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Learning-based personalisation
of robot behaviour for
robot-assisted therapy

Michał Stolarz*, Alex Mitrevski*, Mohammad Wasil and
Paul G. Plöger

Autonomous Systems Group, Department of Computer Science, Hochschule Bonn-Rhein-Sieg, Sankt
Augustin, Germany

During robot-assisted therapy, a robot typically needs to be partially or fully
controlled by therapists, for instance using a Wizard-of-Oz protocol; this makes
therapeutic sessions tedious to conduct, as therapists cannot fully focus on the
interaction with the person under therapy. In this work, we develop a learning-
based behaviour model that can be used to increase the autonomy of a robot’s
decision-making process. We investigate reinforcement learning as a model
training technique and compare different reward functions that consider a user’s
engagement and activity performance. We also analyse various strategies that
aim to make the learning process more tractable, namely i) behaviour model
training with a learned user model, ii) policy transfer between user groups, and
iii) policy learning from expert feedback.We demonstrate that policy transfer can
significantly speed up the policy learning process, although the reward function
has an important effect on the actions that a robot can choose. Although the
main focus of this paper is the personalisation pipeline itself, we further evaluate
the learned behaviour models in a small-scale real-world feasibility study in
which six users participated in a sequence learning game with an assistive robot.
The results of this study seem to suggest that learning from guidance may result
in the most adequate policies in terms of increasing the engagement and game
performance of users, but a large-scale user study is needed to verify the validity
of that observation.

KEYWORDS

robot personalisation, robot behaviour model, user modelling, reinforcement learning,
assistive robotics

1 Introduction

1.1 Motivation

One of the objectives of robot-assisted therapy (RAT) (Esteban et al., 2017) is
increasing the autonomy of the robot that is used during therapy sessions; this
has the purpose of reducing the necessary therapist interactions with the robot
(Robins et al., 2017; Rudovic et al., 2017; David et al., 2018; Marinoiu et al., 2018)—such
as those required when Wizard-of-Oz (Robins et al., 2005) is used for controlling the
robot—while still keeping the therapist in control of the sessions at all times. For
instance, in the treatment of children with Autism Spectrum Disorder (ASD), RAT
focuses on using a robot to facilitate and guide the learning of concepts that affected
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individuals require in their everyday lives, such as repeating
everyday motions or recognising emotions1 In the context of RAT,
robot programs are usually developed in such a way that they can
be used generically for different individuals; however, individuals
may have different reactions to specific stimuli and, depending on
their concrete needs,may also benefit from therapy sessions focusing
on specific aspects. This means that a generic RAT approach may
not be optimal for effective treatment of individuals; instead, the
robot should be able to adapt its behaviour to the needs of each
individual and therapy session (Esteban et al., 2017; Rudovic et al.,
2018; Scassellati et al., 2018).

This type of adaptation, also referred to as personalisation,
requires a robot to modify its behaviour to each individual user
or to groups of similar users. A personalised behaviour model
can be learned by involving a user in the learning loop, which
is referred to as interactive machine learning (Senft et al., 2019).
There are two primary types of interactive machine learning
in the context of personalisation Tsiakas et al. (2016), namely
learning from user feedback and guidance-based learning, where
the former relies on direct or indirect user feedback, while
the latter incorporates feedback from an external observer,
for instance a therapist. Learning from user feedback can
be difficult to perform efficiently because the robot needs to
perform exploration to find an appropriate behaviour policy,
while guidance-based learning avoids incorrect actions being
performed by the robot during the learning process, but may
require a supervisor to be involved for prolonged periods of
time for a sufficiently good behaviour policy to be learned.
One way in which the amount of involvement of a user or a
supervisor can be reduced is by incorporating a user model
(Rossi et al., 2017) in the policy learning process, based on which
users are represented by particular parameters, such as their
engagement.

In this work, we build upon Stolarz et al. (2022a) and present a
personalised behaviour model2 that a) personalises the difficulty of
activities to an individual’s skill level, b) aims to prevent users from
getting disengaged by giving appropriate feedback, and c) learns
with a small number of interactions with a user. An overview of the
developed solution is presented in Figure 1. The developed model
is learning-based, using the observed user’s engagement score and
activity performance as a learning signal. Our model is particularly
based on the concept of learning from feedback and guidance,
such that it incorporates learned user models that estimate a user’s
engagement and expected performance in an activity. We train the
behaviour model with user models learned from real interaction
data collected from multiple users, which are split into clusters
(data collection and preprocessing phase) and a dedicated user
model is learned for each cluster (user model training phase); both
the engagement and the performance of users are represented as
Gaussian processes. Based on these models, we learn a policy that a
robot uses for selecting the difficulty level of an activity and the type

1 Robots are attractive for this problem because children have been shown

to find it more comfortable to interact with a robot than with a person

(Robins et al., 2006).

2 The implementation can be found at https://github.

com/migrave/migrave_personalised_behaviour_model.

of provided feedback to the user (behaviour model training phase).
We compare different rewards for the policy learning algorithm and
investigate a policy pretraining method for accelerating the policy
convergence speed. We also investigate an optional approach, which
is learning from guidance, where the supervisor corrects actions
before they are executed by the robot. To evaluate the feasibility
of the proposed method, we present an experiment with QTrobot
(Costa et al., 2017) in which six adult participants were playing an
emotion sequence memorisation game. We plan to perform a larger
user evaluation as well as experiments with children with autism in
subsequent studies.

The contributions of this work include:

• Main contributions:
• A personalisation pipeline that enables both learning

from feedback and learning from guidance to be used
for behaviour model learning, either independently or in
combination.
• A learned user model incorporating engagement that is

estimated based on visual features; this is in contrast to the
related work, where visual features have only been used in
rule-based models.

• Further contributions:
• A comparison of learning from feedback and learning from

guidance for training a behaviour model in the context
of robot-assisted therapy, where the learned user model is
used during learning from feedback, and an investigation
of policy transfer for improving the speed of learning
from feedback.
• A small-scale feasibility study with an assistive robot

which suggests the potential benefit of personalising
behaviour models to individual users; user studies have
clearly been performed before, including considerably larger
ones, but our study focuses on a comparison of policies
acquired using learning from feedback and learning from
guidance.

1.2 Related work

We analysed various personalisation approaches in terms
of the usability for RAT, particularly for children with ASD.
Considering only aspects in which the robot control can be
adjusted, these can generally be categorised into four personalisation
dimensions (Tsiakas et al., 2018b): social behaviour personalisation,
game difficulty personalisation, affection personalisation, and
personalisation of user preferences (e.g., proxemics). It is
particularly desirable that a robot is able to personalise its behaviour
such that it improves a user’s performance in therapeutic activities
(with or without the help of a supervisor); this can be done by
adjusting the difficulty of the activities to each individual user.
Additionally, the robot should react properly when the interaction
with a user does not go as planned, which means that it should
prevent the user from getting bored, disengaged or demotivated,
for instance by providing reengaging and motivating feedback.
These types of personalisation are referred to as game difficulty
and social behaviour personalisation, respectively. In this section,
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FIGURE 1
Overview of the proposed interaction and behaviour model learning process. We train user models with data collected during various interaction
sessions with a robot. The models are trained to estimate the users’ engagement and performance in a given activity, such that they encode
aggregated data for similar users. The user models are used to simulate user interactions during behaviour model training; optionally, expert feedback
is also included during the behaviour model learning process.

we present literature addressing these two dimensions and discuss
its limitations that our work aims to address3.

1.2.1 Social behaviour personalisation
Social behaviour personalisation refers to how a robot adapts

its gestures, facial expressions, and language content (e.g., type of
feedback) to a user. The aim of this personalisation technique is
to maintain user involvement in the interaction. One solution for
this is the RAT system in Esteban et al. (2017); Cao et al. (2019),
where the robot produces actions according to therapeutic scripts
defined by a supervisor and, when the interaction does not go as
planned, the robot tries to seek appropriate actions on its own
(Cao et al., 2019); however, before executing any action, the robot
requests a supervisor for feedback about its suitability and includes
the feedback into its behavioural model for learning, which makes it
similar to the learning from guidance concept. This approach has
been successfully deployed and evaluated in real-world scenarios
(Cao et al., 2019), but it was not personalised, as the learning
procedure was performed on data from all study participants.

