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Safe contact-based robot active
search using Bayesian
optimization and control barrier
functions
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In robotics, active exploration and learning in uncertain environments must
take into account safety, as the robot may otherwise damage itself or its
surroundings. This paper presents a method for safe active search using
Bayesian optimization and control barrier functions. As robot paths undertaken
during sampling are continuous, we consider an informative continuous
expected improvement acquisition function. To safely bound the contact
forces between the robot and its surroundings, we leverage exponential
control barrier functions, utilizing the derivative of the force in the contact
model to increase robustness to uncertainty in the contact boundary. Our
approach is demonstrated on a fully autonomous robot for ultrasound scanning
of rheumatoid arthritis (RA). Here, active search is a critical component of
ensuring high image quality. Furthermore, bounded contact forces between the
ultrasound probe and the patient ensure patient safety and better scan quality.
To the best of our knowledge, our results are both the first demonstration
of safe active search on a fully autonomous robot for ultrasound scanning of
rheumatoid arthritis and the first experimental evaluation of bounding contact
forces in the context of medical robotics using control barrier functions. The
results show that when search time is limited to less than 60 s, informative
continuous expected improvement leads to a 92% success, a 13% improvement
compared to expected improvement. Meanwhile, exponential control barrier
functions can limit the force applied by the robot to under 5 N, even in cases
where the contact boundary is specified incorrectly by −1 or +4 mm.

KEYWORDS

control barrier function, Bayesian optimization, active search, autonomous ultrasound
scanning, robot force control

1 Introduction

Active learning, along with related problems such as active object exploration
and localization, find widespread applications across various robotic domains. From
mobile robot navigation (Lluvia et al., 2021) to grasping (Kroemer et al., 2010) to
object and scene reconstruction (Jamali et al., 2016), many robotic problems involve
variations of the exploration–exploitation dilemma, where an autonomous system
must simultaneously regress and optimize an unknown or uncertain function.
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Several methods have been proposed to tackle the above
problems, includingmany based on deep learning (Ren et al., 2021).
For the low-data regime,which is often the case for online learning in
robotics, the most common are methods based on Gaussian process
regression (Jamali et al., 2016; Yi et al., 2016; Driess et al., 2019;
De Farias et al., 2021) and Bayesian optimization (Nogueira et al.,
2016; Goel et al., 2022; Roveda et al., 2022; Berkenkamp et al.,
2023). Koopman operators have also been suggested for the case
of learning the nonlinear dynamics of a physical system for
control (Abraham and Murphey, 2019), but this method is only
applicable to learning dynamics and not to a more general function
approximation problem.

As active exploration is, by definition, an uncertain process, a
key consideration is the assurance of safety despite operating in
fully or partially unknown environments. Safety can be handled
algorithmically in the learning process by considering, for example,
the uncertainty in a Gaussian process regression (Turchetta et al.,
2019). However, here we are more interested in methods that
consider the safety of the controlled system, that is, the robot,
as a query deemed safe algorithmically can still result in an
unsafe robot action due to uncertainty in the control and
environmental dynamics. Various methods have been proposed,
such as safe control based on energy functions (Pandya and
Liu, 2022), safe model predictive control (Koller et al., 2018), and
Bayesian meta-learning through alternating sequential optimal
control problems for exploration and exploitation (Lew et al., 2022).
A prominent approach to safety is control barrier functions (CBFs),
a framework for ensuring the safety of nonlinear control affine
systems (Ames et al., 2014; Romdlony and Jayawardhana, 2014;
Ames et al., 2019). The resulting equations can be solved using
quadratic programming, making the implementation feasible in
control loops. The methodology has been expanded to high
relative degree systems, making it generally applicable (Nguyen and
Sreenath, 2016). Model uncertainty has been considered in CBFs
in terms of parametric uncertainty (Cohen and Belta, 2022) and
non-parametric uncertainty (Castañeda et al., 2021). These works
ensure that safety can be guaranteed despite having a bounded
model uncertainty.

