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In this study, we address the critical need for enhanced situational awareness
and victim detection capabilities in Search and Rescue (SAR) operations
amidst disasters. Traditional unmanned ground vehicles (UGVs) often struggle
in such chaotic environments due to their limited manoeuvrability and the
challenge of distinguishing victims from debris. Recognising these gaps,
our research introduces a novel technological framework that integrates
advanced gesture-recognition with cutting-edge deep learning for camera-
based victim identification, specifically designed to empower UGVs in
disaster scenarios. At the core of our methodology is the development and
implementation of the Meerkat Optimization Algorithm—Stacked Convolutional
Neural Network—Bi—Long Short Term Memory—Gated Recurrent Unit (MOA-
SConv-Bi-LSTM-GRU) model, which sets a new benchmark for hand gesture
detection with its remarkable performance metrics: accuracy, precision, recall,
and F1-score all approximately 0.9866. This model enables intuitive, real-time
control of UGVs through hand gestures, allowing for precise navigation in
confined and obstacle-ridden spaces, which is vital for effective SAR operations.
Furthermore, we leverage the capabilities of the latest YOLOv8 deep learning
model, trained on specialised datasets to accurately detect human victims
under a wide range of challenging conditions, such as varying occlusions,
lighting, and perspectives. Our comprehensive testing in simulated emergency
scenarios validates the effectiveness of our integrated approach. The system
demonstrated exceptional proficiency in navigating through obstructions and
rapidly locating victims, even in environments with visual impairments like
smoke, clutter, and poor lighting. Our study not only highlights the critical gaps
in current SAR response capabilities but also offers a pioneering solution through
a synergistic blend of gesture-based control, deep learning, and purpose-
built robotics. The key findings underscore the potential of our integrated
technological framework to significantly enhance UGV performance in disaster
scenarios, thereby optimising life-saving outcomes when time is of the essence.
This research paves the way for future advancements in SAR technology,
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with the promise of more efficient and reliable rescue operations in the face
of disaster.

KEYWORDS

disaster response, unmanned ground vehicles (UGVs), deep learning, multi-modal
fusion, human detection

1 Introduction

In contemporary robotics, the control interface plays a pivotal
role in realising the full potential of these machines, especially
in contexts as critical as search and rescue (SAR) operations.
Hand gesture-based control emerges as a highly relevant and
promising avenue, recognising the intrinsic connection between
human communication and motion. Traditional input methods,
such as joysticks or keyboards (Usakli and Gurkan, 2009), often
impose a steep learning curve and can be cumbersome in
dynamic and high-stress situations. In contrast, harnessing hand
gestures as a control modality not only aligns with natural human
movements but also offers an intuitive and immediate way to
direct robotic actions.This fusion of human-centric communication
and robotic dexterity holds immense potential to revolutionise
SAR efforts, optimising coordination and response times in
lifesaving scenarios.

When considering alternative approaches, speech recognition
stands as a highly convenient communication method. However,
it faces challenges due to the diverse range of human accents and
struggles in noisy, uncontrollable environments. On the other hand,
vision-based approaches utilising facial expressions, eye tracking, or
head movements have been explored Castillo et al. (2018). Among
these, gesture recognition is the most comprehended. Vision-based
Human-Robot Interaction (HRI) technology offers a non-contact
approach capable of conveying intricate information effectively
Chen et al. (2019). Among all human body gestures, the hands
are a natural focal point, given their intuitive use in human-to-
human communication. The primary objective of pursuing touch-
less methods is to foster engagement between robots and humans,
ultimately facilitating a natural interaction. Although hand gesture
recognition is an area of extensive study Rautaray and Agrawal
(2015) it still encounters challenges such as complex and dynamic
backgrounds or varying illumination conditions Gao et al. (2017).
In this study, our focus lies on recognising hand gestures as a means
of easy and natural communication with robots. This recognition
is vital for robotics applications such as HRI or assisted robotics,
aiming for a seamless, effective interaction with minimal intrusion
Wachs et al. (2011).

HRI stands at the forefront of this revolution, especially
in SAR missions where seamless interaction and collaboration
between humans and robots are paramount. HRI technologies
enable effective coordination between human first responders and
robotic systems, a prime example being a quadruped robot tailored
for SAR tasks Sanfilippo and Rano (2023). The integration of
hand gesture-based control into the functionality of a quadruped
robot for SAR operations may signify a paradigm shift in the
field of robotics. The canine-inspired robot, designed to navigate
challenging terrains and aiding in rescue missions, aligns with
the agility and adaptability of real-life SAR dogs. Leveraging

hand gestures as a control mechanism for this robot not only
bridges the communication gap between humans and machines
but also ensures seamless and immediate commands, mirroring
the fluidity of human-dog interaction. This innovation holds
tremendous importance in the realm of SAR, as it enhances operator
control, responsiveness, and precision, ultimately contributing
to faster and more effective actions during critical operations.
The fusion of advanced robotics and intuitive human-machine
interfaces, represented by hand gesture-based control, promises to
redefine the landscape of SAR robotics, potentially saving lives
in the process.

1.1 Contributions and paper organisation

The key contributions of this work are.

