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A pipeline for estimating human
attention toward objects with
on-board cameras on the iCub
humanoid robot

Shiva Hanifi*, Elisa Maiettini† , Maria Lombardi*† and
Lorenzo Natale

Humanoid Sensing and Perception Group, Istituito Italiano di Tecnologia, Genoa, Italy

This research report introduces a learning system designed to detect the
object that humans are gazing at, using solely visual feedback. By incorporating
face detection, human attention prediction, and online object detection, the
system enables the robot to perceive and interpret human gaze accurately,
thereby facilitating the establishment of joint attention with human partners.
Additionally, a novel dataset collected with the humanoid robot iCub is
introduced, comprising more than 22,000 images from ten participants gazing
at different annotated objects. This dataset serves as a benchmark for human
gaze estimation in table-top human–robot interaction (HRI) contexts. In this
work, we use it to assess the proposed pipeline’s performance and examine each
component’s effectiveness. Furthermore, the developed system is deployed on
the iCub and showcases its functionality. The results demonstrate the potential
of the proposed approach as a first step to enhancing social awareness and
responsiveness in social robotics. This advancement can enhance assistance
and support in collaborative scenarios, promoting more efficient human–robot
collaborations.

KEYWORDS

attention, gaze estimation, learning architecture, humanoid robot, computer vision,
human–robot scenario

1 Introduction

Any face-to-face interaction between two people is characterized by a continuous
exchange of social signals, such as gaze, gestures, and facial expressions. Such non-
verbal communication is possible because interacting individuals can see, perceive, and
understand the social information enclosed in cues. In this study, we prioritize eye gaze,
a critical social cue, because it plays a pivotal role in many mechanisms of social cognition,
for example, joint attention, regulating and monitoring turn-taking, signaling attention,
and intention. Neuropsychological evidence highlighted the close relationship between
gaze direction and attention, indicating that gaze functions are actively involved and
influenced by spatial attention systems (Allison et al., 2000; Pelphrey et al., 2003). For
example, it is more likely that the gaze is directed toward an object rather than toward
empty space.

In this context, a robot’s ability to determine what a human is looking at (e.g., an
object) has numerous practical implications across various domains. In social robotics,
it enhances a robot’s social awareness and responsiveness, making interactions more
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natural and context-appropriate (Babel et al., 2021; Holman et al.,
2021). This includes recognizing a person’s preferences based
on their gaze and improving collaboration in settings like
industry or home by understanding human attention (Kurylo and
Wilson, 2019).

This research report represents the initial milestone in our
ongoing study aiming at interpreting human intent during
human–robot collaboration. We introduce a novel HRI application
utilizing computer vision to enable robots to detect the object
a human partner is gazing at. This application sets the baseline
for forthcoming advancements in our research. Our proposed
system combines an online object detection algorithm (Ceola et al.,
2021; Maiettini et al., 2019a) with gaze tracking technologies,
providing the robot with online information about the objects that
capture the human’s attention. This integration grants the robot
enhanced cognitive ability to perceive and interpret human gaze
accurately in its environment. This could be the initial step in
enabling the robot to achieve conscious joint attention with the
human partner (Chevalier et al., 2020).

The main contributions are as follows:

• We propose a pipeline to detect the target of human attention
during an interaction with a robot. This leverages face
detection, human attention prediction, and online object
detection to detect the object the human focuses on.
• We present the ObjectDetection dataset collected with the

humanoid iCub (Metta et al., 2010), where 10 participants gaze
at different objects placed randomly on a table in front of the
robot, including annotations of ground truth gaze target and
object bounding boxes.
• We perform an experimental analysis of the proposed pipeline

to evaluate its effectiveness in the considered HRI setting.
We use the collected dataset to do that, and we study the
performance of the components of the system.
• Finally, we deploy the system on the iCub robot. A video is

submitted as Supplementary Material.