In this paper, we consider the combination of the above
two problems, namely, safe active exploration, in the context of
an autonomous robot system for ultrasound (US) scanning of
rheumatoid arthritis (RA). US imaging is a popular method for
diagnosis and monitoring of RA and various other diseases, as it
allows inspection of tissue and joint structures at low cost and
without the use of radiation. The use of ultrasound does, however,
rely on trained professionals with limited availability, so automation
of the process has high potential value.

Active exploration is a major component of US scanning for
RA and is, in fact, how the procedure is performed manually by
trained professionals. During the procedure, the probe is placed in
contact with joints in the patient’s hand, allowing the subsurface
structures to be inspected on a connected monitor. The professional
must ensure that contact between the probe and the patient’s hand
is maintained and find an optimal placement in order to capture
potential disease activity. When an appropriate area has been found,
the probe is kept stationary, and Doppler mode imaging is used
to assess the flow of synovial fluid in the joint cavity, indicating

inflammation. Correct placement of the probe will ensure high-
quality scans. Different approaches have been proposed to optimize
the ultrasound image quality. A commonly usedmethod is based on
ultrasound confidencemaps (Karamalis et al., 2012; Chatelain et al.,
2017; Jiang et al., 2020) that can be used to detect if contact is poor
and adjustments to the probe position must be made. Force-based
methods have also been explored to optimize the image quality by
attempting to estimate the surface normal and position of the probe
accordingly (Jiang et al., 2021a). As these methods do not consider
the structure of tissues in the image but only the overall quality,
they are not suited for RA, where the structure is vital. Bayesian
optimization based on segmented ultrasound images is proposed
by Goel et al. (2022). This allows certain structures in the image
to be optimized efficiently, and as the optimization is guided by
a statistical model, uncertainties are handled implicitly. While the
above methods consider the positioning of the probe, limiting the
maximum applied force is also critical. First, the contact force must
be kept low to ensure the flow of synovial fluid is not blocked by
the pressure (Möller et al., 2017). Second, patients with high levels
of disease activity will experience pain from excessive pressure.

To address the above use case, we propose to draw from the
wider active exploration and safe control literature. To determine the
probing location, we use Bayesian optimization, similar toGoel et al.
(2022), but make use of a classifier trained to estimate the US
image quality instead of a segmentation model.This is done because
assessing the quality of an ultrasound image for RA is a complex
task requiring the correct placement, appearance, and relative size
of different tissue types. We extend the method by considering the
ability to sample images continuously while positioning the probe
on the patient, leading to a more efficient search. To establish and
maintain contact with the patient’s hand, we use direct force control
and add an additional level of safety in the form of a high-order CBF
to bound the contact forces below a safe threshold.

Our main contributions are as follows:

• We present, to the best of our knowledge, the first results on
CBFs applied to safe force control in the medical domain of a
real (not simulated) robotic system in a laboratory setting.
• We present a method for autonomous robot scanning of
RA. While research has been performed on autonomous
US scanning for various applications such as scanning of
vessels (Virga et al., 2016; Jiang et al., 2021b) and breasts
(Welleweerd et al., 2020), to the best of our knowledge, no
previous work within autonomous scanning for RA exists.
• Additionally, a minor contribution is the extension of
informative continuous expected improvement (ICEI) as an
acquisition function for Bayesian optimization to the context
of robot motion planning.

2 Problem formulation

We consider two sub-problems in the context of ultrasound
scanning for RA:
Problem1: (Active search).This problem is concernedwith finding
areas of high ultrasound image quality in the presence of uncertain
measurements. We consider the search problem as finding a global
maximum popt of an unknown underlying function f(p) with
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FIGURE 1
Left, the experimental setup for autonomous US scanning of RA. Right, a flowchart of the proposed system for active search for high-quality US images
while achieving bounded contact force.

uncertainty ϵ where p is a subset of the Cartesian space.

popt = arg
p∈ℝn

max f (p) + ϵ. (1)

