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Biohybrid machines (BHMs) are an amalgam of actuators composed of living
cells with synthetic materials. They are engineered in order to improve
autonomy, adaptability and energy efficiency beyond what conventional
robots can offer. However, designing these machines is no trivial task for
humans, provided the field’s short history and, thus, the limited experience
and expertise on designing and controlling similar entities, such as soft
robots. To unveil the advantages of BHMs, we propose to overcome the
hindrances of their design process by developing a modular modeling and
simulation framework for the digital design of BHMs that incorporates Artificial
Intelligence powered algorithms. Here, we present the initial workings of the
first module in an exemplar framework, namely, an evolutionary morphology
generator. As proof-of-principle for this project, we use the scenario of
developing a biohybrid catheter as a medical device capable of arriving
to hard-to-reach regions of the human body to release drugs. We study
the automatically generated morphology of actuators that will enable the
functionality of that catheter. The primary results presented here enforced
the update of the methodology used, in order to better depict the problem
under study, while also provided insights for the future versions of the
software module.

KEYWORDS

biohybrid machines, 3D voxel-based simulator, optimization, evolutionary algorithms,
machine learning

1 Introduction

Although well-established robotic theory have produced great tools for humanity in
a macroscale setting, the same principles are not trivially transferable to machines that
require to be built in millimeter scales or lower. This challenge stems from the inherent
complexities associated with manufacturing at such miniature scales, where machines
built within these dimensions often fail to match the performance of their larger-scale
counterparts (Rus and Tolley, 2015). When comparing conventional rigid robots with
unconventional soft robots that can also be driven by biomaterial, what can be defined
as biohybrid machines (BHMs), the latter have several advantages in microscale settings.
For instance, BHMs can better mimic the movement pattern and the structure of living
systems, they have increased power density and lifetime span in smaller scales, while
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FIGURE 1
AQ14 paradigm of CPPN architecture that has two inputs (A,B) and one
output (C). Each node in the hidden layer represents a specific
function and weighted connections represent the total input of
each node.

they have the potential to self-heal, assembly and recreate depending
on the application (Lin et al., 2022). However, as BHMs are
composed of living cells and synthetic materials, their designing
process is not straightforward and not yet validated like their
conventional counterparts.

Recognizing that the existing body of work predominantly
emphasizes single demonstrators and keeping in mind the
imperative of scalability for BHMs, the design process requires
meticulous attention to manufacturing and assembly procedures
(Menciassi et al., 2020). Consequently, we advocate for a
modular software framework where rudimentary designs will
be automatically created and selected using AI algorithms,
followed by gradual refinement through more precise simulations
of the evolving complex system. While a similar approach
was explored previously (Kriegman et al., 2020), our work
specifically addresses constraints connected with the design
of biohybrid catheters as medical devices. One of the most
important issues is to take into account the biocompatibility of
materials used in catheter construction. Hence, through Poisson’s
ratio specification, we constrain our BHMs to biocompatible
soft materials, such as silicones (e.g., PDMS, Dragonskin, and
Ecoflex) or thermoplastic polymers (e.g., polyurethane or Pemba)
commonly used for fabricating commercial devices. Additionally,
anticipating minimal mechanical resistance due to the use of
biological actuators in the biohybrid catheter, we set the Young’s
modulus at 5 Mpa.

At this stage of development we are primarily interested in
mechanical material properties. However, since catheter is an
invasive device, special attention should be taken about material
biocompatibility, chemical stability, low thrombogenicity, ease of
sterilization and compatibility with medications it will come in
contact with during medical procedures. All of these aspects

will constitute additional constraints on the choice of materials
in the final product development, and will require more refined
simulation modules.

Establishing such AI-powered BHMdesign process is one of the
primary goals of our ongoing project, BioMeld1. In this project, we
further aim to harness this framework to pioneer the development
of a groundbreaking medical device–a biohybrid catheter designed
to deliver medications to hard-to-reach regions within the human
body. With this specific medical device application in mind, we
defined initial testing scenarios to better represent the problem
at hand. It is important to note that the adaptability of our
framework extends beyond this context; it can be applied to diverse
applicationswith slight adjustments to assumptions, constraints, and
testing scenarios.