2 Related work

The problem of endowing robots with the capability to
comprehend human behavior, particularly the social cue of the gaze,
has been studied in the literature. In this regard, the human line
of sight, which consists of two main components—the head pose
and the orientation of the eyes within their sockets (eyegaze) (Wang
and Sung, 2002)—offers critical information for predicting human
attention and intention. Although extended literature addresses the
use of egocentric gaze data from external wearable devices [e.g.,
head-mounted eye trackers (Admoni and Srinivasa, 2016) and chest-
mounted cameras (Furnari et al., 2017; Bertasius et al., 2016)] or
using a geometric approach to estimate gaze [where the eyes and
pupils need to be clearly visible in the image (Palinko et al., 2015)],
our study upholds a naturalistic HRI setting by avoiding external
devices utilizing a third-person view and positioning the human
partner at a distance from the robot.

In this context, the gaze problem is addressed following two
different strategies: 1) gaze estimation (i.e., estimating the gaze
vector or mutual gaze events) and 2) gaze attention prediction (i.e.,

understanding where the human is visually attending in terms of a
saliency map).

Following the gaze estimation strategy, Wang and Sung (2002)
employ zoom-in iris imaging to estimate eye gaze from a single
eye. They integrate head pose and eye gaze determination for
enhanced accuracy. Other works focus on human gaze estimation
using a 2D/3D vector. For example, the use of the CNN architecture
to estimate the 2D gaze vector is proposed by Athavale et al.
(2022). This system extracts features from only one eye and is
especially useful in real-world conditions where the human face
can be partially obscured. In this regard, Fischer et al. (2018)
propose a novel dataset of varied gaze and head pose images
in a natural environment, addressing the issue of ground truth
annotation by measuring head pose using a motion capture system
and eye gaze using mobile eye-tracking glasses. Examples of
predicting a 3D gaze vector can be found in Cheng et al. (2020) and
Ververas et al. (2022). Specifically, Ververas et al. (2022) propose
an architecture to estimate the vector of the gaze direction from
the reconstructed dense 3D eyeball meshes. Cheng et al. (2020),
instead, propose a combination of a regression and an evaluation
network able to exploit the asymmetry between the left and
right eye. Additionally, Lombardi et al. (2022a) propose a learning
architecture to detect mutual gaze events. This study underscores
the significance of mutual gaze as a vital social cue in face-to-face
interactions, indicating the readiness of interacting partners.

The gaze following problem was addressed by Recasens et al.
(2017). A CNN architecture was proposed, taking the RGB frame
and a set of neighboring frames from the same video as input and
identifying which of the neighboring frames, if any, contain the
object being looked at and the coordinates of the human gaze.

Even though gaze estimation and human attention have been
extensively studied, few works have integrated human attention
with target object prediction. Among these few, Saran et al. (2018)
proposed an approach to predict the human referential gaze, having
both the person and object of attention visible in the image. The
proposed network contains two pathways: one estimating the head
direction and another for salient objects in the scene. Such a
network was used as a backbone by Chong et al. (2020). In the
latter, differently from Saran et al. (2018), an LSTM-based spatio-
temporal model is used to leverage the temporal coherence of video
frames to improve gaze direction estimation. However, only the
direction of human gaze is predicted by Chong et al. (2020), while
the information about the target object is not provided.

In this report, we adapt the LSTM-based spatio-temporal model
from Chong et al. (2020) to an HRI setting, specifically a table-
top scenario where the robot and human partner are positioned
on opposite sides of a table, with the human and objects within
the robot’s field of view. We fine-tune the model using the
proposed ObjectAttention dataset, which is annotated with both
object bounding boxes and the gazed target object. Additionally,
we integrate it with human pose estimation and a face detector
to enable real-time processing on the iCub robot. Using human
pose estimation alongside an RGB-based face detector rather than
an eye-tracking system was motivated by our commitment to
have a natural HRI. Furthermore, studies suggested that humans
shift their gaze, moving first the head and then the eyeballs in
a linear and coordinated way, known as eye-head coordination
(Maesako andKoike, 1993;Melvill Jones et al., 1988). Such eye-head
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FIGURE 1
Pipeline of the presented architecture. The Human Attention Estimation pathway produces a heatmap of the gaze target. This heatmap and the
bounding boxes and labels from the Object Detection module are then used by the Attentive Object Detection module to predict the specific object
that is visually attended by the human.

temporal coordination especially characterizes conscious situations
(contrarily, situations in which eyes precede the head movements
are processed at an unconscious level) (Doshi and Trivedi, 2009).
Finally, by integrating an online object detection method, we allow
the system to predict the class label and location of the gaze target
object. Note that, unlike Saran et al. (2018), by using Maiettini et al.
(2019b) for object detection, the entire system can be easily adapted
to detect novel target objects in only a few seconds. All the
mentioned improvements result in an online robotic application that
makes the robot capable of inferring where the human partner’s
attention is targeted while interacting with them.