Function estimates are achieved using a classifier trained on
ultrasound images. It is assumed that a starting point is given from
external sensing, such as a RGB-D camera combined with a method
of estimating joint locations in a RGB image. Solutions for this exist,
at least for simple, well-lit scenes (Zhang et al., 2020).
Problem 2: (Bounding the contact force). This problem consists
of ensuring bounded contact force with the patient despite
uncertainties in the patient’s position. A robot manipulator with
an ultrasound probe mounted—as seen in Figure 1—is employed.
The robot is controlled at the joint position level. We consider the
problem of finding a safe control input u∗ given a potentially unsafe
nominal control input uno that minimizes the differences between
u∗ and uno. Safety is defined in terms of bounded contact force
fc ≤ fmax, where fc and fmax are the contact force and maximum
allowed force, respectively.

3 Preliminaries

This section will present theoretical background on Gaussian
process regression and Bayesian optimization, which are used as the
basis of our solution to Problem 1, and exponential control barrier
functions, which are used as part of our solution to Problem 2.

3.1 Gaussian process regression

Gaussian process regression (GPR) allows unknown functions,
along with their uncertainty, to be estimated based on limited
samples (Rasmussen and Williams, 2005). A Gaussian process
(GP) is a distribution over functions and is defined fully by
a mean function m(p) and a covariance function k(p,p′). It is
assumed that the vector input p ∈ ℝd is related to the scalar
output y by the function f(⋅) with the following relationship:
y = f(p) + ϵ, where ϵ ∼N (0,σ2ϵ ). The training input is defined as

P with y being the associated targets. Together, this is denoted
as D:{(p1,y1), (p2,y2),…,(pn,yn)}. Observations y and discrete
function values to be predicted f∗ then follow amultivariate normal
distribution:

[
y
f ∗
] ∼N ([

m (P)
m (P∗ )
] ,[

Kϵ K (P,P∗ )
k (P∗ ,P) K (P∗ ,P∗ )

]), (2)

where Kϵ = K(P,P) + σ2ϵ I, with σ2ϵ being the inherent noise on the
measurements—allowing optimization under uncertainty—and

K(P,P′) =
[[[[[

[

k(p1,p
′
1) k(p1,p

′
2) … k(p1,p

′
k)

k(p2,p
′
1) k(p2,p

′
2) … k(p2,p

′
k)

⋮ ⋮ ⋱ ⋮
k(pk,p

′
1) k(pk,p

′
2) … k(pk,p

′
k)

]]]]]

]

. (3)

The mean vector associated with f∗ is then

f ∗ =m (P∗ ) +K (P∗ ,P)K
−1
ϵ (y −m (P)) (4)

and the covariance is given by:

cov(f ∗ ) = K (P∗ ,P∗ ) −K (P∗ ,P)K
−1
ϵ K (P,P∗ ) . (5)

The estimate of the standard deviation along the estimated
function is then the diagonal of cov(f∗ ) and is denoted σf (p).
The mean function is often set to zero unless some underlying
information about the process exists. The covariance function
is generally defined such that points near each other are more
correlated. A common choice is the Matern class of covariance
functions. This class of functions leads to different levels of
differentiability and, thus, smoothness of f(p) based on a smoothness
parameter ν. For ν = 3

2
, the Matern kernel is

kν= 3
2
(p,p′) = (1+√3d(p,p′))exp(−√3d(p,p′)) , (6)

where d(p,p′) is the Euclidean distance between p and p′ scaled by
a diagonal matrixΘ:

d = (p− p′)Θ−1 (p− p′) , (7)

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1344367
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Vinter-Hviid et al. 10.3389/frobt.2024.1344367

Θ = diag(l1, l2,…, ld) = diag (θ) , (8)

with θ = [l1 l2 …ld]
T as the length scales of the function. The

length scales encode how rapidly f(⋅) changes along each dimension.
These are considered free parameters that must be determined from
the training data. This is done by maximizing the marginal log-
likelihood of the training examples given the parameters.