One proposed model for decision-making is a feed-forward
network (Senft et al., 2015b), which has good generalisation abilities
and can be personalised to a specific person (Senft et al., 2015a),
but has to be retrained every time supervisor feedback is obtained.
This may make this solution inappropriate for real-time interactions
in case of long-time scenarios (Senft, 2018), as the learning time
increases with the amount of collected data. Another proposed
solution is based on reinforcement learning with the Q-learning
algorithm (Watkins and Dayan, 1992; Senft et al., 2017); however,
in Q-learning, a considerable amount of data is needed to obtain
an optimal policy, which means that a significant number of
interactions with the user is required. In Senft et al. (2015b),
Senft et al. (2017), the behaviour models were evaluated only with
people acting as supervisors and not as users interacting with the
robot. To guarantee fast convergence of the Q-learning algorithm,
the problem has to be decomposed so that the Q-value table stays
relatively small (Hemminahaus and Kopp, 2017). To reduce the

3 We have presented amore detailed discussion of different personalisation

techniques in (Stolarz et al., 2022b), including ones that are not directly

relevant for this study.

memory requirements and make the learning algorithm converge
faster, the MAXQ hierarchical reinforcement learning algorithm
(Dietterich, 2000) is used in Chan and Nejat (2012), where a robot
providing personalised assistive behaviours for a memory game
is developed. This work presents a strongly task-specific solution,
however, which would require significant changes to be adapted
to another use case. The deficit of high memory requirements was
also faced in Senft et al. (2019), Winkle et al. (2020), where applying
nearest neighbours allowed to obtain a reasonable training time.This
solution is strongly dependent on the type of the performed activity,
as it requires all activity states to be defined in an activity-specific
vector space in which distances for the nearest neighbour algorithm
can be calculated.

Most of the aforementioned approaches are based on learning
from guidance (Senft et al., 2015b; Esteban et al., 2017; Senft et al.,
2017; Senft et al., 2019), which is particularly advantageous for
systems where robotmistakes imply ethical concerns.This approach
is, however, very dependent on the supervisor, which can have
a negative impact on the learned policy, especially when the
supervisor makes incorrect decisions. The effects of supervisor
mistakes can be alleviated if the learning signal is obtained directly
from the user. This is done by applying learning from feedback,
where the robot has to find appropriate actions on its own. In Chan
and Nejat (2012), Leyzberg et al. (2014), Hemminahaus and Kopp
(2017), Velentzas et al. (2018), approaches for personalising a robot’s
behaviour in real-life scenario based exclusively on learning from
feedback are described. In particular, in Leyzberg et al. (2014), the
robot was deployed in the role of a tutor that is giving lessons to
a user playing a puzzle game; however, this approach is limited to
providing users only with lessons that complement their missing
knowledge and is not able to react when the interactions do not
go as planned, for instance when the user becomes disengaged in
the activity. In Velentzas et al. (2018), one of the robot’s tasks was
to learn how to execute a pointing action with different levels of
expressivity in order to increase a child’s engagement. The authors’
algorithm is designed for non-stationary problems (by switching
adequately between exploration and exploitation), and can choose
appropriate action (using Q-learning) as well as find suitable action
parameters (using actor-critic RL (Van Hasselt and Wiering, 2007)).
This learning from feedback solution is not shown to provide more
elaborate social interaction (e.g., the robot is not able to provide
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verbal feedback) and is only tested in simulation. The concept of
combining learning from guidance and feedback is also discussed in
Tsiakas et al. (2016); however, the presented system is not evaluated
with real users and does not perform real-time user engagement
estimation.

1.2.2 Activity difficulty personalisation
The methods discussed above are adaptive in terms of the

reactions to a user’s behaviour; however, in RAT, it is also
important to autonomously adapt the difficulty of activities
during interactions in order to match each individual’s skill
level. Systems that can provide this type of adaptation are
primarily based on learning from feedback. A personalisation
concept based on adapting the progression of a lesson to a
user’s performance is covered in Jain et al. (2020), Clabaugh et al.
(2019), Baxter et al. (2017), Scassellati et al. (2018). Baxter et al.
(2017) deploy a rule-based adaptation algorithm, for instance
based on a comparison of the number of successfully completed
tasks to a predefined threshold; this approach does not allow
for learning, as manually written rules are used for choosing
an appropriate difficulty level. In Jain et al. (2020); Clabaugh et al.
(2019); Scassellati et al. (2018), learning is used in order to
personalise the feedback and instruction difficulty levels during
various games, but engagement is not taken into account in the game
personalisation model.

Another personalisation method based on learning from
feedback, which our work builds upon, is presented in Tsiakas et al.
(2018a). Here, Q-learning is used so that a robot can adapt the
difficulty of a game and provide user feedback; furthermore, this
work proposes the use of learned user models for behaviour model
training and investigates different methods of updating the Q-
table to increase the policy convergence speed. In Tsiakas et al.
(2016), it is additionally shown that the number of iterations
required for a policy to converge can be reduced by transferring
learned policies between users. The techniques in Tsiakas et al.
(2016) and Tsiakas et al. (2018a) are, however, not evaluated with
real users.

1.2.3 Addressed challenges
The above discussion of work on personalisation for RAT

illustrates various challenges that reduce the applicability of
learning-based personalisation strategies in real-life interventions.
This includes i) the maintenance of an adequately large state and
action space, enabling the robot to personalise the game difficulty
and its reactions to a specific user, ii) fast convergence to an optimal
policy without the need for a significant number of interactions with
a user, or finding a sufficiently good policy for effective practical
interaction, and iii) evaluation during interactions with real users.

In this paper, we present a learning-based behaviour model
for RAT that allows a robot to autonomously personalise the
difficulty of an activity based on a user’s individual set of skills,
but also enables the robot to react to an individual’s perceived
disengagement by providing appropriate encouraging or challenging
feedback during the activity. For this, we build upon the Q-learning
method proposed in Tsiakas et al. (2018a), such that we investigate
behaviour model pretraining based on policy transfer, similar to
Tsiakas et al. (2016). We additionally apply learning from guidance,
based on the control sharing method introduced in Knox and

Stone (2012), to enable the behaviour model learning process to
converge fast, while also enabling supervisors to direct the robot’s
behaviour based on their preferences. Our method is evaluated in a
small user study that demonstrates the feasibility of learning-based
personalisation, particularly when the model learning process is
guided by a supervisor.

A summary of themain differences of our approach with respect
to the related work is provided in Table 1.

2 Materials and methods

Theobjective of this work is to develop a personalisation strategy
for RAT, with a particular focus on adapting the behaviour of a
robot in terms of controlling the activity difficulty and providing
appropriate user feedback. For this purpose, we present a method
for learning a robot behaviour policy that incorporates a learned user
model in the policy learning loop. In this section, we first introduce a
robot-assisted game, which is the use case for our behaviour model.
We then introduce a formulation of the behaviour personalisation
problem, describe a classifier for estimating the engagement of a
user, and elaborate on the design of user models that estimate a
user’s engagement and expected performance in an activity. Next,
we describe a basic version of the behaviour model which is based
on the concept of learning from feedback, and then introduce two
methods for improving the policy convergence speed, namely i)
policy transfer and ii) learning from guidance. An overview of the
notation introduced in this section and used throughout the paper
is given in Table 2.

