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A navigated, robot-driven laser
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Objectives: We recently introduced a frameless, navigated, robot-driven
laser tool for depth electrode implantation as an alternative to frame-based
procedures. This method has only been used in cadaver and non-recovery
studies. This is the first study to test the robot-driven laser tool in an in vivo
recovery animal study.

Methods: A preoperative computed tomography (CT) scan was conducted to
plan trajectories in sheep specimens. Burr hole craniotomies were performed
using a frameless, navigated, robot-driven laser tool. Depth electrodes were
implanted after cut-through detection was confirmed. The electrodes were cut
at the skin level postoperatively. Postoperative imaging was performed to verify
accuracy. Histopathological analysis was performed on the bone, dura, and
cortex samples.

Results: Fourteen depth electrodes were implanted in two sheep specimens.
Anesthetic protocols did not show any intraoperative irregularities. One sheep
was euthanized on the same day of the procedure while the other sheep
remained alive for 1 week without neurological deficits. Postoperative MRI and
CT showed no intracerebral bleeding, infarction, or unintended damage. The
average bone thickness was 6.2 mm (range 4.1–8.0 mm). The angulation of the
planned trajectories varied from 65.5° to 87.4°. The deviation of the entry point
performed by the frameless laser beam ranged from 0.27 mm to 2.24 mm. The
histopathological analysis did not reveal any damage associated with the laser
beam.

Conclusion: The novel robot-driven laser craniotomy tool showed promising
results in this first in vivo recovery study. These findings indicate that laser
craniotomies can be performed safely and that cut-through detection is reliable.
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1 Introduction

We recently introduced a navigated, robot-driven laser tool
for implanting cranial depth electrodes as an alternative to frame-
based procedures. This method has proven accurate and feasible
in a cadaver study (Roessler et al., 2021). However, in the first in
vivo trials, cut-through detection through its coaxial camera and
optical coherence tomography (OCT) signals was obscured through
inflowing liquids (Winter et al., 2021). Therefore, the cutting
strategy was updated, and a new camera systemwas implemented to
enhance cut-through detection (Winter et al., 2022). Previous trials
were limited due to the non-recovery setting, and no postoperative
imaging or histopathological analysis was conducted. Hence, no
postoperative safety, histopathological analysis, or accuracy data
is available. This study is the first in vivo recovery study using
a robot-driven laser tool for craniotomies allowing postoperative
neurological evaluation. In addition, postoperative imaging was
performed to evaluate the entry point, target point, and angulation
deviations.

2 Materials and methods

This study was approved by the local ethics committee
and the Federal Ministry of Education, Science, and Research
(#2020-0.468.726). This study was conducted per the European
requirements (Directive EU/2010/63) and United States Food and
Drug Administration Good Laboratory Practice regulations (21
CFR 58) and followed the test facility’s standards of care protocols.
The surgeon performing the procedure was accredited with an
EU Function A certificate for educational and training courses in
laboratory animal sciences. The laboratory facility was specifically
equipped, and the personnel was precisely trained to perform this
magnitude of studies.The raw data supporting the conclusion of this
study will be made available by the authors upon request.

2.1 Sheep specimens

Two sheep were used in this study. However, our sheep were
kept at the facility to ensure a psychologically safe environment for
those not tested. Therefore, no sheep were left alone in a cage at any
time, which is crucial in animal care, especially in social animals
such as sheep.

2.2 Preoperative planning

Each sheep underwent a head computed tomography scan
using a Siemens Somatom Emotion 16 CT Scanner (Siemens,
Munich, Germany). The scan parameters were set to a 0.75 mm
axial resolution, with kernels H37s for tissue and H90s for
bone. The voxel settings were SL 0.75/16 × 0.6/p 0.8; the
imaging parameters were 130 kv and 240 mA. Digital imaging
and communications in medicine data were processed and
validated into STL files using surgical planning software (Neuro
SEEGPlan software, Advanced Osteotomy Tools AG, Basel,
Switzerland). The data were transferred to the graphical user

FIGURE 1
Implantation of patient marker for navigation reference after surgical
prepping.

interface of the laser osteotome (CARLO® primo +, Advanced
Osteotomy Tools AG). Preoperative planning was performed
to define the trajectories and entry points for the depth
electrodes.