3 Methods

The proposed pipeline is made of three pathways (Figure 1):
the Human Attention Estimation pathway aiming at detecting
the attention target of the human, the Object Detection pathway
that recognizes and localizes the objects in the scene, and the
Attentive Object Detection pathway that provides the gazed object
from the human.

3.1 Human attention estimation

The Human Attention Estimation pathway has three distinct
modules: 1) Human Pose Estimation, 2) Face Detection, and 3)
Visual Target Detection. Having the RGB image as input, the final
output of this pathway is the real-time prediction of the human
attention target, provided as a heatmap.

3.1.1 Human pose estimation
We rely on the OpenPose architecture proposed by Cao et al.

(2019). In brief, OpenPose is a system for multi-human pose

estimation that receives as input RGB frames and predicts the
location in pixel (x,y) of 135 anatomical keypoints of each person in
the image. It also associates a confidence level k to each prediction.
The choice of Human Pose Estimation is motivated by having access
to anatomical keypoints, facilitating further applications such as
action recognition.

3.1.2 Face detection
We rely on the face recognition presented by Lombardi et al.

(2022b) to detect and extract the human face from the
image. Specifically, the face keypoints extracted by the Human
Pose Estimation module are used as input, while the output
is the bounding box of the person’s head in front of the
robot. Note that Chong et al. (2020) assume that the information of
the face location is available. That is a strong limitation in applying
the method in online robotic applications, preventing it from being
used on real robots. In this work, we provide the online input to the
Visual Target Detection module by using Human Pose Estimation
together with Face Detection, enabling the pipeline to operate on the
actual robot.

3.1.3 Visual target detection
This module takes as input the RGB image from the robot

camera and the human face bounding box extracted by the Face
Detection module. It provides as output the heatmap representing
the image area that more likely contains the target of human
attention. Specifically, this is an image-sized matrix where each cell
corresponds to an image pixel. The value of each cell ranges from 0
to 1 (respectively, the lowest and the highest probability to be –or to
be close to– the target of human attention). For this module, we rely
on the network presented by Chong et al. (2020), which is composed
of three main parts. The first one is the Head Conditioning Branch,
which uses the head bounding box encoded into a convolutional
feature map (head feature map) together with the information of the
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location of the human’s head in the image to predict a first attention
map. The second part is the Main Scene Branch, which multiplies
the convolutional feature map of the entire image with the attention
map and concatenates the result with the previously computed head
feature map. The final tensor represents the input for the third and
last part, namely, the Recurrent Attention Prediction Branch. This
first encodes the tensor used as input for a convolutional long short-
term memory network, then creates the final attention heatmap by
upsampling the latter’s output using a decoder. In this work, we fine-
tune the network’sweights using our dataset, and the resultingmodel
is used for the developed application and the experimental analysis.

3.2 Object detection

The Object Detection pathway is characterized by one module
that takes the RGB images from the robot’s camera as input and
outputs the bounding boxes of all the objects of interest present
in the scene. For this task, we rely on the online object detection
approach presented by Ceola et al. (2021) and Maiettini et al.
(2019a).ThisMaskR-CNN-based system is easily retrainable online,
ensuring swift adaptation without compromising performance. We
train the online object detection with data acquired using the
pipeline described by Maiettini et al. (2017).

3.3 Attentive object detection

The third pathway combines the extracted information from
human attention with the objects in the scene to detect the object
that is the target of the human gaze. It takes as input the RGB
image, the heatmap from the Visual Target Detection module, and
all the bounding boxes and labels predicted by the Object Detection
pathway. The output is the attended object bounding box and label.