3.2 Bayesian optimization

Bayesian optimization provides a framework for maximizing
functions that are costly to evaluate, where uncertainty is present,
andwhere following the gradient is infeasible (Shahriari et al., 2016).
Themethod consists of three elements: a statistical surrogate model,
an acquisition function, and a stopping criterion. A common choice
for the surrogate model is Gaussian processes, as defined above.The
acquisition function α(⋅) determines where to sample next in the
search space based on the surrogate model by balancing exploration
and exploitation:

pn+1 = arg
p∈ℝd

maxα (p;D) . (9)

A common choice for the acquisition function is expected
improvement (EI) (Mockus et al., 1978). EI maximizes the expected
gain over the previous best sampled score, f ∗.

EI (p) ≔ 𝔼[max (( f (p) − f ∗ ) ,0)] , (10)

EI can be calculated analytically as

EI (p) =
{{
{{
{

( f ∗ (p) − f
∗)Φ(

f ∗ (p) − f
∗

σ f (p)
)+ σ f (p)ϕ(

f ∗ (p) − f
∗

σ f (p)
) if σ f (p) > 0

0 if σ f (p) = 0
,

(11)

where Φ(⋅),ϕ(⋅) are the cumulative distribution function (CDF) and
the probability density function (PDF), respectively.

3.3 Control barrier functions

Control barrier functions provide a framework for ensuring
system safety (Ames et al., 2014). Throughout this section, a
nonlinear control affine system of the following form is considered:

ẋ = f (x) + g (x)u, (12)

where f :ℝn→ℝn and g :ℝn→ℝn×m are local Lipschitz functions,
with x ∈ X ⊂ ℝn and u ∈ U ⊂ ℝm being the admissible states and
control inputs, respectively.The goal of the CBF is to keep the system
in a safe region of the state space.This safe region C is defined based
on a continuously differentiable function h :X ⊂ ℝn→ℝ as

C = {x ∈ X | h (x) ≥ 0} ,
∂C = {x ∈ X | h (x) = 0} ,

Int (C) = {x ∈ X | h (x) > 0} . (13)

The system is thus safe if a control law input u leads to the scalar
function h(x) ≥ 0 ∀t∧∀x0 ∈ C. Equivalently, this can be described as

the set C being rendered forward invariant by the control law.When
the relative degree r of the systemwith respect to h is larger than one,
higher-order CBFs can be used to render a set C safe. The relative
degree of a continuously differentiable function h(x) with respect
to System (12) is the number of times it can be differentiated along
(12) before the control input u explicitly shows. Exponential control
barrier functions (ECBFs) are a class of higher-order CBFs (Nguyen
and Sreenath, 2016).This formulation is based on calculating higher-
order time derivatives of h(x). The rth time derivative is

h(r) (x,u) = Lrfh (x) + LgL
r−1
f h (x)u, (14)

where Lrfh(x) is the r
th Lie derivative of h along f. ECBFs are defined

based on a series of integrators that relate h(r)(x,u) to h(x):

η̇ (x) = Fη (x) +Gμ,

h (x) = Cη (x) .
(15)

With

η (x) =

[[[[[[[[

[

h (x)
L fh (x)
L2fh (x)

⋮
Lr−1f h (x)

]]]]]]]]

]

=

[[[[[[[[

[

h (x)
ḣ (x)
ḧ (x)
⋮

h(r−1) (x)

]]]]]]]]

]

,

μ = Lrfh (x) + LgL
r−1
f h (x)u = h(r) (x,u) (16)

and F : r × r, G : r × 1, C : 1 × r

F =
[[[[[

[

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1
0 0 0 … 0

]]]]]

]

, G =
[[[[[

[

0
0
⋮
0
1

]]]]]

]

, C = [1 0 … 0.]