2.3 Registration procedure

The laser head of the laser osteotome CARLO® primo+ was
mounted on a 7-axis robotic arm (KUKA AG, Augsburg, Germany)
and guided by an infrared camera navigation system that tracked
two marker sets. One is integrated into the laser head, and the
other is a patient marker attached to the posterior skull plate
(Figure 1). Surgery was performed with the sheep specimen in
the prone position, and a custom-made cushion stabilized the
head. The position of the sheep head relative to the attached
marker was determined by identifying four screws (Medartis
AG, Basel, Switzerland) set as physical landmarks, which were
implanted on the cranium before the preoperative CT scan for
the registration procedure. A registration accuracy of <1.0 mm root
mean square was considered acceptable. The registration procedure
has already been described in our previous works (Winter et al.,
2021; Winter et al., 2022).

2.4 Anesthesia

The sheep were sedated by intravenously administering
midazolam (0.3 mg/kg) and ketamine (4 mg/kg). Anesthesia was
then induced with intravenous propofol (2%, 5 mg/kg). Orotracheal
intubation was performed for volume-controlled ventilation.
Isoflurane 1%–2% and sevoflurane 3%–4% were used to maintain
anesthesia throughout the procedure. Before imaging, ketamine
(3 mg/kg) and detomidine (0.07 mg/kg) were used to calm the
sheep and allow steady imaging.

2.5 Surgical procedure

Two linear paramedian skin incisions were made to display the
cranium. One large spreader was inserted to prevent skin flaps from
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obscuring the operative field. As previously described, the laser
osteotome uses a 2.94 μm erbium-doped yttrium aluminum garnet
(Er:YAG) laser (Baek et al., 2015; Roessler et al., 2021; Winter et al.,
2021). The cutting strategy was previously updated to facilitate cut-
through detection (Winter et al., 2022). Once cut-through detection
was confirmed on either the coaxial camera system or OCT signal,
the anchor bolts were placed, and the depth electrodes were
inserted. The dura was perforated using a standard monopolar
probe (Roessler et al., 2016). The alignment of the anchor bolts
was confirmed by aiming the laser head according to the planned
trajectory.

2.6 Termination of animals

Animals were premedicated with 0.3 mg/kg midazolam
intravenously and 4 mg/kg intravenous ketamine. Afterward,
according to the termination protocols of the institute, the animals
were euthanized using intravenous pentobarbital (300 mg/kg). This
aligned with the ethical and official guidelines for good scientific
practice and animal welfare.

2.7 Postoperative imaging

Postoperative MRI and CT scans were conducted to assess the
accuracy of the planned entry points and trajectory angulations.
This was achieved by integrating the electrodes, visible on CT,
into the planning software. Based on the actual positions of the
electrodes, new trajectories were established and compared with
the preoperative plans within the software. We then quantified the
deviations between the preoperatively planned trajectories and the
postoperative trajectories. In addition, postoperative imaging was
used to assess potential bone and cortical structure damage.

2.8 Histopathological analysis

After the termination of the animals, the brains were removed
and fixed in formalin. Brain cutting was performed, and tissue
samples were taken from the bone, dura, and brain surrounding the
trajectory after removing the implanted electrodes. Tissue samples
were routinely embedded in paraffin. Immunohistochemistry
was performed using the DAKO Envision System kit (DAKO,
Glostrup, Denmark) by applying an antibody against the
glial fibrillary acidic protein (GFAP, polyclonal rabbit, 1:3000,
DavoCytomation, Glostrup, Denmark). Diaminobenzidine was
used as the chromogen.