• Introduced the innovative Massachusetts Institute of
Technology (MIT) Quadruped Robot, controlled intuitively
via hand gestures.
• Showcased the integration of a state-of-the-art Sparse
Convolutional Neural Network—Bi-Long short term
memory—gated recurrent unit network (SConv-Bi-LSTM-
GRU) network, merging advanced machine learning with
robotic systems.
• Implemented novel Meerkat optimisation for hyperparameter
tuning, enhancing neural network performance and
efficiency.
• Developed a cutting-edge hand gesture recognition system
using computer vision, enabling real-time, accurate gesture
interpretation for robot control.
• Utilised the YOLOv8 network on a custom Human Dataset
for disaster scenarios, ensuring model adaptability and
effectiveness in real-world search and rescue.
• Validated the methodology with experiments in simulated
disaster scenarios, demonstrating the potential of deep learning
and camera-based technologies in advancing UGV technology
for disaster response.
• Advanced search and rescue robotics by proposing a holistic
framework that integrates gesture-based UGV control with
camera-based human detection, significantly improving
operational outcomes and detection accuracy.

The remainder of the paper is organised as follows:
Section 2 provides a detailed modelling of quadruped robot.
Section 3 elaborates the proposed technique in detail. While
Section 4 offers a detailed description of the dataset. Section 5
presents the results and discussion, and finally, Section 6
concludes this work.
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2 Modelling of quadrupled robot

In this research, we examine the design of a resilient and
agile quadruped robot, specifically focusing on the Massachusetts
Institute of Technology (MIT) quadruped robot model. A concise
overview of the robot’s modelling Bledt et al. (2018), is provided in
this section.

An event-based finite state machine and an independent phase
variable for each leg dictate the robot’s movement. This set-up
is utilised to determine when each leg should be in contact
with the ground or in a swinging motion. The system offers
versatility in movement patterns, including trotting, bounding,
pacing, and facilitating the addition of new patterns. These gaits
are designed to mimic the movement of real cheetahs by regulating
the phases of individual legs. In the event of unexpected leg
contact events, adjustments are made to the nominal gait plan.
Scheduled contacts are defined by independent Boolean variables
sϕ ∈ {0 = swing,1 = contact}, while estimated contacts are denoted
by s∧ ∈ {0 = swing,1 = contact}. Using this data, the robot can
distinguish between regular operation, unexpected and untimely
contacts, and missed contacts delayed, subsequently modifying its
control actions accordingly.

The quadrupedal controlling model integrates a linear
correlation between the translational acceleration of the robot’s
center of mass (q̈c) and the angular acceleration of its body (ω̇β),
concerning the forces G = (GT

1 ,G
T
2 ,G

T
3 ,G

T
4)

T acting on each of the
robot’s four feet. The controlling model can be represented as:

[

[

X3 … X3

[q1 − qc]× ⋯ [q4 − qc]×
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
CG = [

[

m (q̈c+ k)

YGω̇β
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
d (1)

where m and YG denote the overall mass and centroidal rotational
inertia of the robot, respectively. Moreover, k represents the gravity
vector, and ri (for i ∈ 1,2,3,4) are the positions of the robot’s feet.
The expression [ri − qc] × refers to the skew-symmetric matrix
representing the cross product [ri − qc] ×Gi.

One of the operationalmodes for leg control in quadruped robot
is the Balance Controller, inspired by a modified implementation of
the control method outlined in Focchi et al. (2017). This controller
applies proportional-derivative (PD) control to regulate the robot’s
center of mass and body orientation while satisfying friction
constraints on foot forces. The proportional-derivative (PD) control
law is expressed in Eq. 2:

[

[

q̈c,δ

ω̇b,δ
]

]
= [

[

Gp,q (qc,δ− qc) +Gd,q (q̇c,δ− q̇c)

Gp,ω log(RδRT) +Gd,ω (ωb,δ−ω)
]

]
(2)

The intended angular acceleration follows PD control on SO(3),
utilising rotationmatricesRδ andR to denote the desired and actual
body orientations, respectively. The orientation error is calculated
using the exponential map representation of rotations.

The primary objective of the Equilibrium Regulator is to
enhance the allocation of leg forces L to steer the estimated dynamics
of the center of mass toward the target dynamics, as specified by:

ed = [

[

m ( ̈qc,δ+ γ)

IMω̇b,δ
]

]
(3)

Since the model represented in Eq. 1 is linear, the controller’s
operation can naturally be expressed as the solution of a quadratic
program (QP) as shown in Eq. (4):

F∗ = min
F∈ℝ12
(AF− bd)

TS(AF− bd) + α‖F‖2

+ β‖F− F∗prev‖
2 s.t. CF ≤ d (4)

The cost function illustrated in Eq. (3) embodies an equilibrium
among three primary objectives: steering the center-of-mass (CoM)
dynamics towards the desired trajectory, reducing the applied forces,
and penalising disparities between the present Quadratic Program
(QP) outcome and the previous time step’s solution, denoted as
F∗prev. The matrix S dictates the relative emphasis on managing
rotational versus translational motion. Additionally, positive gains
α and β dictate the influence of force standardisation and solution
refinement. The constraints CF ≤ d are essential to ensure that the
optimised forces adhere to the friction pyramid and that the normal
forces fall within feasible limits. These constraints dynamically
switch between the support-leg and swing-leg bounds based on the
scheduled contact sϕ, as elaborated earlier.