Initially, the heatmap undergoes thresholding to isolate the
region with values surpassing a refined threshold (the hottest part
of the heatmap). This process aims to pinpoint the area indicative of
human gaze focus within the image. Then, we compute the center
of the obtained area and the surrounding bounding box. We use this
information to select the object that is themost likely focus of human
attention. Precisely, we choose the object that either presents a higher
value of intersection over union (IoU) with the bounding box of the
hottest part of the heatmap or, if this latter does not intersect any
object bounding box, we select the object whose center is the closest
to the center of the hottest part.

4 Dataset

Amajor contribution of this work is theObjectAttention dataset.
It depicts HRIs in a table-top scenario where the human gazes at
different objects, and the robot understands the gaze direction and
the target object.

4.1 Data collection

We recruited 10 participants (four women and six men) with
normal or corrected vision (six people wore glasses). Data collection

was conducted with the iCub robot (Metta et al., 2010), and all
participants provided written informed consent. To collect the
dataset, the iCub was positioned on one side of a table, with a
RealSense 415 camera1mounted on its head. We placed up to five
objects from the YCB dataset (Calli et al., 2015) on the table in
various arrangements. The layout and object mix were different
for each participant. The participants were instructed to stand on
the other side of the table, facing the robot and looking at the
requested object in a natural and spontaneous manner. The frames
were recorded using the RealSense 415 camera and the YARP
middleware (Metta et al., 2006).

We collected data in five sessions with each participant, starting
with one object in the scene and gradually increasing the number of
objects up to five. We performed two trials for each session, keeping
the same number of objects but changing the object types and their
arrangements on the table. For each session and trial, we collected a
5 s video for each different object, annotating the gazed target object
as ground truth.

The resulting dataset consists of 250 videos (22,732 frames)
depicting 10 participants in two different trials for each of
the five sessions, gazing at the different objects. Additionally,
for at least one trial per session, we placed a distracting
object (i.e., the Pringles object) on the table, at which the
participant was not asked to gaze. Details and example frames are
reported in the Supplementary Material.

Finally, ourmotivation to collect a new dataset is that the dataset
of Chong et al. (2020) contains more conditions in which the gaze
was directed toward the upper part of the map (not suitable for
a table-top). Our dataset, used to fine-tune the learning model,
was collected for scenarios where the human and the robot look at
objects placed on a table. Figure 2 depicts the density map of the
gaze targets for the dataset in Chong et al. (2020) (b) and the one we
collected (c).

4.2 Data annotation

Each setting requires bounding boxes for the participant’s head
and the target object. The participants’ bounding box was extracted
using the keypoints estimated by Openpose (Cao et al., 2017) and
manually refined to be considered as ground truth. Furthermore,
we manually annotated the bounding boxes and classes for all the
objects on the table, highlighting the one that is the target of the
human’s attention. The gaze target point was chosen as the center
of the gazed object. The bounding box labeling was done using the
LabelImg2 framework.

5 Experiments

5.1 Model training

Both the Object Detection and the Visual Target Detection
modules were re-trained to better suit the considered conditions.

1 https://www.intelrealsense.com/depth-camera-d415/

2 https://github.com/tzutalin/labelImg
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FIGURE 2
(A) Selection of sample output frames of the proposed pipeline. The first row depicts the scene image, as well as the head bounding box of the
participant detected by the Face Detection module, the attention heatmap of the participant, and the bounding box of the hottest area of the heatmap.
The second row depicts the related gaze target selections for the frames of the first row. (B) Gaze target location density for the
dataset used in Chong et al. (2020) and (C) gaze target location density for the ObjectAttention dataset.

5.1.1 Object detection training
We trained the online object detection with data acquired

using the pipeline described in Maiettini et al. (2017). Specifically,
a human teacher showed the objects of interest to the robot, one
at a time, holding them in their hand and moving them in front
of the robot for approximately 30 s. The information from the
robot’s depth sensors was used to localize the object and follow
it with the robot’s gaze. The latter can be segmented, and the
corresponding bounding box was automatically assigned through a
depth segmentation routine (i.e., the learning object is the closest
to the robot’s camera) and gathered as ground truth together with
the object’s label, provided verbally. After each object demonstration,
the collected data were used to update the current object detection
model.