2.9 Statistical analysis

Descriptive analysis was performed for all bone channels and
entry points. The pre-operative planned trajectories were compared
to the post-operative imaging. The deviation was calculated as the
Euclidean distance, defined as the square root of the sum of the
squares of the differences between the X,Y,Z coordinates of the
planned versus effective trajectories.

3 Results

A total of 14 depth electrodes were inserted into the two sheep
specimens. Both anesthetic protocols showed no irregularities,
and both sheep were extubated within minutes of the procedure.
Setscrews, inserted prior to the CT scan, served as reference points
for landmark identification. The registration process was completed
within 3 min, achieving a root mean square error of 0.6 mm. One
sheep was euthanized on the same day and a postoperative MRI
was performed which did not reveal any hemorrhage, infarction,
or other brain damages. Postoperative CT scans of both specimens
1 week after the procedure also did not show any signs of unintended
damage and was used to verify accuracy of the electrodes.

3.1 Surgical procedure–precision laser
trephines

After surgical prepping and two linear paramedian skin
incisions, a straight spreader displayed the surgical field. After
automatic laser ablation, until the set thickness of the remaining
bonewas reached, based on comparison of the CT data and theOCT
read-out, the procedurewas switched to amanualmode inwhich the
surgeon controlled further ablation until cut-through was detected.
The median ablation time for each burr hole was <3 min.

3.2 Accuracy of entry points

The registration accuracy was <1.0 mm for both specimens.
The average bone thickness was 6.2 mm (range 4.1 mm–8.0 mm).
The average angulation was 79.8° (range 65.5°–87.4°) (Figure 2).
Entry point deviation ranged from 0.27 mm to 2.24 mm (average
1.51 mm) (Figure 3). The accuracy of target points varied between
0.00 mm and 9.26 mm, with an average of 3.06 mm (Table 1).

3.3 Insertion of depth electrodes

All the planned laser trephines were created. Cut-through
detection using a coaxial camera and OCT signals was feasible.
Insertion of anchor bolts was possible without complications,
independent of bone thickness and angulation (Figure 4). Haptic
feedback confirmed a tight fit and was experienced in all cases.
Depth electrodes were unpretentiously implemented in all the burr
holes. In four burr holes, monopolar coagulation was performed
to stop minor bleeding through the anchor bolts before inserting
the depth electrode. This technique has been previously described
(Winter et al., 2022).

3.4 End of procedure–skin closure

Electrodes and anchor bolts were cut at the bone surface level to
prevent postoperativemanipulation and risk of infarction (Figure 5).
As sheep are known for their curiosity and increased stress levels
if something seems wrong, we wanted to ensure no postoperative
attempts to remove protruding foreign objects. After subcutaneous
stitches, the skin was closed with skin clips.
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FIGURE 2
Postoperative computed tomography imaging with 3-dimensional
reconstruction showing the planned trajectory and depth electrode
alignment.

FIGURE 3
Postoperative computed tomography imaging showing entry point
deviations of < 1 mm.

3.5 Histopathological analysis

Tissue samples of the bone, dura, and cortex were retrieved to
analyze the tissue around the ablation areas and trajectory sides.

Laser-generated ablation penetrated the bone, dura, and underlying
brain tissue. All tissue samples at the site of laser craniotomy showed
minimal thermocoagulation artifacts with little tissue reaction.
In the bone and dura, thin areas of thermocoagulation artifacts
surfacing the laser-induced ablation sides were noted. While thin
areas of thermocoagulation artifacts were observed on the surfaces
of the laser-induced ablation sites in the bone and dura, the
underlying brain tissue exhibited no signs of thermocoagulation.
Instead, nonspecific changes were noted around the stitch-channel,
including signs of edema and minor fresh bleedings. Importantly,
there were no significant reactive tissue changes or scar formations
in the brain tissue (Figure 6).