3 Proposed model for hand gesture
detection

3.1 Convolutional neural network (CNN)

Convolutional Neural Networks (CNNs) are specialised deep
learning models for processing data like images and signals. This
text emphasises 1D CNNs, suited for one-dimensional data such as
time series Ayadi et al. (2021). The fundamental operation in a 1D
CNN is the convolution, involving a signalX and a filter F, defined by
(Y∗F)(t) = ∑k−1i=0X(t+ i) ⋅ F(i), whereY is the output. 1Dmax-pooling,
another key operation, downsamples the output, enhancing feature
detection by keeping the maximum value over a specified window.

3.2 Bidirectional LSTM model

Bi-LSTM, enhancing traditional RNNs, processes sequences in
both forward and backward directions to better capture context
Hameed and Garcia-Zapirain (2020). At its core, an LSTM cell has
three gates controlling data flow and updates the unit’s state with
inputs. Bi-LSTM integrates forward and backward LSTM layers,
as shown in Figure 1, with outputs combined at each time step,
enriching the sequence representation by incorporating information
from both directions.

3.3 Gated recurrent unit (GRU)

GRUs are a streamlined alternative to LSTMs designed to tackle
the vanishing gradient problem in RNNs, facilitating long-range
sequence learning Islam and Hossain (2021). A GRU has two gates:
reset and update, as shown in Figure 2, simplifying the structure
whilemaintaining the capacity tomanage data flow.Theunit’s state is
updated through a blend of past state information and new inputs,
guided by these gates, ensuring efficient dependency capturing in
sequential data.
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FIGURE 1
General structure of Bi-directional LSTM model.

FIGURE 2
Gru module structure.

3.4 SConv-Bi-LSTM-GRU

The CNN-Bi-LSTM-GRU model represents an advanced
architectural approach designed for the nuanced processing of
sequential data, blending the strengths of convolutional neural
networks (CNNs), bidirectional long- and short-term memory (Bi-
LSTM) units, and gated recurring units (GRUs) into a singular,
composite framework. This model stands out for its capability to
adeptly handle a multitude of sequence-based challenges, benefiting
from the synergistic integration of its components. Initially, the
CNN layers take precedence in the model’s operation, tasked with
the extraction of pivotal local features from the input data. This
is notably effective even in scenarios involving one-dimensional

sequence data, highlighting the CNN’s adaptability in identifying
relevant spatial hierarchies and features within the sequence.

As the process advances, the Bi-LSTM layer comes into play,
serving a critical role in discerning dependencies that span both
backward and forward within the data sequence. This is achieved
through the deployment of two distinct LSTM layers, each oriented
in opposite directions (forward and backward), thereby ensuring a
comprehensive analysis of temporal dynamics across the sequence.
The merging of the forward and backward hidden states at
every timestep enables the construction of a more complete and
nuanced representation of the sequence, enhancing the model’s
predictive accuracy.

Subsequent to the Bi-LSTM stage, the GRU component is
introduced to further refine the output. GRUs are celebrated
for their efficiency in modeling temporal dependencies within
sequences, offering a streamlined alternative to traditional
RNNs with a comparable capacity for capturing essential
context and long-term dependencies. This characteristic
makes GRUs an invaluable addition to the model, bolstering
its ability to process and interpret sequential data with
greater depth.

The architecture typically culminates with the integration of
one or more fully connected layers, which serve to consolidate
and interpret the processed data for a final outcome, The proposed
structure of the model is shown in Figure 3. Through this
comprehensive and meticulously designed structure, the CNN-Bi-
LSTM-GRU model emerges as a highly versatile and powerful tool,
finding application across a diverse array of fields such as natural
language processing, speech recognition, and time series analysis.
Its unique combination of feature extraction, forward and backward
temporal dependency modelling, and context capture capabilities
render it an exceptionally robust solution for the challenges inherent
in sequential data processing tasks.
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FIGURE 3
General architecture of the proposed model.

The recognition of hand gestures requires a comprehensive
approach capable of understanding both spatial and temporal
aspects of the data.The proposed CNN-Bi-LSTM-GRU architecture
is uniquely suited to this task for the following reasons.

• CNN for Spatial Feature Extraction:
• Rationale: Hand gestures contain complex spatial patterns

that are crucial for differentiation. CNNs excel in extracting
hierarchical spatial features from these images, capturing
essential details like hand positions and orientations.
• Benefit: This ensures the model accurately identifies

key spatial features of hand gestures, enabling effective
differentiation based on visual characteristics.

• Bi-LSTM for Temporal Dependency Modelling:
• Rationale: Gestures are sequential in nature, requiring

an understanding of both preceding and succeeding
movements. Bi-LSTMs process data in both directions,
capturing nuanced temporal patterns and dependencies.
• Benefit: Incorporating Bi-LSTMs allows the model to

recognise gestures based on the sequence of movements,
enhancing prediction accuracy and robustness.