Given that the first design and testing steps will be performed
purely in silico, a physics simulator is needed. Voxelyze is a
fully open source physics simulator that is written in platform
agnostic C++ (Hiller and Lipson, 2014). While there is a large
body of work on physics simulators used for designing robotics,
the majority of widely established simulators are studying rigid-
body interactions (Hwangbo et al., 2019). On the other hand, there
are simulators that can study soft material, thus soft robotics, but
they mainly adopt small deformations of homogeneous materials
that have external forces applied to them (Nealen et al., 2006). As a
result, Voxelyze is preferred as it manages to model quantitatively
and computationally efficiently the non-linear deformation of
heterogeneous soft bodies, along with the statics and dynamics in a
3D environment.

Evolutionary methodologies are employed to discover
possible morphologies as it was proved that they can overpower
human designers’ capacity. An important meta-parameter in
evolutionary methodologies is the representation of possible
solutions (Ryerkerk et al., 2017; Tsompanas et al., 2021). Its choice
mainly depends on the problem, while the level of advantages
may vary. Here, given the unique nature of the problem we want
to tackle, we chose Compositional Pattern Producing Networks
(CPPNs) (Stanley, 2007). Specifically, the main objective of
the morphology generator for our case is to create solutions
that enable the catheter to achieve efficient angular movement.
Previous research has demonstrated that such efficient movement
is more attainable when repeating patterns of passive and active
tissues are present within an organism (Cheney et al., 2014). As
a result, the use of CPPNs is an ideal option for the application
that we study.

The methodology presented here is the first step within a
comprehensive framework that will enable the automated design of
complicated BHMs for diverse applications. These applications will
be determined based on the information and constraints provided as
inputs to the design process. In this context, we present and analyze
the preliminary results to elucidate the revisions and enhancements
made to the software framework, aligning it more closely with
the specific problem under consideration. The insights garnered
from these results inform our ongoing efforts to implement the
BHMs design process, as we continue to explore and assess various
strategies.

1 https://biomeld.eu/
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TABLE 1 Parameters of active and passive voxel.

Parameters Active voxel Passive voxel

Elastic modulus (MPa) 5 5

Density (kg/m3) 1,000 1,000

Poisson’s ratio 0.35 0.35

Coefficient of Thermal Expansion (1/°C) 0.01 0

Coefficient of static friction 1 1

Coefficient of dynamic friction 0.5 0.5

Frequency of actuation (Hz) 2 N/A

TABLE 2 Key parameters of CPPN architectures.

Parameter Values

Input nodes 5 (x,y,z that are Cartesian coordinates of voxel d the
distance from the centre and 1 is the bias)

Output nodes 2 ([Empty space or not] and [active or passive voxel])

Hidden layer nodes Initial value in the range of [4,10]

Possible equations sine, absolute value, negative absolute value

used in hidden square, negative square, square root

layer nodes and negative square root

Connection weights
range

[-1,1]

2 Background

The framework of Voxelyze can provide a truly heterogeneous
material simulation (Hiller and Lipson, 2014), as it is capable
of assuming objects that can be composed of any number of
material types with different physical properties (i.e., density,
stiffness, Poisson’s ratio and friction coefficients). This attribute
can accommodate the recent technological advances in multi-
material additive manufacturing and bio-engineering (Ricotti et al.,
2017). On top of external forces that can be applied in Voxelyze
simulated objects, a mechanism of volumetric actuation is included
in the simulation framework that allows the investigation of
innovative arrangements, such as BHMs. The framework is built in
a computationally efficient way so that standard desktop computers
can handle simulation of bodies with multiple degrees of freedom.

Soft robots or BHMs that are designed with the use of CPPNs
representation and evolutionarymethods (Cheney et al., 2014; 2015;
Kriegman et al., 2020) tend to contain patterns of same material
that resemble the morphology of tissues in natural bodies (i.e., a
group of actuating voxels similar to a muscle attached to a group

FIGURE 2
Boundary conditions set in the simulation environment for all
individuals.

of passive voxels similar to a bone). Consequently, these pattern-
composed morphologies are more efficient when the objective is
movement, since the group of voxels located in adjacent locations
can enhance their ability to achieve locomotion in a coordinated
manner. On the contrary, when direct encoding is used, the initial
randomdeposition of differentmaterials next to each other ensues in
each voxel working autonomously and sometimes in an antagonistic
manner to its adjacent voxels. As a result, there is no coordination or
emergence of the similar behavior and the characteristics of voxels’
action remain local. Moreover, the champions of evolutionary
rounds are similar to the randomly initialized ones, and their fitness
improvement is minuscule (Cheney et al., 2014).