2.1 Robot-assisted game use case

To ground the personalised behaviour model to a concrete task,
we use a game whose objective is to evaluate the ability of users
to memorise and repeat sequences of spoken emotions; a game of
this type has also been used in Scassellati et al. (2018). Our game
is designed based on Tsiakas et al. (2018a), such that each user
session consists of ω = 10 sequences to memorise. Each sequence
Ωj,1 ≤ j ≤ ω consists of words that are randomly sampled from
a pool of four emotions, namely {happy, disgusted, sad, angry};
a sequence can have a length |Ωj| of 3, 5 or 7 emotions, with
respective difficulty levels Lj ∈ {1,2,3}. The lengths were chosen to
provide sequences commonly considered easy, just right (but not
easy), and difficult; we investigate whether this hypothesis holds
in our experimental analysis. During the game, the robot says
each Ωj out loud and the user has to reproduce the sequence
by selecting images corresponding to the emotions on a tablet.
To reproduce a sequence correctly, the user has to choose the
correct image for every emotion in Ωj in the right order. During
the game, the robot should choose sequence lengths |Ωj| that are
appropriate for the user and provide feedback Fj so that the user
remains engaged in the interaction; thus, we want the selection
of robot actions to be based on the user’s game performance and
engagement level.

We use QTrobot as a robotic assistant in this work, which is
a robot developed for tablet-based interactive games. The robot
has an Intel RealSense D435 depth camera, a Raspberry Pi, and
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TABLE 1 Comparison of our method with respect to the related work on personalisation. (✓) denotes that the approach was only evaluated with people
acting as supervisors and not as users interacting with the robot.

References User model Engagement
features

Policy
transfer

Guidance
used

User study End users
involved

Tsiakas et al. (2016) Rule-based ✗ ✓ ✓ ✗ ✗

Tsiakas et al. (2018a) Neural network &
Support Vector

Regression

EEG data ✗ ✗ ✗ ✗

Clabaugh et al.
(2019);

Hemminahaus and
Kopp (2017);
Leyzberg et al.

(2014); Baxter et al.
(2017);

Scassellati et al.
(2018)

✗ ✗ ✗ ✗ ✓ ✓

Jain et al. (2020) ✗ Visual, audio and
game performance

✗ ✗ ✓ ✓

Senft et al. (2015a) Rule-based Calculated from
model

✗ ✓ ✗ ✗

Senft et al. (2015b) Rule-based Visual features ✗ ✓ (✓) ✗

Senft et al. (2017) ✗ ✗ ✗ ✓ (✓) ✗

Senft et al. (2019) ✗ ✗ ✗ ✓ ✓ ✓

Winkle et al. (2020) ✗ Heart rate,
motivation/effort,
visual features

✗ ✓ ✓ ✓

Chan and Nejat
(2012)

Bi-gram ✗ ✗ ✗ ✓ ✗

Velentzas et al.
(2018)

Rule based,
probabilistic

Visual features ✓ ✗ ✗ ✗

Stolarz et al. (2022a) Gaussian process Visual features ✓ ✗ ✗ ✗

Our work Gaussian process Visual features ✓ ✓ ✓ ✗

also includes an Intel NUC PC for more demanding computations.
QTrobot is integrated with two tablets—one for the educator and
one for the user; this allows educators to control the robot or start
appropriate games during a session, while the user tablet is only
supposed to execute the games chosen by the educator.

2.2 Formulation of behaviour
personalisation

The purpose of using a user model is to reduce the amount
of user or educator interactions that are needed for learning
a behaviour policy. We utilise a user model that estimates the
engagement and expected performance of a group of similar users
in a given activity, assuming that both performance and engagement
are represented by numerical values.

Definition 1. A user model M is a tuple M = (Fp,Fe), where Fp

is a performance prediction component and Fe is an engagement
estimation component.

A model M is learned from user data collected during
real interactions, where the estimated engagement and activity
performance are recorded. These data are then clustered in order
to identify groups Ck,1 ≤ k ≤ c of similar users, namely users that
have similar performance and engagement during an activity, where
c is the number of user groups. For each Ck, both user model
components are learned from the data as Gaussian processes (GPs)
(Rasmussen and Williams, 2006), which have the desirable property
of encoding prediction uncertainty. The learned user model is then
incorporated into a policy learning loop, such that the policy π is
learned using Q-learning on discrete state and action spaces. In
the rest of this section, we describe the engagement estimation, the
model M, and the policy learning in more detail.
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2.3 Engagement estimation

Behaviour models need external information to adjust the
robot reactions (e.g., feedback for the user). The user’s affective
state can be used for that purpose and is usually modelled by
three factors: valence, arousal and dominance (Cao et al., 2018).
Valence, which describes the positiveness of emotion, is useful
along with engagement (Gordon et al., 2016), such that there are
various methods of estimating them (Rudovic et al., 2018; Jain et al.,
2020); however, in various applications, using the affective state
directly may result in a suboptimal behaviour model, such as in
the case of children with autism, who usually have difficulties
recognising and expressing emotions (Rudovic et al., 2017). For
this reason, engagement is the feature that is often used for the
development of behaviour models (Senft et al., 2015a; Senft et al.,
2015b; Tsiakas et al., 2018a). One way to measure engagement is
with the use of anEEGheadset (Tsiakas et al., 2018a), but an external
engagement observer might be more convenient and simpler for
users, as they may otherwise be distracted by the additional
equipment; this may be a problem during therapy for children
with ASD (Javed et al., 2019), but can also be too cumbersome for
everyday deployment.

To estimate the engagement of a user during an activity, we
use a binary classifier E :ℝ32→ {−1,1} based on Jain et al. (2020);
here, 1 denotes engagement, namely that the participant is actively
involved in the interaction and pays attention to the robot, while
−1 denotes disengagement, namely that the participant is not
focused on the robot (this includes cases such as putting the
head down on the table, turning the head away from the robot,
or standing up and walking away). For the classifier, we use 32
features—head pose (6 features), facial action units (18 features),
and gaze position and angle (8 features); these are extracted
using the OpenFace library (Baltrusaitis et al., 2018). To collect
training data for the classifier, we asked participants to act out the
aforementioned engagement and disengagement criteria; this has
the potential disadvantage that the participants’ behaviour may not
be completely natural during the interaction, but simplifies the data
labelling effort since the interactions are appropriately segmented
during data collection. Using the training data, we performed an
evaluation procedure similar to Jain et al. (2020) to select a suitable
classifier. We particularly performed leave-one-out cross validation
and compared multiple classifier types. Based on this evaluation,
we use an XGBoost4 classifier in this study, which has a validation
accuracy of about 85%5.

Here, it is important to mention that our system returns an
engagement score several times per second; however, in order
to prevent noise from affecting the state estimate, we make an
assumption that a person’s affective state would not significantly
change within one second6. Thus, instead of using the raw estimates
directly, we use an expected engagement value that is calculated for

4 https://xgboost.readthedocs.io

5 The training implementation can be found at https://github.

com/migrave/migrave_models.

6 We make this assumption based on observations of users while

interacting with the robot.

every second of the interaction as

E [E] = ∑
i
eiP(E = ei) (1)

Here, ei stands for one of the possible engagement scores, so i ∈ {0,1}
and ei ∈ {−1,1}, such that

P(E = ei) =
nei
nE

(2)

where nei is the number of times (within the considered second)
when the engagement score was ei and nE is the total number of
measurements, namely nE = ∑inei . It should be noted that we use an
expected engagement calculation instead of a simple majority vote
so that we have a continuous estimate that more accurately reflects
the real state of the user, which may sometimes be ambiguous. In
addition, having a continuous engagement value is beneficial for
integrating the engagement into a reward function such as the one
used in section 3.1.5.