• GRU for Efficient Sequence Modelling:
• Rationale: Efficient processing of temporal sequences is

crucial for real-time gesture recognition. GRUs provide
a simpler alternative to LSTMs for modelling temporal
dependencies, maintaining performance while reducing
computational complexity.
• Benefit: GRUs ensure the architecture remains

computationally efficient and capable of capturing essential
dynamics of hand gesture sequences, suitable for real-time
applications.

3.5 Hyperparameters of
SConv-Bi-LSTM-GRU

The CNN-Bi-LSTM-GRU model involves a set of critical
hyperparameters that significantly influence its performance.
Starting with the convolutional layers (CNN), the number of
layers typically ranges from one to five, where a deeper network
may be advantageous for more intricate features but runs the
risk of overfitting. Filter sizes and strides, which usually vary
between one and five, determine the granularity of features

the CNN captures, allowing the model to handle both fine-
grained and broad patterns. In the Bidirectional LSTM (Bi-LSTM)
component, the number of LSTM layers varies between one and
three. A deeper architecture can effectively capture long-range
dependencies, but it is computationally more intensive. Setting
the number of hidden units, which ranges from 64 to 512, impacts
the model’s capacity to learn complex relationships in the data.
Additionally, selecting an appropriate dropout rate, typically
between 0.2 and 0.5, plays a crucial role in mitigating overfitting.
For the Gated Recurrent Units (GRU), you can configure the
number of hidden units in a similar range (64–512) to control
the model’s expressiveness. The dropout rate also applies here,
with values between 0.2 and 0.5 serving as effective choices for
regularisation.

Other crucial hyperparameters include the learning rate,
which often falls within the range of 0.0001–0.01, the choice
of optimiser (e.g., Adam or RMSprop), the selection of an
appropriate loss function based on the specific task (e.g., cross-
entropy for classification), and the batch size, typically ranging
from 16 to 128. Epochs determine how many times the model
iterates over the entire dataset, typically ranging from 10 to
100, while early stopping criteria depend on the problem and
can involve parameters like patience (5–20) and improvement
threshold (0.001–0.01). Finding the optimal combination of
these hyperparameters often involves experimentation and
hyperparameter tuning techniques, adjusting them within these
ranges tomaximisemodel performance while preventing overfitting
or underfitting. The optimised hyperparameters are presented
in Table 1.

3.6 Meerkat optimisation algorithm (MOA)

TheMeerkat Optimisation Algorithm (MOA) draws inspiration
from the survival and behaviour patterns of meerkats in their
natural habitat Xian and Feng (2023). Meerkats exhibit remarkable
traits, such as their acute sense of smell, which aids in food
discovery, and their collaborative hunting efforts facilitated by
purring sounds. Additionally, meerkats employ a sentinel system
wherein some individualsmonitor their surroundings from elevated
vantage points, issuing warning calls when predators are detected,
prompting quick group concealment. When faced with a predator,
meerkats employ tactics like displaying their teeth and claws while
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TABLE 1 Hyperparameters of the proposed model.

Layer type Hyperparameter Value

Conv1D Number of filters 64

Conv1D Kernel size 2

Conv1D Activation function relu

Conv1D Number of filters 32

Conv1D Kernel size 2

Conv1D Activation function relu

MaxPooling1D Pool size 2 (default)

Bidirectional LSTM Units per direction 64

Bidirectional LSTM Return sequences True

GRU Units 64

GRU Return sequences False

Dense Units 20

Dense Activation function softmax

Model Compilation Loss function sparse_categorical_crossentropy

Model Compilation Optimiser adam

Model Compilation Metrics accuracy

lying on their backs to deter attacks, or theymay stand together, arch
their backs, raise fur, and hiss to appear as a formidable collective
entity. These varying behavioural strategies, encompassing hunting,
vigilant sentinels, fleeing, and confrontation, enable meerkats to
effectively balance their foraging for sustenance and resource
exploration with the constant vigilance required to detect and
counteract threats in their challenging desert environment.

3.7 Initialisation

Generate an initial population p of M mongooses with E
dimensions using Eq. 5:

P =

[[[[[[[[[[

[

[P1,1,P1,2,…,P1,k,…,P1,E]

[P2,1,P2,2,…,P2,k,…,P2,E]

⋮

[Pi,1,Pi,2,…,Pi,k,…,Pi,E]

[PM,1,PM,2,…,PM,k,…,PM,E]

]]]]]]]]]]

]

(5)

where Pi = [Pi,1,Pi,2,…,Pi,k,…,Pi,E] represents the i-th
mongoose (candidate solution), M = the total number of
mongooses (population size), E = the dimension of the
problem, and k ranges from one to E, Pi,k = initialized

using a random normal distribution within upper and
lower bounds.

3.8 Hunting and vigilance

Save the initial position using Eq. 6:

direct = X0,i (6)

where X0,i is the initial position of the i-thmeerkat.
And to Calculate the step size using Eq. 7:

step = (1− t
T
) ⋅ r (7)

where t is the current iteration, T is the maximum number of
iterations, and r is a random number.

To update the meerkat’s position Eq. 8 is used:

Xt+1,i = Xt,i + step ⋅ direct (8)

where Xt+1,i is the new position of the i-th meerkat,
Xt,i is the current position, and direct is the
initial position.