There are several types of indirect representations and an
interesting category of them is that of developmental encoding.This
class draws inspiration from developmental biology and is set to
simulate the mapping of a genotype to the appropriate phenotype
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FIGURE 3
Champions of generations (A) 0, (B) 5 and (C) 1976 for the first set of experiments.

FIGURE 4
Fitness of the champion of each generation throughout evolution for
the first set of experiments.

via a procedure resembling growth. CPPNs that are used here, are
an intriguing example of this class, as they can express the structural
relation of voxels that would be the product of a developmental
process. Namely, their formalism is similar to that of artificial
neural networks (ANNs), with the difference of using a variety of
activation functions and differentiated topologies. The topology is
unconstrained and can represent any possible relationship.

Taking into account that CPPNs have a similar formalism
as ANNs (as depicted in Figure 1), we can readily apply
efficient methodologies and strategies proposed for ANNs onto
CPPNs and expect comparable results (Stanley, 2007). Thus, the
evolutionary optimization method Neuroevolution of Augmenting
Topologies (NEAT) can be tested on CPPNs to evolve progressively
more complex networks with promising efficiency (Stanley
and Miikkulainen, 2002; Stanley et al., 2009). However, the
application of AFPO (Age-Fitness-Pareto-Optimization) (Schmidt
and Lipson, 2010) has achieved the evolution of increasingly
complex phenotypic expression morphologies in previous works
(Kriegman et al., 2020). These morphologies exhibit regularities

and symmetries that are fine-tuned through the track of generations,
thus, AFPO will be used here as the optimization procedure.

The inspiration for this work comes from the framework
published by Kriegman et al. (2020), where software tools are used
to generate morphologies that are then synthesized in vitro and
compared with the simulation results. That work studies fitness
functions for four applications. However, all of these applications
are related to the maximum displacement of the organism or other
objects that are manipulated by the organism. Also, the evolved
morphologies are standalone machines that are restricted only
to match a predefined size. In our work, additional constraints
are required to represent the more complicated behaviour since
the produced morphologies will be parts of a more complex
machine (the BHM catheter). Regarding the fitness function, our
goal is to ensure maximal angular displacement, and we explore
various approaches to determine the optimal way of defining the
desired behavior. Initially, the implementations focused on utilizing
maximum displacement over three dimensions as a fitness function.
However, as this approach revealed certain limitations, we further
investigated displacement over a two-dimensional plane.

3 Methods

The first step of a broader BHM modular modeling and
simulation framework is the evolutionary morphology generator
presented here that provides an initial morphology of the BHM
to be tested and optimized in different scenarios. While the
rest of the modeling and simulation framework will be more
accurate and targeting more complex parts of the BHM, the initial
morphology is generated from scratch without relying on extensive
prior knowledge of the problem’s specific details. Instead, it is based
on a high-level description of what defines a desirable solution,
namely, a fitness function (i.e., achieving angular movement), and
a set of constraints associated with the problem (i.e., one end of
the morphology being fixed). In our case, the fitness function can
be the angle that the BHM catheter actuator can bend by itself.
Consequently, the proposed first module utilizes a genetic algorithm
optimization methodology to invent a fit solution for this roughly
defined problem.
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FIGURE 5
Champions of generations (A) 0, (B) 7 and (C) 71 for the first set of experiments after a new constraint was introduced.

FIGURE 6
Fitness of the champion of each generation throughout evolution for
the first set of experiments after a new constraint was introduced.

The genetic algorithm is employed to initiate a population
of possible morphologies, test them against a fitness function
and choose the fittest individuals to produce more and novel
morphologies to be tested. As the main objective of the morphology
generator for our case is to create solutions that enable the catheter
to achieve efficient angular movement, the use of CPPNs as an
encoding mechanism of individuals within the genetic algorithm is
an ideal option for the application that we study.

Several BHM morphologies are created and tested against the
fitness function in the soft-body physics engine Voxelyze on a
3D Cartesian lattice workspace, where voxels (the basic building
block in Voxelyze) are connected together to form a functional
machine. The design is set so that at each voxel located in a unique
x, y and z coordinate, can be characterized as one of three basic
types: 1) passive, 2) actuated with fixed physical properties (i.e.,
density, stiffness, Poisson’s ratio and friction coefficients), and 3)
absent - to indicate that in that area no material will be used.
Also, environmental parameters, like gravitational acceleration and
friction to voxels in contact with the surface plane, are selected

to reflect an initially predefined testing scenario. The parameters
used here are illustrated in Table 1 and are in accordance with
previous works (Kriegman et al., 2020). Despite the initially chosen
material parameters and the number of different materials, this
does not limit the generalization ability of the system, namely,
choosing multiple different materials with a variety of density,
stiffness, Poisson’s ratio and friction coefficient values. Moreover,
Voxelyze can represent morphologies with great spatial complexity,
following recent technological advances in multi-material additive
manufacturing and bio-engineering (Ricotti et al., 2017). Thus,
limitations that were present in other manufacturing processes do
not need to be incorporated in the proposed designing method.

