact ASR performance, but that ego-
noise reduction methods also suppress some of the user’s utterance
(Ince et al., 2010; Schmidt et al., 2018). To clarify, both the ego-noise
reduction techniques, and the ego-noise itself negatively impact
ASR performance (Alameda-Pineda et al., 2024).

This issue would be helped by additional speakers and
microphones, ideally not placed next to noise sources, allowing both
parties to hear each other. An optimal social robot designed for
spoken interaction would also have much quieter joint motors and
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fans. These are more expensive than speakers and microphones,
but they would greatly improve the SDSs ability to understand the
user. This could be paired with research to repair and understand
disrupted sentences (Addlesee and Damonte, 2023a; Addlesee and
Damonte, 2023b), while quieter motors are developed.

In addition to joint motors and fans, the robot’s own voice is
another source of ego-noise. Microphones cannot simply be turned
off when the robot is talking, as speech can be overlapping, so
recognised speech may have to be classified as being produced by
itself or another (Lemon and Gruenstein, 2004).

5 Joint robustness

Ego noise obviously does not impact robots that do not have
a body. In our view, though, social robots should be able to point
to location and objects, guide users, and help users physically. For
example, consider a hospital waiting room in a hospital memory
clinic (Gunson et al., 2022). Patients are typically older adults, and
may use the robot’s arm for stability, like they would with another
human (see Figure 2). Current social robots can generate social
gestures like waving or holding its hand out for a handshake. If you
were to shake the robot’s hand, however, it would likely break. Such
fragility could potentially harm users if deployed in this setting.
People may assume that they can link arms with the robot while
being guided, a perfectly natural assumption. When an older adult
puts their weight on the robot’s joint, though, they might fall. This is
clearly a potentially harmful design flaw that must be resolved if we
are ever going to find robot assistants in the wild.

6 Conclusion

Interacting naturally with social robots in public spaces is
currently still a sci-fi fantasy. There are challenges that SDS
researchers must tackle to reach this goal, but that is not the only
bottleneck. Even a perfect SDS would fail if it was embedded within
today’s social robots. We have highlighted that robots need louder
speakers (or parametric array loudspeakers in the future), a greater
number of high-quality microphones, quieter fans, and quieter
motors to allow both parties to hear each other. These are critical
problems that completely block spoken interactions outside a lab
setting. We highlighted that robots also need to be more physically
robust if they are to be safely applied in the real world, particularly
in settings with older adults.

Social robotics researchwill continue to relyonofflineevaluations,
wizard-of-oz deployments, or lab-based experiments if these robot
hardware issuesarenot resolved.Oursuggestionsarenotanexhaustive
list,butwehopethattheysparkdiscussionandencouragecollaboration
between robot designers and SDS researchers. This collaboration
should take place in the initial stages of a robot’s design to avoid

the retrofitting of hardware and sensors discussed in this paper, and
instead enable real in-the-wild experiments.
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