Meerkats can also hunt together using Eq. 9

Xt+1,i = Xt,i + step ⋅ (Xt,j − (rand+ 0.5) ⋅Xt,i) (9)

where Xt,j is the position of a randomly selected j-th meerkat, and
rand is a random number.
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3.9 Fleeing or fighting enemies

The emergency position can be calculated using Eq. 10.

Xt,emergency = Xt,i + (2 ⋅ rand ⋅Xt,gb −Xt,i) (10)

where Xt,gb is the best position found so far.
To Update the position based on fitness comparison,

following Eq. 11 will be used.

I f f (Xt,emergency) < f (Xt,i) , thenXt+1,i

= Xt,emergency;else,Xt+1,i

= div ⋅Xt,i − (2 ⋅ rand ⋅Xt,gb −Xt,i) (11)

3.10 Random direction exploration

Levy flight is used for the exploration which is shown in Eq. 12:

Xt+1,i = Xt,i + (2 ⋅ rand− 1) ⋅ (Xt,i + rand ⋅ s) ⋅ step (12)

where s is the Levy flight step size calculated using a Levy
distribution.

3.11 MOA-SConv-bi-LSTM-GRU

In order to achieve optimal performance of the Conv-Bi-
LSTM-GRU model on the hand gesture classification, we tuned the
hyperparameters using the recently proposedMeerkat Optimisation
Algorithm (MOA). MOA is a nature-inspired metaheuristic
algorithm that simulates the foraging and sentinel behaviours of
meerkats to balance exploration and exploitation in the search space.
The hyperparameters tuned included number of convolutional
filters, convolutional filter sizes, LSTM units, GRU units, dropout
rate, batch size and learning rate. The flow of proposed MOA based
deep neural network model is shown in Figure 4. The search ranges
for these hyperparameters were set based on common practices.
The objective function was validation accuracy of the Conv-Bi-
LSTM-GRU model on a held-out set. MOA starts with an initial
random population of solutions in the search space.The exploration
phase consists of hunting behaviour, in which meerkats diffuse
outwards from initial positions to forage, as well as coordinated
hunting with other companions. The exploitation behaviour
includes fighting against enemies bymoving towards the historically
best solution, or fleeing in the opposite direction. Additionally,
random direction exploration facilitated by Lévy flights helps
jump out of local optima. The sentinel mechanism balances
exploration and exploitation by probabilistically switching between
these behaviours. Over successive generations, MOA converges
towards optimally performing hyperparameter configurations. We
set the population size to 50 and maximum generations to 100
in our experiments. The optimal hyperparameter configuration
discovered by MOA resulted in a test accuracy of greater than
98% on the gesture classification, which was superior to results
from grid search and random search. The ability of MOA to
balance local and global search, along with escaping local optima,

made it well-suited for tuning the complex hyperparameter
space of the Conv-Bi-LSTM-GRU model. The results validate
the efficiency of the MOA algorithm for hyperparameter
optimisation tasks.

3.12 YOLOv8 architecture

The architecture of YOLOv8 is detailed in Terven et al. (2023).
It shares a structural resemblance to YOLOv5 but incorporates
notable modifications to the CSPLayer, now referred to as the
C2f module. The C2f module, which stands for cross-stage
partial bottleneck with two convolutions, has been enhanced to
integrate contextual information with high-level features to improve
detection accuracy.

In YOLOv8, objectness, classification, and regression tasks
are handled independently through an anchor-free model with a
decoupled head. This design allows each branch to focus on its
specific role, ultimately enhancing the overall model accuracy. The
objectness score in the YOLOv8 output layer is activated using the
sigmoid function, indicating the likelihood of an object’s presence
in the bounding box. For expressing the probability of objects
belonging to each potential class, the softmax function is employed
for class probabilities.The classification loss in YOLOv8 is computed
using binary cross-entropy, while bounding box loss utilises CIoU
Zheng et al. (2020) and DFL Li et al. (2020). These loss functions
contribute to improved object detection performance, particularly
for smaller objects.

In addition to its object detection capabilities, YOLOv8
introduces a semantic segmentation model known as YOLOv8-
Seg. Unlike the conventional YOLO neck design, the C2f module
follows the CSPDarknet53 feature extractor as the primary
component. Two segmentation heads, trained to predict semantic
segmentation masks for input images, follow the C2f module.
Featuring five detection modules and a prediction layer, the
detection heads of the YOLOv8-Seg model are comparable to
those of YOLOv8. The YOLOv8-Seg model has demonstrated
state-of-the-art results in various object identification and
semantic segmentation benchmarks, maintaining high speed and
efficiency.

4 Dataset description of hand gesture
recognition

4.1 Hand landmarks extraction

Efficient landmark extraction utilises the Mediapipe pose
detector, an open-source cross-platform tool that leverages machine
learning algorithms to track hands in colour images Zhang et al.
(2020). This detector excels in accurately localising hand landmarks
across diverse pose configurations, employing a two-step process
involving a palm detector followed by a hand model to ascertain
2D positions of 21 hand joints. This methodology minimises
the need for data augmentation, addressing challenges related
to rotation, translation, and scale, thus prioritising localisation
accuracy. Moreover, the approach optimises the detection process
by leveraging prior landmark predictions, enabling real-time
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FIGURE 4
Flow Chart of the proposed MOA based Deep Neural Network Model.

detection of multiple hands. The dataset comprises 16,000 samples
from four individuals, each contributing 200 samples for 20
distinct gestures, split into 80% training and 20% testing sets.
The corresponding robot actions for each gesture are outlined
in Table 2.