(17)

Choosing the state feedback μ = −Kη(x) leads to h(x) being an
explicit function of time t and the initial state x0:

h (x) = Ce(F−GK)tη(x0) , (18)

where h(x) is then said to be an ECBF—rendering C forward
invariant—if there exists a row vector Kγ such that

sup
u∈U
[Lrfh (x) + LgL

r−1
f h (x)u] ≥ −Kγη (x) , ∀x ∈ Int (C) (19)

results in

h (x (t)) ≥ CeF−GKγtη(x0) ≥ 0, (20)

where h(x0) ≥ 0. A Kγ can be found that satisfies this using the
pole placement method, with all poles being real and negative.
Additionally, the eigenvalues λi of system F−GKγ must adhere to
a condition based on the initial conditions x0:

λi (F−GKγ) ≥ −
ν̇i−1 (x0)
νi−1 (x0)

, (21)

where

ν0 (x) = h (x) ,

ν1 (x) = ν̇0 (x) + s1ν0 (x) ,

⋮

νr (x) = ν̇r−1 (x) + srνr−1 (x) , (22)
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and s0,…, sr are defined as the roots of the characteristic polynomial
of F−GKγ.

4 Approach

This section presents our proposedmethod for safe active search
under uncertainty applied to ultrasound image acquisition.

4.1 Ultrasound image quality optimization

We will now present our proposed solution to Problem 1.
In regular Bayesian optimization, sampling from anywhere in the
search space is assumed to be associated with the same cost. As the
robot must move to acquire images, this assumption is not ideal for
robotic ultrasound scanning, as switching between sampling points
far apart from each other will incur a large time cost while the
robot moves between them. To account for this, we consider a non-
standard acquisition function that incorporates the ability to sample
ultrasound images throughout the path traveled by the robot. Similar
methods have been applied to robotic environmental monitoring
using unmanned aerial vehicles (Marchant and Ramos, 2014). We
parameterize the path as straight lines to ensure the optimization
time of the acquisition function is kept low.The pathP is defined as

P (u,pn+1|pn) = (1− u)pn+1 + upn, (23)

with u ∈ [0,1]. The modified acquisition function is denoted αIC(⋅)
and is said to be informative continuous as information throughout
the path is considered. It is defined by integrating the base
acquisition function over the path and scaling with the inverse of
the path length:

αIC (P (u,pn+1|pn)) ,α) =
1

‖pn+1 − pn‖2

∫
1

0
α(P (u,pn+1|pn))du. (24)

The scale is included to account for the time spent moving between
pn and pn+1. Assuming that the robot moves at a constant velocity,
maximizing the modified acquisition function leads to a path that
maximizes the integral of the base acquisition function per unit
of time spent. The formulation leads to the entire path being
considered—and thus less time spent in areas with low uncertainty
and/or low expected scores. We employ the EI acquisition function
as the base acquisition function and denote the informative
continuous version as ICEI.A score y is associatedwith each position
in the search space p using a classifier trained on labeled ultrasound
images. The range of the output is [0;1], with 0 indicating poor
quality and 1 good. Defining an appropriate stopping criterion is
important to ensure a good area has been found without spending
excessive time scanning a patient. A statistical stopping criterion is
proposed based on the maximum lower bound over the samples, y.
The lower bound for a sample is

y1−δ = y−Zδσy, (25)

where Z is the standard normal distribution, Zδ is the critical value
for a confidence level of 1− δ, and σy is the prediction of standard

deviation for the corresponding sample y based on the surrogate
model. As the range of possible scores is knownbeforehand, defining
an appropriate threshold is possible.

4.2 Safe direct force control

Our proposed solution to Problem 2 combines a hybrid
force/position controller—also referred to as the nominal
controller—with a CBF defined such that bounded contact force
is ensured. The hybrid force/position controller allows direct
control over the force to ensure consistent ultrasound image
quality while making positioning possible during contact.The robot
considered in this work is controlled at the joint position level.
The CBF is defined in Cartesian space and at the acceleration level
to allow for constraints on the force. End-effector accelerations
are related to joint accelerations using the following kinematic
relationship:

q̈ = J† (q) (ẍ − ̇J (q) q̇) , (26)

where J(q) is the manipulator Jacobian, † denotes the
Moore–Penrose pseudo inverse, q is the joint configuration, and ẍ is
theCartesian space acceleration.The resulting joint accelerations are
then double integrated for the robot’s position controller. Figure 2
illustrates the proposed control architecture.