2.4 User model

Evaluating the behaviour model on real users is a time-
consuming and expensive process; thus, user simulations are often
used for testing purposes (Senft et al., 2015a; Tsiakas et al., 2016;
Tsiakas et al., 2018a). The user model presented in Senft et al.
(2015a) is a rule-based child interaction model, which assumes
that the child state is defined by three variables: E (engagement),
M (motivation) and P (performance). Here, the motivation level
is a variable related to the speed of solving tasks (Senft et al.,
2015b), while performance can be understood as a measure of the
user’s success during an activity. This model is, however, manually
designed and only motivated by real-life interaction data; thus, it
does not entirely capture real interactions between a robot and a user
and may be unsuitable to represent the individual characteristics of
each specific user. More realistic is the rule-based model presented
in Tsiakas et al. (2016), which is given in the form of a table.
This model’s output is binary and indicates the success or failure
of a user while solving a task with a certain difficulty level and
duration time; however, the model only captures the changes in the
game performance of the user, while the user’s engagement is not
considered. A more suitable approach is presented in Tsiakas et al.
(2018a), where user models were fitted to data collected during user
evaluations. The experiments included a sequence learning task,
where each participant had to recreate a sequence consisting of three
different letters. A neural network is used to create a user’s game
performance model and Support Vector Regression to create an
engagement model for the user.

For creating a user model, we followed Tsiakas et al. (2018a);
however, we are using a GP, as we found out that it was able to
fit the data much better than other regressors7. Given a dataset
X for n users, where the activity scores, solved difficulty levels,

7 We particularly want to represent the characteristics of a given user group

as accurately as possible, while also modelling the decision uncertainty;

for this, we have found that a GP produces better results than a neural

network or Support Vector Regression as used in Tsiakas et al. (2018a).
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estimated engagement values, and robot feedback types were
recorded throughout an activity, we i) represent each user as a vector,
ii) standardise the vectors and perform dimensionality reduction to
2D space, iii) cluster the users into c groups, and iv) train c models
Mk (one for each user cluster) to predict activity performance and
engagement scores for unseen activity states.

We represent each user Uj,1 ≤ j ≤ n by a vector uj

uj = (pj,1:l,ej,1:l) (3)

where pj,1:l are the success probabilities of solving each of the
sequence difficulty levels Li,1 ≤ i ≤ l and ej,1:l is the user’s mean
engagement score for the respective difficulty levels8. We then
project the vectors uj for all n users onto a z-dimensional space using
principal component analysis (PCA)9 and apply K-means clustering
to group the projected vectors into c clusters. Given the assignment
of usersUj to a cluster Ck, we create a performance model Fpk and an
engagementmodel Fek; these comprise the usermodelMk for cluster
Ck. Both Fpk and Fek are GPs used for regression to unobserved states,
namely

Fpk (s
p) = GP(μ(sp) ,κ(sp,sp′)) (4)

Fek (s
e) = GP(μ (se) ,κ(se,se′)) (5)

where μ is the mean and κ the covariance of the inputs. It is essential
to mention that the user model is trained on data collected during
the sequence learning game; on the other hand, the engagement
estimator is trained on a dedicated dataset in which participants
were acting out criteria that were manually determined to represent
engaged or disengaged behaviour.

2.4.1 Performance model
Fpk predicts how likely the users in Ck are to succeed

in a given activity state sp, namely Fpk(s
p) ↦ [0,1], where

each sp = (L,F,PS). Here, L ∈ {1,…, l} is the current difficulty
level, F ∈ {0,1,2} is the given robot feedback (no feedback,
encouraging feedback, or challenging feedback, respectively), and
PS ∈ {−l,−l+ 1,…,0,…, l− 1, l} is the activity score achieved by the
user in the last sequence10.

2.4.2 Engagement model
Fek estimates the expected engagement value for the users

in Ck, namely Fek(s
e) ↦ [−1,1], where se = (L,F,PS,O). Here,

O ∈ {1,−1} stands for the outcome (correct or wrong) of solving the
current sequence.

2.5 Robot behaviour model

Our behaviour model for robot decision making is represented
as a discrete Markov Decision Process B = (S,A,Pa,Ra,γ), where

8 This mean is calculated only for periods when the user is supposed to be

focused on the robot, for instance when the robot is talking to the user.

9 The number of principal components should ideally be chosen so that a

predefined data variance is covered in the projection.

10 A positive or negative score is given for correctly or incorrectly solved

sequences of a given difficulty level, respectively, and a 0 score is only

used in the initial state, before a sequence length has been selected.

1: function Q-iteration(t,k,l,Q,γ,α,st,Tst ,CSt)

2: at ∼
e
Q(st,at)/Tst

∑l+2
i=1e

Q(st,ai)/Tst

3: Lt+1,Ft+1← at(st)

4: PSt+1← CSt

5: st+1← (Lt+1,Ft+1,PSt+1)

6: p(success|st+1) ← F
p

k
(sp

t+1)

7: Ot+1←
{{
{{
{

1 p(success|st+1) ≥ U(0,1)

−1 otherwise

}}
}}
}

8: REb,t+1←
{{
{{
{

Lt+1 ifOt+1 = 1

−1 ifOt+1 = −1

}}
}}
}

9: Et+1← Fe
k
(se

t+1)

10: Ra(st) ← Fr(REb,t+1,Et+1)

11: Q(st,at) ← Q(st,at) +α(Ra(st) +γmax
a

Q(st+1,a) −Q(st,at))

12: CSt+1← Lt+1 ⋅Ot+1
13: return Q

Algorithm 1. One loop iteration of the user model-based learning
procedure ofB. Here, t is the current time step,CSt the current user score,
and U a uniform distribution.

each state s ∈ S is defined as s = (L,F,PS) and the action space A
consists of actions ai,1 ≤ i ≤ l+ 2. Here, actions a1:l are used to set
a difficulty level L for the next sequence, while actions al+1,al+2 say
either encouraging (al+1) or challenging feedback (al+2) and repeat
the same L for the next sequence11. The robot in state st moves to
a state st+1 after performing action a with probability Pa(st+1|st ,a)
and receives an immediate reward Ra(st), which can be based on i)
the activity result REb ∈ {−1,1,…, l}, where −1 is given for a wrong
answer and 1,…, l for a correctly solved sequence of level L, and
ii) the mean engagement score E ∈ [−1,1] calculated after the user
solves a given sequence12. Finally, γ is a discount factor.

We perform model learning with the tabular Q-learning RL
technique, which is summarised in Algorithm 1. Here, Q(st ,at) is
the value of a given entry in the Q-value table, st and st+1 are the
states before and after the execution of at , respectively, and Ra(st)
is the immediate reward after applying at in st . Ra(st) is calculated
by a function Fr:(ℝ,ℝ) → ℝ, such that we experiment with different
functions in the evaluation. The action at is selected with the
softmax exploration strategy, namely there is a unique temperature
parameter Tst for each state st , which is decreased according to the
number of visits to st . Finally, α is a predefined learning rate.

2.6 Improvements of the robot behaviour
model

Due to the properties of Q-learning, which is an off-policy
learning algorithm, the training of the robot behaviourmodel might
be relatively slow and take a lot of iterations. This is caused by the

11 It should be noted that actions al+1,al+2 cannot be performed for the first

sequence in a session as there is no context to give feedback.

12 REb is assigned −1 for an incorrect answer regardless of the difficulty level

L in order not to discourage the robot from choosing a high L.
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necessity for performing an exploration procedure in order to visit
as many state-action pairs as possible. To improve the convergence
speed of the algorithm, we investigate two possible improvements,
namely i) policy pretraining and ii) learning from guidance.

2.6.1 Policy pretraining
Policy pretraining means that the policy is not trained from

scratch, but is initialised with a policy learned with another user
model. This has the purpose of reducing the effort required for
collecting usermodel data, as it can enable behaviourmodel training
with h < k user models; additionally, pretraining can be used to
improve the policy convergence speed, as shown in Tsiakas et al.
(2016). For this reason, we investigate this technique as a possible
improvement of the Q-learning-based algorithm above. Concretely,
this means that, instead of starting the training procedure with a Q-
value table initialised with zeros and then training on a user model
Mk1

(which would be the case if we start training from scratch), the
table is initialised with the values obtained from the training with a
user model Mk2

.