4.2 Dataset pre-processing

Normalisation is a crucial pre-processing step in data analysis
and machine learning, aimed at standardising the scale of features
within a dataset. The min-max normalisation technique is one
such approach that scales the features to a specific range, (0, 1),

making the data comparable and aiding in better convergence
during training.

The Min-Max Normalisation is calculated using the Eq. 13 for
each feature x in the dataset:

xnormalised =
x−min (x)

max (x) −min (x)
, (13)

where min(x) is the minimum value of the feature x and max(x) is
the maximum value of the feature x in the dataset.

By employing min-max normalisation, we transform the
features to fall within the (0, 1) range, preserving the relationships
and distributions within the data. This aids in the effective
use of machine learning algorithms that are sensitive to
feature scales.
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TABLE 2 Gestures explanation to control the selected robot.

Gestures Action Summary of action

1 Start Robot will start and wait for commands

2 Stop Robot will stop

3 Move forward Robot will move forward

4 Move reverse Robot will move backward

5 Move left Robot will move left

6 Move right Robot will move right

7 Move Top Left Robot will Move to Top Left

8 Move Top Right Robot will Move to Top Right

9 Move Bottom Left Robot will Move to Bottom Left

10 Move Bottom Right Robot will Move to Bottom Right

11 Jump Up Robot will Jump Upwards

12 Increase Max Speed Increase max speed by 10%

13 Decrease Max Speed Decrease max speed by 10%

14 Increase Linear Speed Increase linear speed by 10%

15 Decrease Linear Speed Decrease linear speed by 10%

16 Increase Angular Speed Increase angular speed by 10%

17 Decrease Angular Speed Decrease angular speed by 10%

18 Pause Pause at current position

19 Move Down Robot will move down

20 Holmonic Mode It will Enable Holmonic Mode

No hand Stop Robot will stop

4.3 Dataset analysis

The scatter plot, shown in Figure 5, illustrates the distribution
of clusters in a two-dimensional space defined by the first
two principal components derived from a PCA transformation.
Each point represents an individual data sample, colour-coded to
indicate cluster membership, with a total of 20 distinct clusters
as shown by the colour bar on the right. The distribution of
colours across the plot signifies the degree to which the PCA has
managed to separate different clusters in the reduced-dimensional
space. Clusters are spread across the plane of the first two
principal components, with varying degrees of overlap. Some
clusters, particularly those in the center of the plot, appear to
intermingle, suggesting that the separation between these groups
in the original high-dimensional space is not as pronounced. In
contrast, some clusters, especially those on the periphery, exhibit
more distinct groupings, indicating a greater separation fromothers.
This visualisation provides a compelling overview of the data

structure and the effectiveness of PCA in reducing dimensionality
while maintaining the inherent clustering of the dataset. The clear
differentiation of some clusters and the overlap of others may
indicate potential patterns or relationships within the data that
merit further investigation. It also serves as a visual assessment
of the cluster model’s performance, showing how well the clusters
identified by an algorithm like K-Means correspond to the reduced
dimensionality representation provided by PCA. The plot is well-
suited for a research setting, offering both a high-level overview
of data segmentation and a starting point for more detailed
statistical analysis.

Figure 6 showcases a correlation matrix heatmap for the top five
features along with the target variable of a dataset. The shades of red
and blue across the heatmap represent the strength and direction
of the correlation between each pair of features. A correlation value
of 1.00 along the diagonal confirms that each feature perfectly
correlates with itself, as expected. The colour intensity and the
correlation values indicate the relationship strength; deep reds
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FIGURE 5
Distribution of clusters in a two-dimensional space defined by the first two principal components.

signify a strong positive correlation, blues indicate a negative
correlation, and lighter colours correspond to weaker correlations.
Observing the correlations between the features and the target,
“Feature 2” shows a negative correlation with the target variable,
indicated by a light blue shade and a value of approximately
−0.26. This implies that as “Feature 2” increases, the target variable
tends to decrease, albeit not very strongly. Other features, such
as “Feature 62,” “Feature 50”, “Feature 53,” and “Feature 56,”
display varying degrees of positive intercorrelations, evidenced
by the predominantly red off-diagonal blocks, some of which
are very strong (close to 1), suggesting that these features may
share a significant amount of information or could be redundant.
Interestingly, these features do not exhibit strong correlations with
the target, as seen by the more subdued colours in the target
row/column, indicating that while they are strongly related to
each other, they may not individually influence the target variable
significantly. The heatmap is a powerful tool for quickly visualising
the presence and intensity of relationships between variables and is
essential for identifying potential features for model input, assessing
multicollinearity, and directing further data analysis efforts. The
chart’s clear labelling and distinct colour coding make it an effective
visual summary for both data exploration and presentation in a
research context.