5.1.2 Visual target detection fine-tuning
To fine-tune the Visual Target Detection module, we randomly

split the ObjectAttention dataset by participants, considering
approximately 70% of the dataset (data from seven participants)
as a training set, and the remaining 30% as a test set, ensuring
no overlap of data between the train and test splits. We fine-
tuned the spatio-temporal model of the Visual Target Detection
module on the training set, performing a warm training re-start
with the pre-trained weights provided by the authors Chong et al.
(2020) and empirically choosing the hyper-parameters as
follows: learning rate = 5e−5, batch size = 4, chunk size =
3, number of epochs = 10. To ensure the statistical relevance
of the presented experiments, we repeated the training and
evaluation of the model three times with three different splits of
the dataset.

5.2 Experimental setup

The performance of the Visual Target Detection module is
evaluated in terms of the area under the curve (AUC) and Distance
metrics. For the AUC, each cell in the spatially discretized image

is classified as either the gaze target or not. The ground truth
comes from thresholding a Gaussian confidence mask centered
at the human annotator’s target location. The final heatmap
provides the prediction confidence score evaluated at different
thresholds in the ROC curve. The AUC of this ROC curve is
considered. The Distance metric is defined as the Ł2 distance
between the annotated target location and the prediction given
by the pixel of the maximum value in the heatmap, with image
width and height normalized to 1. The performance for the
entire pipeline is measured in terms of the Accuracy of the
detected gazed objects. For each image, the bounding box of
the predicted gazed object is compared with the ground truth:
if the gazed object is correctly identified, the prediction is
counted as a true positive; otherwise, it is considered a false
negative.

5.3 Visual target detection fine-tuning

First, we analyze the impact of fine-tuning the Visual Target
Detection module on our dataset. In Table 1, we report the
performance comparison of the proposed model (row Fine-tuned
model) with the model presented in Chong et al. (2020) (row Pre-
trained model) in terms of mean and standard deviation over the
three dataset splits mentioned above. As can be seen, the fine-tuned
model reports better performance on the proposed ObjectAttention
dataset. Specifically, the predicted hottest point in the heatmap is
closer to the true gazed point of ∼0.04. Note that this is a relevant
difference because theDistancemetric is computed on an imagewith
width and height normalized to 1. This result is also supported by
the improvement in the AUC of 5%. To quantify the distance metric
in the task space, we used the depth information and the intrinsic
camera parameters to calculate the Euclidean distance between the
3D coordinates of the center of the ground truth bounding box
of the gaze target object and the center of the predicted bounding
box of the gaze target object. It results in a task space distance of
0.092± 0.127 meters.
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TABLE 1 Quantitative evaluation of the Visual Target Detectionmodel
on the presentedObjectAttention dataset.

Method AUC (%) ↑ Ł2 distance ↓

Pre-trained model 87.5 ± 0.9 0.131 ± 0.014

Fine-tuned model 92.5 ± 1.9 0.089 ± 0.014

The enhanced performance stems from fine-tuning the
model with a dataset more aligned with the target scenario
(table-top). Nevertheless, because the fine-tuned network has
been initialized with the weights presented in Chong et al.
(2020), the final model can predict gaze directions that differ
from those considered in the proposed dataset (see the video
provided as Supplementary Material).

5.4 Accuracy evaluation

In order to evaluate the performance of the overall pipeline,
we choose one of the models trained on the three different
train/test splits and use it in our pipeline. Quantitative results are
obtained using the same test set previously employed for evaluating
the fine-tuned model, with ground truth provided by bounding
boxes and labels of objects on the table and the target gazed
object.

First, we analyze the overall accuracy of the pipeline
in detecting the gazed target object of the three different
participants in the test set. Our experiments indicate a success
rate of 79.5% in correctly detecting the target object. This
number reflects the integrated performance of the Visual Target
Detection, Object Detection, and Attentive Object Detection
modules.

Figure 2 illustrates a selection of sample frames from the output,
including attention heatmaps and bounding boxes, highlighting the
head of the participant (detected by the Face Detectionmodule) and
the hottest areas of the heatmap in the frames of the top rowwhile the
final gaze object bounding box and label are presented in the bottom
row frames (see also in the video in the Supplementary Material).