2.6.2 Learning from guidance
Learning from guidance can also improve the convergence

speed of a policy (Tsiakas et al., 2016) and additionally allows
expert knowledge to be incorporated in the system. We particularly
investigate amistake correcting technique (Torrey and Taylor, 2013),
where a supervisor is advising the robot system exclusively on
mistakes; this means that the robot needs to announce its intended
action in advance so that the supervisor can correct it if necessary.
To integrate mistake correcting in our learning algorithm, we use
the control sharing method in Knox and Stone (2012, 2010), which
fuses the supervisor’s knowledge with the reward that the robot can
perceive directly from the environment; this can be interpreted as a
way of guiding the robot’s action exploration. In the control sharing
method, the probability of selecting an action that is suggested by

the supervisor is P(at = arg max
a

Ĥ(st,a)) =min (δ,1) (otherwise,
the agent’s own policy is used for action selection). Here, δ is a so-
called combination parameter, which is annealed by a predefined
factor, and Ĥ(st,at) is the policy of the supervisor. We use control
sharing rather than alternative methods, such as Q-augmentation
(Tsiakas et al., 2018a) or reward shaping, as it can be used to enforce
the inclusion of the supervisor’s actions in the robot’s behaviour
policy; with the other two methods, the supervisor’s actions become
more likely, but they are not guaranteed to be enforced.

Control sharing is straightforward to adapt to our framework so
that our critical requirement—the robot can perform only an action
that is approved by the supervisor—can be met; this can be done
by making the combination parameter constant, such that δ ≥ 1.
Algorithm 2 is a modified version of Algorithm 1 with the addition
of the adapted control sharing combination technique. Here, it
should be mentioned that ignoring external signals as a reward
can be disadvantageous. In Senft et al. (2017), if the supervisor
allows a wrong action to be executed by mistake, this action will
be rewarded positively and would need to be corrected later. The
problem becomes even more serious if the number of mistakes
made by the supervisor is significant, as it means that the number
of required corrections would also increase. In our model learning

1: function ModelGuidance(t,k,Q, Ĥ,γ,α,st,CSt)

2: at = arg max
a

Q(st,a)

3: ac = arg max
a

Ĥ(st,a)

4: if at ≠ ac then

5:    at← ac

6: Lines 3–13 of Algorithm 1

Algorithm 2. One loop iteration of the learning procedure of B with
guidance. Lines 2–5 show the part that is responsible for control sharing.

evaluation, we investigate how the probability of supervisormistakes
affects the learning progress of the behaviour model.

3 Results

3.1 Model learning evaluation

For the purpose of training user models, we require data
collected from real users. In this section, we first explain the
data collection process and then present results for training user
models and their associated behaviour models. We explain the
preprocessing procedure of the collected data, which is necessary
for training user models. We then i) present the results for training
behaviourmodelswith the learned usermodels, ii) showhow reward
shaping can improve the quality of a policy, and iii) demonstrate
how the policy convergence speed can be improved by applying
policy transfer and learning from guidance. We also present the
results from a conducted survey, whose main aim was to collect the
experimental participants’ subjective point of view about the robot-
supported sequence learning game. Extended results are presented
in the Supplementary Material.

3.1.1 Experimental setup
To evaluate the feasibility of the proposed usermodels and robot

behaviour model, we collected data from 20 adult participants who
played the game described in Section 2.1. The setup is depicted in
Figure 2.

The participants were university students and research staff
members; all of them had prior experience with robots, but some
of them had never interacted with QTrobot. During the experiment,
data were recorded from the robot’s sensors, a camera placed on top
of the user tablet, and a smartphone placed betweenQTrobot and the
tablet; for this work, we only used the data recorded from the robot’s
RealSense camera1314. The therapist tablet was used by one of the
researchers, while participants only interacted with the user tablet.

13 We recorded data from the camera on the tablet in order to estimate

the engagement as seen from the tablet’s perspective while the user was

reproducing the sequence on the tablet; this estimation is, however, not

used in the current version of the system due to its low performance.

14 The smartphone was used to run the AffdexMe application: https://

play.google.com/store/apps/details?id=com.affectiva.affdexme.

AffdexMe can estimate engagement and was supposed to be used for

cross-checking the estimates of our model, but the application was
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FIGURE 2
Experimental setup. The participant sits in front of the robot and plays
the sequence learning game by interacting with the tablet. The robot
estimates the participant’s engagement during the activity using its
built-in camera. (A) Layout. (B) Real-life setup.

Each participant completed one session of the game. Before starting,
each participant was providedwith a verbal explanation of the game.
Within a session, participants had to memorise randomly generated
sequences of each difficulty level, such that there were game stages
when no feedback was provided and stages when feedback was
provided after solving consecutive sequences of the same length.
The purpose was to investigate the participants’ performance in the
game and engagement during the interactionwith the robot, but also
their reactions to the feedback given by the robot. For this purpose,
for each participant, we collected the game performance, estimated
engagement scores, and timings of recreating the sequences on the
tablet. The collected data were used for learning user and behaviour
models as in Section 2.

3.1.2 Survey
At the end of the data collection experiment, every participant

was asked to fill out a survey, whose main aim was to show the
participants’ subjective point of view about their engagement, game
performance during the game, and game difficulty. Users could
answer questions with the use of a three-point Likert scale. The
same questions were asked for all of the game difficulty levels. We
also asked for a written explanation about the reasons for each
participant’s engagement, disengagement or being in a neutral state,
for every difficulty level. All the survey questions were inspired by
Tsiakas et al. (2018a).

occasionally unable to detect the person, so its estimates are not used

in this study.

The results of the survey (answers with the three-point Likert
scale) are depicted in Figure 315.

Based on Figure 3, it can be stated that around 95% of
participants considered the sequences of length 3 as easy, around
90% voted that a length of 5 is just right, and the same number
of participants claimed that length 7 is too difficult. These results
suggest that all of the participants had similar skills in memorising
sequences; additionally, we confirmed that the hypothesis about the
perception of the chosen lengths, based on which the game was
designed, seems to hold. Regarding the participants’ opinions about
their own performance during the game, all of them reported having
average or above average performance for the shortest sequences;
however, for the length of 5, more participants reported performing
as average and some even below average. From this, it is visible that
the participants were reporting worse performance with increasing
difficulty. When it comes to the engagement of the participants,
around 47% reported to be neutral and 53% to be engaged for the
easiest sequences. It is visible that more users were engaged (around
79%) for the more difficult sequences (length 5); however, for the
most difficult sequences, the number of participants that reported to
be engaged is lower, but higher for those that claimed to be neutral
or not engaged.

3.1.3 Estimated engagement
An example evolution of the estimated engagement score during

an interaction with one representative participant is shown in
Figure 4. In particular, we show data from a user whose engagement
value is as expected, namely the engagement is generally high when
the robot is talking to the user (after the participant finishes solving
a sequence) and decreases when the participant is asked to recreate
the sequence on the tablet (as they had to look down at the tablet
instead of at the robot). It is important to mention that some users
did not behave as expected due to environmental disturbances or
the way they were focusing on the robot; for instance, some users
preferred to listen to the robot with closed eyes rather than look at
it, which affects the engagement estimate16.

3.1.4 User model training
From the collected data, we created 20 vectors uj as in Eq. (3),

projected them onto a 2D space using PCA17, and clustered them
into c = 2 groups (Figure 5A) using K-means clustering. It should be
noted that the assignment of a user to a specific cluster represents
their skill level on the day of the experiments; this level may vary
and improve over time. We selected the number of clusters c based
on our observations of the participants’ behaviour during the data
collection; in our case, |C1| = 11 and |C2| = 9 participants, such that

15 It should be noted that only 19 participants completed the survey; one

participant was the researcher responsible for the data collection, so we

suspect that his subjective point of view would have been biased by the

answers of the other participants.

16 A video illustrating the expected engagement estimates during the

sequence learning game is available at https://youtu.be/-_CryYRz8DY.