4.2.1 Hybrid force/position controller
The error between the desired and measured end-effector

wrench is denoted Δh. Similarly, the positional error used is denoted
Δx; note that the orientational error is obtained using quaternions.
The Cartesian space is divided such that force control is applied
in some subset of the space, and position control is applied in the
remainder of the space (Siciliano et al., 2008). New variables are
defined to achieve this:

Δh∗
m×1
= S†f

m×6

Δh
6×1
, (27)

Δx∗
n×1
= S†p

n×6
Δx
6×1
, (28)

where S†p and S†f select the position-controlled and force-controlled
subsets, respectively. Force control is applied along the length of the
probe, defined as the z-axis, while positional control is used for the
remaining degrees of freedom (DOFs). The force controller acting
on a subset of the Cartesian space is then

a f = K
f
pS
†
fΔh−K

f
dS
†
f ẋe, (29)

where ẋe is the end-effector velocity, a f is the resulting acceleration
reference, and K f

p,K
f
d are diagonal m×m positive definite gain

matrices. Note that ẋe is used over the more natural choice of using
the end-effector wrench derivative ḣe. This is a method of avoiding
the problem of taking the time derivative of the often highly noisy
force measurements (Siciliano et al., 2008). The position controller
is defined similarly as

ap = K
p
pS
†
pΔx −K

p
dS
†
pẋe, (30)
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FIGURE 2
Block diagram of hybrid force/position controller with CBF to ensure bounded contact force. Td specifies the desired pose, and hd specifies the
desired wrench.

with ap as the acceleration reference, and Kp
p,K

p
d are n× n positive

definite gainmatrices.The full acceleration of the nominal controller
is then

ẍno = Spa f + Spap. (31)

4.2.2 CBF for bounded contact force
The acceleration reference from the hybrid force/position

control is modified by a control barrier function to ensure bounded
contact force. This requires the definition of a control affine model
relating commanded end-effector accelerations to contact force.This
is defined as being one-dimensional, only considering the force
from movement along the z-axis, thus neglecting friction in the
axes of motion. This is a valid assumption, as the US gel placed on
the patient’s hand while scanning will render friction between the
probe and hand negligible. The contact force is modeled using the
Kelvin–Voigt model as

fc = k(z− zr) + b ̇z, (32)

where fc is the contact force, k and b are positive scalars, and zr is the
position of the contact surface.

A second-order system is used to model the inner position
control loop and account for the actuator dynamics.The relationship
between position reference z and actual position z is modeled by a
second-order system:

̈z = ω2
n (z− z) + 2ζωn ̇z, (33)

where ζ is the damping factor and ωn is the undamped natural
frequency. The control input to the CBF from the nominal force
controller is defined at the acceleration level u = ̈z. To relate this to
z, it is double integrated:

Z (s) = 1
s2
Z̈ (s) . (34)

The full control affine model is then

x =

[[[[[[[[

[

fc
z
̇z
z
̇z

]]]]]]]]

]

=

[[[[[[[[

[

x1
x2
x3
x4
x5

]]]]]]]]

]

, u = ̈z

[[[[[[[[

[

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

]]]]]]]]

]

=

[[[[[[[[

[

kx3 + b(ω2
n (x4 − x2) + 2ζωnx3)

x3
ω2
n (x4 − x2) + 2ζωnx3

x5
0

]]]]]]]]

]

+

[[[[[[[[
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u.