4.4 Description of human detection dataset

A new simulated disaster victim image and video dataset was
recently created under ethical conditions Dadwhal et al. (2019).
Volunteers safely participated with due care for their wellbeing.
Fuller’s earth, a skin-safe compound, simulated disaster scene
dust on the volunteers posing as victims in different positions
amidst realistic rubble and clutter. The objective was capturing
images of humans in poses as might be found after a catastrophic
event, with the volunteers including one woman and four men.
The scene includes variations in colour, scale, pose, illumination,
motion blur and occlusion across 128 still images and 15 video
clips. The dataset has pixel-level annotation of skin regions to
enable developing and testing algorithms to assist first responders
in disaster victim location and rescue. Unique in providing
victim simulation data, it serves as a benchmark for research
toward automated disaster victim detection and location in
cluttered scenes.

The Human Detection dataset, comprising 6,447 images from
disaster scenarios, underwent a preprocessing step to align with
the specifications of YOLOv8. As part of this preprocessing, the
images were resized to fulfil the specific requirements of the
YOLOv8 model. The resizing process was carefully executed to
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FIGURE 6
Correlation matrix heatmap for the features along with the target variable of a dataset.

maintain the integrity of the data while ensuring compatibility
with the YOLOv8 architecture. Following this adjustment, the
dataset was further annotated using the professional online
tool ROBOFLOW, with a meticulous focus on selecting human
instances and accurately delineating them with bounding boxes.
Subsequently, the resized and annotated dataset was strategically
partitioned into training (70%), validation (15%), and testing
(15%) subsets to facilitate effective model training and rigorous
evaluation.

5 Results and discussion

5.1 Experimental setup

The experimental setup utilised a laptop powered by an
AMD Ryzen 5 5500U processor with Radeon Graphics, operating
at a base frequency of 2.10 GHz. The hardware facilitated the
implementation of deep learning models and real-time processing
for hand gesture detection. An Intel RealSense camera was
employed for capturing image data and depth information crucial
for accurate hand gesture analysis. The ROS/Gazebo based
simulation of hand gesture control of quadruped robot is shown
in Figure 8. The proposed real-time hand gesture-based control
of the quadruple robot is implemented in the Robot Operating

System (ROS) and Gazebo simulator Takaya et al. (2016), as shown
in Figure 7.

5.2 Hand gesture recognition

5.2.1 Comparative analysis
Hyperparameter optimisation is crucial for configuring

the complex neural topology and training variables of deep
learning architectures such as Conv-Bi-LSTM-GRU to achieve
maximum effectiveness. We research the suitability of the novel
Meerkat Optimisation Algorithm (MOA) for this problem
against prevalent alternatives including Arithmetic Optimisation
(AOA), Whale Optimisation (WOA), Grey Wolf Optimisation
(GWO) and Particle Swarm Optimisation (PSO). The comparative
evaluation on a hand gesture classification dataset reveals MOA’s
outstanding performance. The confusion matrix of proposed
technique is shown in Figure 9. The MOA-tuned Conv-Bi-
LSTM-GRU model attains best-in-class testing accuracy of
98.66%, significantly outperforming runner-up AOA’s 97.25%.
This difference is statistically significant as validated by hypothesis
testing, demonstrating MOA’s superior search capabilities.

Recall is a crucial metric for text analytics measuring the
model’s ability to correctly identify relevant documents based
on the learned representation. The MOA-optimised configuration
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FIGURE 7
Proposed structure of the hand gesture recognition-based control of spot robot in ROS/Gazebo. (A) Real Time Video Frames, (B) Mediapipe Detects
the hand land marks, (C) Land Marks are Exctracted, (D) Hand Gesture Recognition System using Deep Learning Model, and (E) Integration with ROS
for Control.

FIGURE 8
Sequence of Figures showcasing the movement of the quadruped robot according to the hand gestures in a dynamic close to real world environment
(A) Quadruped Robot starts from Point A (B) By detecting the gesture “move backward,” the quadruped robot starts moving backward till Point B (C)
Then the quadruped robot takes a right turn and moves forward to reach the Point C (D) After that the quadruped robot moves from Point C to Point D.

retrieves 98.66% related samples, compared to 97.11% by AOA-
Conv-Bi-LSTM-GRU. The top-2 precision scores of 98.67% and
97.27% respectively highlight the high relevancy of documents
flagged positive. The harmonic F1-score mean aggregates precision
and recall performance. MOA surpasses other techniques by an
F1 measure of 98.66%, reflecting its well-balanced tuning. AOA
comes closest at 97.09% F1-value trailed by WOA, GWO and
PSO in that order. Evidently, MOA discounts suboptimal settings
best. In a nutshell, MOA’s exploration-exploitation equilibrium
facilitated by the novel sentinel vigilance alongside hunting, combat

and flight behaviours manifests salient optimisation capabilities
outshining existing algorithms. It discovers close to optimal
hyperparameter configurations to boost Conv-Bi-LSTM-GRU’s text
mining efficacy. Our evaluations confirm that the unconventional
meerkat-inspired MOA paradigm offers a valuable addition to the
hyperparameter optimisation repertoire. MOA has also evidenced
versatile adaptation across manifold problem domains. These
results motivate harnessing MOA to optimise frontline deep neural
paradigms for enhanced analytics.The detailed comparative analysis
is presented in Table 3.
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FIGURE 9
Confusion matrix for hand gesture classification of MOA-SConv-Bi-LSTM-GRU.