17 We chose a 2D projection in the evaluation following Tsiakas et al.

(2018a).
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FIGURE 3
Results of the survey conducted after the data collection experiment. The diagrams show the participants’ own perception of the difficulty of the
activities, their performance in the three difficulty levels, and their engagement for each difficulty level.

FIGURE 4
Expected engagement in one session for one of the participants. The black crosses are times when the user had to recreate a sequence on the tablet;
the red lines mark the ends of game stages (with a certain L), which are followed by either the start of a new sequence or robot feedback given to
the user.

each cluster represents users that share a similar behaviour18. For
each difficulty level L and user cluster Ck, Figure 5B shows the
mean and standard deviation values for the engagement E and the
probability of success given a certain difficulty level P(success|L).
Based on the results, it can be seen that C1 and C2 are similar with
respect to P(success|L), but they significantly differ when it comes to
E, as users belonging to C1 show a much higher level of engagement
in the interaction with the robot than those inC2. After grouping the
users, we calculatedP(success|s) and themean expected engagement
(given success or failure in solving the sequence) for each cluster and
interaction state s. Then, we trained four GP models, namely Fp and
Fe for each cluster, and thus created two user models, M1 (for C1)
and M2 (for C2).

Figure 6 and Figure 7 visualise the GP estimates of P(success|s)
and the mean expected engagement E, respectively, for both
clusters. Here, the GP was applied with the rational quadratic
kernel (Rasmussen and Williams, 2006), which was selected
experimentally.Due to space limitations, the x-axis shows state

18 For a larger group of users, an automatic cluster selection may need

to be performed, which would result in an optimal number of clusters

(Schubert, 2023).

ID numbers instead of full state tuples19; however, for easier
interpretation, the states are grouped into the corresponding game
difficulty levels. As can be seen, the behaviour of the GP for
unseen states is stable; this is desired, as participants were usually
showing stable behaviour (mostly engaged or disengaged) during
an interaction with the robot. Considering Figure 6, it may seem
as if engaged participants should have a higher success rate in
the game than disengaged participants. It is, however, important
to mention that users may be focusing on the robot’s prompts
while not looking at the robot at all—for instance, they may
close their eyes while memorising sequences; this is why some
disengaged users may outperform the engaged ones. Nevertheless,
even though there may not be a direct relation between game
performance and engagement, engagement is still an important
factor which can enhance the behaviour model learning, as shown
in section 3.1.5.

3.1.5 Behaviour model training
After training the user models, we learned behaviour models as

described in Section 2.5. Here, we investigate different approaches

19 For instance, sp = (1,0,−1) denotes a sequence of difficulty level 1, no

feedback given, and an incorrectly solved previous sequence of difficulty

level 1. Each such state is assigned a unique ID in the shown diagrams.
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FIGURE 5
Clustering results (FPC and SPC stand for first and second principal
components, respectively). One of the clusters represents users with
high engagement, while the other represents users with lower
engagement. The users in both clusters have comparable
performance in the three difficulty levels. (A) User clusters.
(B) Cluster-level engagement and success probability.

FIGURE 6
GP models used for creating Fp. The real value stands for the
probability of solving the sequence correctly for each user cluster; the
predicted value is the probability obtained from the GP. The envelopes
represent one standard deviation from the mean estimate.

for calculating a reward for policy learning so that i) the
engagement and game performance for C1 and C2 are maximised,
and ii) longer sequences to maintain the interest of a user are
enforced. We try to improve the policy convergence speed as

FIGURE 7
GP models used for creating Fe. The estimated engagement E stands
for the average expected engagement calculated from all users in a
given cluster, given that they solved the sequence correctly or
incorrectly. The predicted engagement E is the output of the GP given
a user’s failure or success in solving the sequence. The envelopes
represent one standard deviation from the mean estimate.

well, following the concepts introduced in Section 2.6, namely
i) using a pretrained policy and ii) applying learning from
guidance. Given M1 and M2, we trained two behaviour models
as described in section 2.5. Similar to Tsiakas et al. (2018a), we
set a small learning rate α = 0.05 to minimise instability under
noisy observations. We also set a big discount factor γ = 0.95 so
that the algorithm gives high importance to future rewards. We
set the initial value of the temperature parameter Tst (for each
state) to 300 so that all actions are considered equal at the start
of training.

3.1.5.1 Engagement and performance score influence on
policy learning

To find an appropriate reward Ra(st), we compared three
different candidates for the function Fr (as defined in section 2.5),
namely i) Fr = REb, ii) Fr = REb + βE, and iii) Fr = βE. We
particularly aimed to check what influence REb and E have on
the quality and speed of the policy convergence for both user
models. The hyperparameter β depends on the range of values
of REb and E and was selected empirically; in our case, β = 3.
The average results of the training procedure (over 30 runs) are
shown in Figure 8. In the figures, one training epoch is equal
to 100 sessions of a sequence learning game, where each session
means that the user has to solve ω = 10 sequences. The performance
score (Figure 8A) stands for the mean accumulated activity score
(accumulated in one session and averaged over the epoch). As
shown in Figure 8A, calculating the reward by combining both
E and REb helps in quick personalisation of the game difficulty for
M2, but is not more advantageous in comparison to using only
REb for M1. On the other hand, when using Fr = βE, the trained
policy gives the worst results with respect to the performance
score. We obtained different results when evaluating the training
process with respect to the user’s engagement. In Figure 8B, it can
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FIGURE 8
Comparison of different reward functions and policy transfer for
training behaviour models. A reward function that combines both
engagement and activity information generally leads to the highest
training reward when a behaviour policy is trained from scratch. Policy
transfer significantly improves the convergence speed, but the quality
of the initialising policy has a clear effect on the performance of the
trained policy (here, policy transfer was performed with Fr = REb + βE,
with β = 3). (A) Game performance score of the user model. (B)
Engagement of the user model.

be noted that, for M1, all three versions of Fr lead to similar
results, while, as expected, the lowest engagement for M2 is
obtained when the engagement information is ignored in the
reward. The policy training seems to have better results when
Fr = βE and can be meaningfully improved when both REb and
E are considered. Based on the aforementioned results, it can
be concluded that adjusting the task difficulty by combining
the engagement and activity performance score for computing
Ra(st) can help in increasing the engagement; this is in line with
Tsiakas et al. (2016).

3.1.5.2 Influence of policy pretraining on the convergence
speed

To increase the policy convergence speed, we also attempted
policy transfer (Figure 8), namely the Q-table for one cluster was
initialised with the Q-table that was trained on the other usermodel.
The initial policy was chosen (out of 30 learned policies) based on
the highest average return value in the last pretraining epoch. Here,
training was performed with Fr = REb + βE and an exploitation-
only-based strategy, as exploration might lead to undesired robot
actions during real-life therapeutic scenarios.

Analysing the performance score and the engagement, it can be
seen that the initialisation of the lower engagement policy (M2’s)
with the higher engagement policy (M1’s) improves both the speed
and the quality of personalisation, such that the initial policy can
not only adapt, but it also gives slightly improved results over
the user-specific policy; this seems to indicate convergence to a
local minimum for the policy trained from scratch, but it also
indicates that a proper initialisation can provide useful inductive
bias for the learning process, which is consistent with results in the
transfer learning literature (Ramon et al., 2007 Tsiakas et al. (2016)).
When initialising M1’s policy with M2’s policy, however, the
engagement and performance score remain unchanged over the
entire training procedure. This may be caused by obtaining mainly
positive rewards during training, asM1 usually outputs a positive E
(Tsiakas et al., 2016).

3.1.5.3 Enforcing longer sequences
So far, the presented results seem to be promising; however, it

is also important to mention that, based on the training data, the
created user models M1 and M2 output relatively high success
probabilities for sequences of lengths 3 and 5, but the probabilities
are lower for the longest sequences. Thus, to maximise the game
performance, the behaviour model may learn to suggest only
sequences of length 5, as longer sequences are less likely to be solved
successfully.