(35)

Note that this utilizes the derivative of the force, such that
the method does not directly depend on zr . However, it will lead
to an overly conservative barrier function outside of contact, as
the non-contact situation is not modeled. The barrier function is
defined as

h (x) = fmax − fc, (36)

where fmax is the maximum allowable force. This leads to a relative
degree of three for the system, and an ECBF is therefore employed.
The ECBF is defined as a constraint to a quadratic program (QP).
The objective function is defined as the squared error between the
nominal control input uno and the resulting input u

|u− uno|2 = u2 − 2unou+ u2no. (37)

This ensures the nominal control is followed whenever possible,
and the ECBF only limits the input whenever the system is near the
boundary of the safe set. The resulting QP is then

u∗ (x,uno) = arg
u∈ℝ

min u2 − 2unou

s.t. Lrfh (x) + LgL
r−1
f h (x)u+Kγη (x) ≥ 0,

(38)

where u∗ is the modified control input and uno is the nominal
control input from the hybrid force/position controller.

5 Results

In this section, results for the image quality optimizationmethod
and safe force controller are presented. The standard EI acquisition
function is compared with the proposed ICEI variant. The addition
of a CBF for keeping bounded contact force is evaluated under
uncertainty in the estimate of surface location zr .

5.1 Comparing image quality optimization
methods

The ultrasound image quality optimization approach assumes a
starting position is given, and predetermined bounds of the search
space are defined in relation to this. The search was performed over
two DOFs such that the input to the Bayesian optimizer was p =
[x,Rx]T, where Rx is rotation about the x-axis. The inherent noise
of the measurements was set to σϵ = 0.1. Bayesian optimization was
implemented using BoTorch (Balandat et al., 2020).The informative
continuous extension was implemented in PyTorch, estimating the
integral using a discrete sum. Our proposed method for optimizing
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FIGURE 3
Ground truth and results for random sampling, EI, and ICEI are shown. The predictions of the Gaussian process regression are displayed with the
samples and the location of the maximum lower bound.

ultrasound image quality has been evaluated in a simulated setting.
The simulation is based on data gathered from scanning 32 joints
across four test subjects. The search space was sampled in a grid
using nearest-neighbor interpolation to construct an approximated
ground truth. The stopping criterion was set to a maximum lower
bound of 0.9 with a confidence level of 95%. Three methods were
tested: random sampling, EI, and ICEI. The search space was
normalized such that the range was equal for the two DOFs. A
distance budget of 10 times the length of the search space was
given. In order to simulate the ability to sample continuously, a
sample was taken for every 4% of the search space traveled. Based
on this, random sampling, EI, and ICEI resulted in 60.7%, 67.8%,
and 75.0% success rates, respectively, with mean distance traveled
being 8.65, 8.13 and 7.64 times the length of the normalized search

space respectively. Figure 3 shows the search patterns resulting from
the different methods. Random sampling is, as expected, inefficient.
The tendency of ICEI to cause less overlap of paths compared to EI
is clear.

EI and ICEI were also compared in a live test. In these tests
the search was extended such that p = [x,Rx,Ry,Rz]T with a range
of [−7.5mm,7.5mm] for x and [−4°,4°] for the rotational DOFs.
The test compared the results of searching using EI and ICEI.
For each test, the methods were started at the same position.
The methods were run until the stopping criterion was reached.
When this occurred, the probe was positioned at the maximum
lower bound, and a measurement was taken to ensure the success
criterion actually had been reached. This cannot be guaranteed due
to uncertainties in positioning. If not, the search was continued. If a
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FIGURE 4
Experiments in simulation (left column) and on the robot (right column) of the robot establishing contact with the environment under initial condition
z0 relative to the surface position zr. The nominal control alone (denoted NOM) does not bound the contact force during contact establishment and
leads to varying violations depending on the initial condition. The addition of the proposed CBF ensures contact force is bounded below 5N for varying
initial conditions ranging from starting 1 mm (z0 | = zr− | 1mm) inside the contact to starting 4 mm above (z0 | = zr+ | 4mm) the contact.

solution had not been found within 60 s, it was considered a failed
scan. Fourteen joints were scanned. EI lead to a success rate of 79%
and ICEI to a rate of 92%. The mean recorded time for optimizing
the acquisition function during this test was 0.10 ± 0.06 s for EI and
0.14 ± 0.10 s for ICEI. The training time for the Gaussian process
using maximum log-likelihood was 0.16 ± 0.08 s. Even with the
ICEI acquisition method, querying a new sample point only took
around 0.3 s