4 Discussion

This is the first study reporting data on robotic laser cranial
burr holes for frameless implantation of depth electrodes in
an in vivo recovery animal study. Notably, numerous reports
exist on implementing lasers in medicine, especially in cutting
bone (Baek et al., 2015; Augello et al., 2018). The benefits of
laser osteotomies are high precision and freedom of geometry
(Winter et al., 2022). So far, combining a laser osteotome with a
reliable navigation system has been a challenge without losing the
geometrywithin the operating room.The laser osteotome setup used
in this study has already been certified in oral and maxillofacial
surgery (Baek et al., 2015). It uses an Er:YAG laser ablating bone
while heat to the surrounding tissue is minimal due to a persistent
cooling spray during ablation (Stübinger et al., 2009). However, laser
ablation has prolonged operating times due to relatively low cutting
speed. In this series, the median time for ablating burr holes was
<3 min. This allows implantation times of <12 min per electrode,
below the previously published data for other frameless robotic
devices (Dorfer et al., 2014).

The laser osteotome has already been tested and approved
for human trials in oral maxillofacial surgery (Baek et al., 2015).
After performing the first cranial trials in cadavers and in vivo
non-recovery studies, this is the first study to prove that the
workflow is safe in an in vivo recovery setting (Roessler et al.,
2021; Winter et al., 2021; Winter et al., 2022). Anesthetic protocols
showed no irregularities during surgery in both specimens. One
specimen was euthanized on the day of the procedure while the
other was euthanized a week later. Posttermination MRI and CT
scans showed no signs of hemorrhage, infarction, or other cortical
damage. However, histopathological analysis revealed generalized
edema in one sheep, most likely due to prolonged narcosis. Small
laser trephines were ruled out as potential morbidities of general
edema by the involved neuropathologists. There were no signs
of neurological impairments in the sheep that was kept alive for
1 week after the procedure, and the specimen could return to the
other sheep with no signs of behavioral abnormalities. Postoperative
imaging showed no signs of hemorrhage, infarction, or other
pathologies, similar to the first specimen. The histopathological
analysis did not reveal any significant tissue abnormalities.The bone
and dura showed the expected tissue reaction and scar formation
without unexpected damage. This supports safe instrumentation
with a laser osteotome.
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TABLE 1 Properties of all planned trajectories.

Trajectory Bone thickness Angulation Deviation of entry point Deviation of target point

1 6.8 69.7 0.98 1.92

2 6.1 65.5 0.81 1.70

3 6.8 79.7 1.16 3.22

4 4.1 78.3 0.61 4.87

5 5.7 79.5 0.27 1.39

6 8.0 84.5 2.24 3.33

7 6.6 83.4 1.97 2.69

8 7.3 82.7 2.01 2.03

9 4.5 87.4 2.03 9.26

10 5.4 86.1 1.89 4.03

11 5.9 82.6 1.67 4.10

12 5.6 69.7 1.89 0.00

13 7.0 83.7 1.81 1.23

14 6.6 84.1 1.76 3.00

All values in mm, besides angulation in degrees.

FIGURE 4
Multiple depth electrodes with different angulations implanted
through anchor bolts after laser ablation.

Accuracy is the key to successful depth electrode implantation.
Deviations in the entry point or angulation can lead to injury of
blood vessels or failure to localize seizure onset zones (Dorfer et al.,
2014; Mullin et al., 2016; Roessler et al., 2016; Dorfer et al., 2017;
Lu et al., 2021). Frameless techniques are comparable to frame-
based methods regarding morbidity and accuracy (Cardinale et al.,
2013; Dorfer et al., 2014; González-Martínez et al., 2016; Hou et al.,
2016). However, the craniotomy direction, especially the angulation,
are more flexible and less reliable in frameless techniques (Lu et al.,
2021). This novel robotic-assisted frameless laser ablation method