With the aim to be in line with the current state-of-the-art,
we benchmarked a visual language model (VLM) to evaluate the
overall accuracy. We choose the open-source LLAVA-1.6 model as
the VLM (Liu et al., 2024), which reports a success rate of 15% in
correctly detecting the gazed object. The very poor performance is
explained by the fact that a VLM is not targeted to solve a highly
specific task like the one reported in this report. More details are
reported in the Supplementary Material.

5.5 Performance analysis

5.5.1 Per object performance
In Figure 3B, we present the achieved accuracy levels

for various target objects. The system demonstrates high
performance across most objects, except for the Bleach class.
This discrepancy arises from challenges in object detection,

leading to occasional inaccuracies in locating the Bleach
object. Such issues may result from disparities between the
detector’s training conditions and the testing environment,
indicating a domain shift. Previous studies have suggested
addressing this issue through methods such as integrating
autonomous exploration by robots in new domains and employing
weakly supervised learning techniques (Maiettini et al., 2019b;
Maiettini et al., 2021).

5.5.2 Per session performance
Figure 3A depicts the accuracy levels of the overall pipeline

in various sessions. The performance of the system slightly
decreases for higher numbers of sessions. This is reasonable
because, in those cases, the number of objects increases; thus,
the table becomes more cluttered. However, the accuracy level
is still acceptable (around 70%) even with the most cluttered
scenes, showing that this is not a limitation of the proposed
system.

5.5.3 Distractors
We investigate the impact of distracting objects on system

performance, selecting a sample object (i.e., Pringles) as a distractor.
Although participants were not instructed to focus on this object,
our Object Detection module is trained to detect it. Our objective
is to assess whether the presence of the distractor hinders the
accurate identification of the target object. The results indicate
that prediction errors occur in only about ∼3% of frames
with the distracting object, suggesting it is not a significant
limitation.

5.5.4 Distance-based performance
A further analysis was conducted to evaluate the system’s

accuracy while systematically varying the distance between objects
from 0 cm to 100 cm. Our method achieved 74% accuracy at 0 cm
and over 98% accuracy when objects were separated by more
than 60 cm. The Supplementary Material provides more details.

5.5.5 Real-time feed performance
The Chong et al. (2020) architecture, initially burdened by high

latency due to reloading the model for each input frame, resulted
in less than 5 fps output speed when integrated with our proposed
system. To improve real-time performance, we separated model
initialization from the code, initializing it only once.This adjustment
boosted the output frame rate to 8 fps, deemed experimentally
sufficient as the humanoid iCub’s dynamics are slower than the
camera frame rate.

5.5.6 Edge case performance
We assess the robustness of our system by conducting

experiments on edge cases, including scenarios where the
human partner is positioned at an angle relative to the robot
and objects placed on the line of sight. These experiments
yielded an overall accuracy level of 75%. For more details,
refer to the Supplementary Material.
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FIGURE 3
Accuracy analysis: (A) on each of the objects involved in the experiments and (B) on each session for all participants. The session number also reflects
the corresponding number of objects present in the scene.

6 Conclusion

We presented a learning system for detecting human attention
toward objects in the scene. Our method combined an online
object detection algorithm with a network for gaze estimation
conditioned on the estimation of the human pose.We demonstrated
its effectiveness through an extensive experimental analysis using
the iCub robot. Our results indicated that integrating face detection,
human attention prediction, and online object detection in our
pipeline enables the robot to perceive and interpret human gaze
within its environment. Such an achievement promises to enhance
the robot’s social awareness and responsiveness, allowing for more
natural interactions in social robotics, which makes it well-suited
to be used in applications such as assistant tutoring, robot-assisted
therapies, and interaction with children with autism spectrum
disorder (Alabdulkareem et al., 2022; Yousif, 2020; Calderita et al.,
2014). The pipeline and dataset presented establish the foundation
for our ongoing efforts to enhance iCub’s collaborative task
capabilities by integrating diverse social cues within a multimodal
architecture. Our forthcoming endeavors will focus on integrating
a segmentation layer to optimize system performance in more
complex scenes (e.g., highly cluttered scenarios or the presence of
non-convex objects). Another considered direction is to include out-
of-frame target detection to identify when humans are not focused
on the preferred task.
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