With the REb score introduced in section 2.5, the robot indeed
learns to choose sequences of 5. In a real-life interaction, the user
may get bored of getting sequences of the same length; thus, to make
the game less monotonous and more challenging, we enforce the
selection of more difficult sequences during the game. To achieve
this goal, we changed the calculation of the REb component of Fr ,
such that we conducted experiments with two alternatives, namely

REd,t←
{
{
{

2Lt ifOt = 1

−1 ifOt = −1
,REs,t←

{
{
{

L2
t ifOt = 1

−1 ifOt = −1
(6)

As a result of these changes, the agent will obtain a larger reward
if the user correctly solves longer sequences. In order to obtain
satisfying results, we also adjusted the parameter β accordingly.
When using REd with β = 5 for learning M1, the number of states
in which the most difficult sequence is preferred increased from 4
to 6 as compared to the case in which REb was used; additionally,
the robot became slightly more interactive, as it gives not only
challenging feedback, but also encouraging one. For the cluster with
disengaged users C2, the number of states where the sequence of
length 7 is chosen increased from 1 to 2; here, the robot is more
interactive as well and provides feedback for more states. Applying
REs with β = 8 significantly increased the difficulty of the game:
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for M1, a sequence of length 7 is chosen in 14 states, and in 7
states for M2.

The results of the policy training with different RE variants
are shown in Figure 9; in particular, the results were obtained for
Fr = REx + βE,x ∈ {b,d, s}, as this reward function was shown to
perform best in the above evaluation. Here, as before, we present
the results for policy transfer, but only for REd, as this gave the best
training results while keeping the length of the sequences more
challenging. As can be seen, applying REd and REs positively affects
the performance score and engagement of M2, which reach 20 and
−0.4, respectively, which are slightly better than for REb. On the
other hand, there is not much difference in the game performance
and engagement forM1 between REb and REd. When applying REs,
the results suggest that giving the user more difficult tasks during
the game does not necessarily lead to a higher performance score
nor engagement. Finally, learning with the pretrained policy for REd
gives similar results as for REb.

3.1.5.4 Learning from guidance
For exploring learning from guidance, we created simulated

supervisor policies Ĥ(st,a) based on the policies learned above,
namely the policy with the highest average return value in the
last training epoch (out of 30 learned policies) is used as the
supervisor policy. In real supervision, a supervisor may potentially
make correction mistakes; to reflect this aspect in the evaluation,
we investigate noisy supervisor policies, which are simulated by
selecting random actions with different probabilities (P(err) = 0.1
and P(err) = 0.2).We conducted the experiments in this sectionwith
Fr = REd + βE, as the obtained policy with this reward increases the
user’s game performance and engagement, and also enforces longer
sequences during the game; we set the parameter β in Fr to 320.

The training results for learning from guidance are depicted in
Figure 10. Here, the shown performance score and engagement for
each sequence in the game are obtained by simulating the execution
with an action selected from the policy that is continuously
learned21. As a baseline for the training quality, we compare the
policies learned from guidance with a policy learned from feedback
(denoted as cold start).

For both clusters, learning from guidance is successful and
the performance score and engagement are close to the values
obtained by the supervisor’s policy (Figure 10). In particular, with
P(err) = 0.0, the optimal performance and engagement (as obtained
in the case of learning from feedback) is already reached at the
beginning of the guidance-based training, namely a performance
score of around 20 for both M1 and M2, as well as an engagement

20 In case of negative engagement, larger values of β can cause the reward

to be zero or negative and thus slow down or even prevent any learning

from happening. This is because the Q-values corresponding to the

supervisor’s actions would obtain a negative reward, which can lead to

the opposite results than expected, namely the agent will avoid actions

selected by the supervisor.

21 Since we perform learning from guidance, the selected action is then

corrected with the supervisor’s policy, such that the new engagement

and performance score after the execution are used for the policy

update (the Q-table entry corresponding to the supervisor’s action

is updated).

FIGURE 9
Policy training results for different RE variants and β values in order to
enforce longer sequences. Here, REb is a reward as in section 3.1.5.1,
REd doubles the reward for correct answers, and REs squares the
reward for correct answers. In all cases, the activity reward was
combined with the engagement as above, namely
Fr = REx + βxE,x ∈ {b,d,s},βx ∈ {3,5,8}; the pretrained policy was learned
using REb and β = 3. (A) Game performance score of the user model.
(B) Engagement of the user model.

of around 0.65 and −0.4 for M1 and M2, respectively. For bigger
P(err), the performance score and engagement vary more during
the training.

Another good measure of training progress in learning from
guidance is the number of corrections that the supervisor needs to
do over time. Given that the supervisor aims to increase the user’s
engagement and game performance, and they only select a small
number of inappropriate actions, after a specific time, the agent
should be able to select the correct actions on its own. Figure 11
shows the short-term corrections (accumulated over one session in
the first seven game sessions) as well as the long-term corrections
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FIGURE 10
Comparison of training behaviour models from guidance (denoted by
G) with different probabilities of the supervisor making a mistake.
Here, cold start refers to a policy trained from scratch without
supervisor guidance. All guidance-based policies were trained using
the reward Fr = REd + βE and β = 3; the cold start policy was trained
with β = 5. (A) Game performance score of the user model. (B)
Engagement of the user model.

(mean accumulated corrections over one session and averaged over
the epoch).

Here, it can be seen that, with increasing P(err), the
algorithm may need to do more corrections over time to learn
successfully, namely the larger the value of P(err) is, the longer
the training process takes. This may negatively affect the long-
term training behaviour, such that, after a long period of time,
the number of necessary corrections from the supervisor may
increase (for C1) or remain unchanged (for C2) instead of being
reduced to zero.

FIGURE 11
Comparison of training behaviour models from guidance (denoted
here by G) with different probabilities of the supervisor making a
mistake P(err). All policies were trained using the reward Fr = REd + βE
and β =3.

3.2 User study

Our final experiment is concerned with a small-scale real-
life feasibility evaluation of the developed behaviour model. For
this purpose, we conducted a study with six participants, three of
which already participated in the data collection study explained in
Section 3.1.The experimental setup was similar to the one presented
in Figure 2, but only the robot’s head camera was used here. This
experiment compared three conditions in which the sequences were
i) randomly generated (as in the data collection study) as a baseline,
ii) chosen based on a policy pretrained in the simulation (as in
Section 3.1.5.3), and iii) chosen based on a policy trained on the fly
using learning from guidance22. The study was single-blind, namely
the evaluated mode was not known to the participants during the
experiment23. At the end of each condition, each participant was
asked to fill out a survey with three questions24. The main aim of
this survey was to collect the user’s opinions about the different

22 In this mode, the researcher acts as a supervisor guiding the robot.

23 The involvement of users who participated in the data collection study

may be considered as a source of bias in the evaluation, as they already

have familiarity with the sequence learning game; however, considering

the single-blind aspect of the study and given that our main objective

was to investigate the participants’ performance and preferences with

respect to the personalisation mode, we consider any such bias to be

negligible. In addition, the two studies were conducted with a gap of

severalmonths; considering the engagement estimation, thismeans that

the data distribution is not the same over the two studies.

24 Question A: How interactive was the robot? Question B: How much has

the robot helped you perform to the best of your ability? Question C: If

you played the game long enough, would the robot help you memorise

longer sequences?
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experimental conditions and their perception of the robot in each
evaluation mode.

In the evaluation of the policy learned with the user models,
we consider two cases depending on whether the participant took
part in the data collection study. For participants that took part
in the study, we trained a policy on the user model learned
on the corresponding user cluster25. For the other users, we
used the policy trained on M2, which represents users that are
mostly disengaged. This policy selects easier sequence lengths in
comparison to the policy trained on M1, which prevents users from
becoming disengaged because of too difficult tasks.