5.2 Evaluation of safe force controller

A KUKA AG IIWA 7 R800 was used to evaluate the
safe controller with the fast research interface (FRI) for
communication with the robot through the IIWA ROS package

(Chatzilygeroudis et al., 2019). The communication rate with the
inner joint position controller was set to 200 Hz. The KYOTO
KAGAKU Rheumatism Hand Phantom was used with parameters
estimated to k̂ = 1285 and b̂ = 15. For the inner joint position
controller, the following parameters were found: ω̂n = 31.25
and ̂ζ = 1; it is not possible to change these parameters, as it
is an inbuilt controller. The parameters of the joint controller
were estimated by minimizing the sum of squared errors
between the model and measurements taken during an initial
experiment where the robot was moved into contact with the
hand phantom.

The parameter Kγ used in the safety filter must be defined such
that the poles of System (20) are negative and real and adhere to
the constraints on initial conditions (21). Pole placement within
these constraints affects how conservative the barrier function is and
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will always ensure safety. The following poles p were utilized in the
experiments: p = [−3 −6 −9]. A maximum force of fmax = 5N
was specified.

The nominal force control parameters where set to K f
p =

0.001 and K f
d = 1. The controller was implemented in Python

using CVXOPT (Andersen et al., 2020) to solve the ECBF
QP problem. The end-effector wrench was estimated from
the robot’s joint torque sensors using the following kinematic
relationship:

he = (J(q)T)
†τexternal, (39)

where τexternal are the measured external joint torques available
through the FRI. Figure 4 illustrates the invariance of the proposed
method to the contact surface point in the simulation and when
running on the robot and shows that the ECBF is able to bound the
contact forces below the specified threshold.

6 Discussion

Our methodology is applicable to other robotic applications
involving safety-constrained active exploration where contact
between the robot and an unknown environment is concerned, such
as tactile exploration and manipulation. Our proposed formulation
for search using Bayesian optimization with ICEI can help model
the kind of sampling scheme applicable to robot tactile exploration,
that is, where the full travel path of the robot end-effector must
be considered. Our approach to the safe bounding of the contact
forces using ECBFs is applicable in the case of robots in contact
with the environment where force feedback is available. By directly
measuring the contact force and considering its first derivative in the
contact model, we increase the system’s robustness to uncertainty
in the contact boundary, that is, uncertainty in the switching of the
environment dynamics.

However, our method has a number of limitations in real-
world applications. Although our CBF formulation is robust to
uncertainty in the contact boundary, it is not robust to a time-
varying boundary. In an ultrasound scanning application, thismight
occur if the patient, for example, lifted their hand during the scan. In
this case, knowledge of the derivative of the contact location would
be needed to guarantee safety. Similarly, the Bayesian optimization
approach assumes a static function, that is, that the patient’s hand
does not move. Nevertheless, small motions can be accounted for by
increasing the uncertainty term σϵ .

7 Conclusion

Methods for safe active exploration of an unknown environment
have been presented in this article. Active search under uncertainty
is performed using Bayesian optimization, and safety is achieved
through the use of control barrier functions. The approach has
been applied to autonomous ultrasound scanning of rheumatoid
arthritis, which involves finding areas of high ultrasound image
quality by positioning the ultrasound probe on the patient. The
method has been demonstrated in both a simulated and real setting.
An extension to the standard expected improvement, referred

to as informative continuous expected improvement, has been
proposed. The method has been shown to increase the success
rate from 79% to 92%, given a limited time budget of 60 s. Safety
in the context of autonomous ultrasound scanning is defined in
terms of keeping contact force bounded. We have shown both in
simulation and on a robot that, by using a higher-order control
barrier function, we are able to bound contact forces during contact
establishment despite incorrectly specifying the contact boundary
by −1 or +4 mm.
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