TABLE 3 Comparative analysis of the evaluation metrics achieved by competing techniques.

Technique Accuracy Precision Recall F1-score

MOA-SConv-Bi-LSTM-GRU 0.9866 0.9867 0.9866 0.9866

AOA-SConv-Bi-LSTM-GRU 0.9725 0.9727 0.9711 0.9709

WOA-SConv-Bi-LSTM-GRU 0.9463 0.9441 0.9425 0.9487

GWO-SConv-Bi-LSTM-GRU 0.9254 0.9228 0.9281 0.9297

PSO-SConv-Bi-LSTM-GRU 0.8813 0.8842 0.8867 0.8889

5.3 Victim detection

The training effectiveness of the model can be evaluated by
examining the convergence of key parameters on the training
and test data sets, as shown in Figure 10. This includes the box
localisation loss, classification loss, objectness loss, mean Average
Precision at different IoU thresholds, recall and precision. Lower
loss values demonstrate better training, with the training and
validation losses expected to steadily decrease then stabilise over
epochs as the model fits the data. The results validate lack of
overfitting, as the losses steadily drop till 200 epochs without
spikes or oscillations. Precision, recall and mean Average Precision
values are also examined over epochs, with regular patterns again
confirming appropriate model convergence. Assessment of these
metrics over the number of training iterations thus facilitates
model selection, and hyperparameter tuning, and demonstrates
the approach effectively learns to locate and classify the objects
of interest without simply memorising the training examples.
The confusion matrix for the proposed technique on testing

data is shown in Figure 11. The victim detection on test dataset
is shown in Figure 12.

Recognising the importance of addressing environmental and
internal uncertainties in such operations is crucial. In Tutsoy (2022),
the authors detail an AI-based, multi-dimensional policy making
algorithm aimed at minimising casualties during pandemic diseases
by incorporating both pharmacological and non-pharmacological
strategies. Within the framework of this study, environmental
uncertainties include unpredictable disaster conditions, such as
terrain variability, weather changes, and debris presence, which
significantly impact UGV navigation and victim identification.
Internally, uncertainties stem from the limitations of the UGVs’
hardware and software, including sensor inaccuracies and the
potential for computational errors in real-time processing. A
integrated framework leveraging a deep learningmodel is developed
in this study to facilitate intuitive, real-time control over UGVs.
This allows for precise manoeuvrability in complex environments,
addressing internal uncertainties by enabling operators to make
split-second decisions based on live feedback from the field.
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FIGURE 10
Training matrices variation over the iteration on Disaster Scenario Dataset.

FIGURE 11
Confusion matrix for human detection in disaster scenario test data.

Furthermore, the usage of YoLoV8, trained on specialised dataset,
enhances the UGVs’ ability to accurately detect human victims
under diverse and challenging conditions.

6 Conclusion

This paper introduces a pioneering and holistic approach
to revolutionise search and rescue (SAR) operations in disaster
environments through the integration of cutting-edge technologies
into unmanned ground vehicles (UGVs). The proposed

methodology, consisting of gesture-controlled UGV operation and
camera-based human detection, addresses critical challenges in
disaster response scenarios. The gesture-controlled UGV operation
provides an intuitive interface for human operators, enabling precise
control in confined and intricate spaces.The selected prime example
is a quadruped robot tailored for SAR tasks. Leveraging a deep
learning (DL) model, hand gestures are accurately interpreted
and translated into real-time control commands, significantly
enhancing situational awareness and control precision. The second
component focuses on camera-based human detection, employing
the YOLOv8 DL network. This innovative approach effectively
identifies individuals amidst disaster-induced debris and chaotic
surroundings.TheDLmodel is trained and tested using a specialised
Human Dataset for disaster scenarios, ensuring its adaptability and
efficacy in real-world search and rescue operations. Experimental
results conducted in simulated disaster scenarios validate the
proposed methodology’s efficacy and real-world viability. The
integration of these components forms a cohesive framework that
advances search and rescue capabilities, contributing to ongoing
efforts to improve operational outcomes and ultimately save lives in
disaster-stricken areas. This research underscores the potential of
advanced technologies, includingDL and camera-based approaches,
in evolving UGV technology for disaster response. By addressing
the challenges associated with confined spaces and human detection
in chaotic environments, the proposed methodology represents a
significant leap forward in the application of technology to enhance
disaster response efforts. As technology continues to advance, the
findings of this research contribute valuable insights to the ongoing
quest for more effective and efficient SAR operations in the face of
natural or man-made disasters. For future work, we aim to bridge
the current gap by merging the gesture-based control of UGVs with
advanced camera detection technologies for victim identification,
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FIGURE 12
Prediction results for human detection on test data. Reprinted/adapted with permission from “Simulated Disaster Victim (SDV1 & SDV2) dataset” by
Dadwhal et al. 2019, licensed under CC BY 4.0 DEED.

setting the stage for a unified system that significantly enhances SAR
capabilities.
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