For the randomised condition and the condition in which a
pretrained policy was used, only one session was performed. In
the learning from guidance condition, each user played four game
sessions, where the first three sessions were used for training (the
supervisor was allowed to guide the robot)26 and the last one was a
testing session (no guidance was allowed, namely the robot followed
the policy learned up to that point). For learning from guidance, we
used the same reward function as for training with the user models,
namely Fr = REd + βE; however, as explained in Section 3.1.5.4, we
also tuned the parameter β to properly adjust the reward function.

Before presenting the results of this study, it should be noted that,
due to the small sample size, the results can only show a tendency
of the model to adapt to individual users, but a larger user study is
required to demonstrate the significance of personalisation on the
engagement and learning success.

3.2.1 Behaviour model evaluation
The results of the evaluation with respect to the users’ game

performance (activity score obtained for each sequence as defined
in Section 2.4) are presented in Figure 12 and Figure 13.

As shown in Figure 12, for the randomised condition, the task
difficulty chosen by the robot does not follow any logical pattern,
which results in a varying game performance. This is especially
visible for user 1; in particular, between sequences 4 and 7, it can
be seen that the difficulty is decreasing, even though the user is
solving the sequences correctly. It should be noted that, in some
cases, the same difficulty level is repeated twice, as the robot chooses
an action of giving feedback to the user, which implies repeating
the same sequence length. In the condition where the policy trained
on the user model was used, the robot mostly chooses the same
difficulty level. The consequence of this is either explicitly providing
a sequence of length 5 or selecting a feedback action, which by
definition provides verbal feedback and repeats the same sequence
length. This means that the behaviour model found these actions
as the ones that maximise the game performance and engagement
score based on the user models27.

25 According to the numbering of the users in Figure 12, the corres-

ponding user cluster was C2 for users 1 and 3 and C1 for user 2.

26 We trained the model for three sessions as, according to the experi-

ments done with the user models, after three sessions, there should be

a visible decrease in the number of required supervisor corrections.

27 From the performance point of view, this is reasonable because most

users are indeed able to correctly solve sequences of length 5; however,

continuously providing sequences of the same length is unlikely to lead

to an enjoyable experience in general.

FIGURE 12
Results of the user study for the randomised and policy transfer
conditions. The users are split into multiple diagrams in order to
improve the readability. Users one to three are the ones that also took
part in the data collection study.

FIGURE 13
Cumulative performance score (over each session) for the user study
in the learning from guidance condition. The used reward function is
Fr = REd + βE, where β = 3 for users 1 and 2 (left plot) and β = 5 for the
remaining users (right plot). Users one to three are the ones that also
took part in the data collection study.

The results of the learning from guidance condition are depicted
in Figure 13, where the accumulated performance score for all
four sessions is visualised. Here, it can be seen that, for all users,
the score varies in the first three sessions, which is a result of the
supervisor intervening in the action selection process. In the fourth
session, in which supervisor corrections were not allowed anymore,
there is a visible performance improvement in comparison to the
first session (at the beginning of the training procedure) for all
users. This means that the model improved in choosing actions in
order to increase the users’ game performance. For some users,
however, the improvement of the accumulated score between
the first and the last session is very small; this is particularly
visible for users 5 and 6, such that it might be a result of β = 5
as discussed in Section 3.1.5.4. During the experiment, as shown
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FIGURE 14
Results of the real-life evaluation. In the user study, there seems to be
a slight preference for the robot when trained using guidance;
however, due to the small number of participants, this should not be
seen as a statistically significant result. (A) Supervisor correction. (B)
Result of the user survey.

in Figure 14A, no significant decrease in the required supervisor
corrections over the training sessions was observed, which
indicates that more game sessions may be required for the policy
to converge.

3.2.2 Survey
The answers to the survey questions were given with 5-point

Likert scale, where 0 corresponds to an answer “not at all” and 4 for
“extremely”. The survey results are depicted in Figure 14B. Here, it
can be seen that the average score for all questions was the highest
for the condition in which the robot was learning from guidance
and continuously refining its policy; this is particularly visible for
Question C. It should be noted that the answers of the participants
were varied and, as a result, the standard deviations in Figure 10A
are large; however, given the small number of participants, no
statements about the statistical significance of these results can
be made.

4 Discussion

In this work, we presented a reinforcement learning-based
personalisation approach that increases the autonomy of a robot in
the context of robot-assisted therapy. The proposed personalisation

pipeline uses elements of both learning from feedback and learning
from guidance, enabling both techniques to be used for behaviour
model learning, either independently or in combination. For this
purpose, we described a robot behaviour model that can be used
to learn personalised robot policies (in terms of provided feedback
and activity difficulty level) for groups of similar users. We also
created user models from data collected during a study with 20
participants; these models incorporate engagement that is estimated
based on visual features and were used for training personalised
behaviour models. The proposed models were evaluated on a
sequencememorisation game. From the evaluation,we can conclude
that computing rewards based on both user engagement and activity
performance generally increases the policy convergence rate. We
also found that calculating the game performance part of the reward
function as a double sequence length seems to be themost promising
for learning a practically useful behaviour model, as it preserves
a high engagement and performance score of the user, while also
increasing the rate of selecting longer sequences during the game. To
improve the policy convergence speed, we performed policy transfer
experiments, where the policy for one user cluster was used to train
the policy for another user cluster. This type of policy transfer can
significantly improve the policy convergence speed, but may also
lead to undesired results if the initialising policy or reward function
are inappropriate. Finally, we conducted trial runs for learning
from guidance, which leads to the fastest convergence speed and
can indeed reduce the workload of the therapist by decreasing the
number of necessary corrections. To check the potential practicality
of the proposed behaviour model, we performed a small-scale real-
user feasibility study under three conditions (randomised behaviour
policy, policy learned based on usermodels, and policy learned from
guidance). The results seem to suggest that the model is able to learn
what actions to choose in order to increase a user’s engagement and
game performance score, particularly when learning from guidance
is used for policy learning; however, a large-scale study is needed to
conclusively verify that observation.

There are various limitations of this work that we would like to
discuss. Firstly, the full potential and importance of giving feedback
to the user could not be explored in this study, as the game
sessions were too short to capture how a user can get bored over
a longer period of time and how appropriately the given feedback
can change the engagement. Even if the game was long enough, it
would be difficult to observe the long-term changes in the users’
engagement, as the trained engagement estimator often outputs a
negative engagement score if a person is sitting too far from the
robot, even if they are looking directly at the robot; this might be
the reason why some users were constantly disengaged during the
game, according to the used engagement estimation model. A better
selection of the used features for estimating engagement as well as a
manual annotation of the dataset used for training the model could
potentially make the engagement model more accurate. With the
aforementioned changes, it would still be difficult to evaluate the
pure effect of the robot’s actions on each participant’s behaviour, as
the participant was not alone in the room and could occasionally
be distracted by external factors, such as unintentional distractions
by the researchers. Due to the aforementioned flaws during the
data collection and data preprocessing, the created user models
may not accurately reflect the characteristics of the participants.
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Another drawback of the created user models is that they are static,
which means that they do not encode the learning capabilities
of each user, namely their increasing ability to memorise longer
sequences over time. Ideally, the user models should be improved
based on the ongoing interactions with the behaviour model; this
may, however, lead to a complex dependency relation between the
user model and the behaviour model, both of which would need to
be continually updated.

In future work, we want to incorporate the behaviour model in
activities used in the therapy of children with ASD, which would
enable us to perform long-term evaluation with therapists and
affected individuals. Additionally, one way to improve it would
be the inclusion of a discretised engagement score into the state
representation, similar to Senft et al. (2015a); this would increase
the size of the state space and may make the learning problem
more difficult, but would lead to a more complete representation of
human-robot interaction scenarios. Finally, even though the focus
of this work was on robot-assisted therapy, our intention for future
work is to apply the proposed method in educational robotics
contexts, such as where a teacher is providing guidance to a robot
that is teaching a student a new language. Similarly, we would like to
extend the method to human-robot collaboration scenarios, where
a robot may provide assistance in activities that can be classified into
different difficulty levels, for instance when users have varying levels
of expertise.
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