FIGURE 5
Cutting depth electrodes and anchor bolts allowing skin closure to
prevent postoperative manipulation and reduce infarction risk.

showed entry-point accuracy results comparable to already
published frame-based and frameless methods (Dorfer et al.,
2017; Lu et al., 2021). However, this report does not differentiate
between the choice of imaging for referencing and the referencing
method itself, which has also been reported to influence accuracy
(Vakharia et al., 2017). Target point accuracy varied between
0.00 mm and 9.26 mm in this study. This range could result from
gross metal cutting of screws and bolts before skin closure. Also,
incorrect electrode depth measurement and insertion may have
resulted in deviated target points as the one electrode with the
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FIGURE 6
Sheep 2: (A–D), Sheep 1: (E,F); (A) The stitch channel of the bone is sharply delineated and shows no connective scar tissue formation. The bone tissue
surfacing the stitch channel shows a thin area with thermocoagulation artifacts (dark colored area). (B,D) The dura tissue surfacing the stitch channel
shows a limited field with thermocoagulation artifact (dark colored area). (C) CNS tissue with tissue defect, whit limited surrounding tissue damage. (F)
CNS tissue surrounding the stich channel shows fresh hemorrhages and edema. (E) within the stitch channel, tiny fragments of bone and fresh
hemorrhage are visible. Scale Bars: 100 μm: (A), 150 μm: (D), 200 μm: (B), 500 μm: (C–F).

highest deviation of more than 9 mm had contact with the skull
base and drifted off alongside the skull base bone. However, this was
not attributed to the frameless laser osteotome.

An often-reported challenge for frameless techniques is
high skew-angle trajectories with larger errors in accuracy due
to drill sliding at the entrance of the skull (Iordanou et al.,
2019; Lu et al., 2021). As previously reported, drill sliding at
the skull and high skew-angle trajectories are not feasible
with laser ablation (Winter et al., 2022). To reduce the risk

of drill sliding, slight pressure is recommended when drilling
is initiated (Iordanou et al., 2019; Lu et al., 2021). However,
this can lead to uncontrolled fractures in thin bone segments,
which may prohibit screw placement. The bone thickness of
performed burr holes in this study varied from 4.1–8.0 mm,
indicating that even thin bone segments can be laser ablated
precisely without mechanical stress fractures. Screw implantation
was feasible in all burr holes, allowing safe implantation of
depth electrodes.
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FIGURE 7
Operating room set-up during laser ablation. Robotic-assisted
frameless laser osteotome in action.

As previously described, this robotic laser osteotome setup
allows in-room interactions between the surgeon and the device
(Roessler et al., 2021; Winter et al., 2021). The in-room memory
function of the robotic arm aided this. The surgeon can easily access
the surgical field when the robotic arm is retracted. Without further
ado, the robotic arm finds itself in the same position (Figure 7). This
ensures the cooperation of an external device and the surgeon in the
already limited space around the operating table.

Laser osteotomies result in sharp cutting edges. In postoperative
histopathological analysis, a demarcation zone in which the
homogenous lamellar bonematrix structurewas changed to a diffuse
fibrous-like structure was approximately 2 mm. This is similar to
previously published data on Er:YAG laser application in maxilla
surgery (Stübinger et al., 2009). Osteocyte lacunae directly adjacent
to the ablation site contained osteocytes with normal structural
characteristics.

5 Limitations

The number of burr holes performed was limited to only two
animal specimens. However, considering the “do not harm” ethical
aspects in animal trials, we believe in having accounted for sufficient
safety and feasibility data with 14/14 successful laser-ablated
burr holes.

6 Conclusion

The frameless robot-driven laser tool showed promising results
in the first in vivo recovery study for depth electrode implantation.
This study demonstrates the feasibility and validity of cut-through
detection after laser ablation. These results can be the basis for the
first-in-human trials of frameless laser ablation craniotomies.
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