The implementation studied here uses the Cartesian coordinates
in a 3D space as input nodes of the CPPN, while the output nodes
provide the voxel type of the simulated area of the BHM to be
designed (passive, contractile or absent). Also, each node in the
hidden layer represents a mathematical function, while connections
between nodes represent function compositions. The connections
are weighted in such a way that the output of a function is multiplied
by the weight of its outgoing connection. If multiple connections
feed into the same function, it means that the downstream function
takes the sum of their weighted outputs. The specific parameters
used for CPPNs in this study are provided in Table 2.

Consequently, the genotype is a CPPN, while the phenotype
is the morphology of a BHM actuator, produced by utilizing that
CPPN, using voxel coordinates as inputs, while the output of the
network is the functionality of the appropriate voxel.The application
of all possible combinations of coordinates as inputs, will result in the
definition of an output pattern of the given structure morphology in
the workspace. The geometry of a BHM is encoded by a bit-string.
It is noteworthy here that CPPN encoding is a scale-free mapping,
so BHMs of any desired resolution can be designed by the same
encoding without further optimization rounds.

For simplicity and in order to follow the successful
implementation presented and tested previously (Kriegman et al.,
2020), in the first version of this module of the design pipeline, we
implemented a fundamental evolutionary optimization algorithm
similar to AFPO. The next versions of the software will include
more sophisticated evolutionary methodologies (such as NEAT
(Stanley et al., 2009)) that will be tailored for better performance.
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FIGURE 7
Champion of the first set of experiments after a new constraint was introduced (A) at the starting point and (B) after 10 s of simulated time.

FIGURE 8
Champion of the first run for the second set of experiments from two (A,B) perspectives.

FIGURE 9
Champion of the second run for the second set of experiments from two (A,B) perspectives.
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FIGURE 10
Fitness of the champion of each generation throughout evolution for
the second set of experiments first run.

FIGURE 11
Fitness of the champion of each generation throughout evolution for
the second set of experiments second run.

Here, the optimization methodology follows the procedure
described in (Kriegman et al., 2020): 50 randomly generated CPPN-
encoded BHM morphologies are initially produced. An additional
50 individuals are injected into the population that are the result
of mutations of the initial 50 individuals. One more individual
is randomly produced, so the population reaches 101 individuals.
Each one of them is decoded into a BHM morphology that is
tested with the Voxelyze software (if not already evaluated) and
evaluation experiments begin for each BHM after a given time (1 s
of simulated time) for it to settle under gravity. The evaluation of
eachmorphology lasts 10 s of simulated time.The fitness function is
defined in the following section for each reported set of experiments,
and it can be the total displacement of the center of mass of the
BHM in general or on the YZ plane. After the evaluation of all the
individuals in the population, the 50 best performers are returned
to the evolution loop. There is no crossover operator in this version

of the software for simplicity purposes, however, future versions will
test the crossover contribution to the evolution.

The meta-parameters of the algorithm are selected to follow
the initial implementation of the code, however, they can be
optimized for applications in future versions. Specifically, the
population size is selected to be 50 individuals. The termination
criterion is set to be 2000 generations being evaluated, whereas the
computational budget is selected to be 48 h of wall-time (unless
otherwise mentioned). When either is reached, the experimental
run will terminate. The mutation operator is applied to all the
individuals with probability of 1/6 for each of the six kinds of
mutations (add, modify, or remove a vertex and add, modify, or
remove an edge). Thus, both the architecture and the weights of
the network can be altered per mutation operation. Nonetheless,
if the product of a mutation is neutral (namely, no difference
in the morphology produced from the alteration in CPPNs), an
additional mutation operation is performed until 1500 unsuccessful
tries are tested.

After the methodology reaches the computational budget, the
results were analysed manually and appropriate changes in the
methodology or the constraints were applied. In that way, we
aimed to better depict the problem under study in the virtual
environment which provides the initial morphologies for the
actuators of BHM catheters that will be used in the next steps of our
planned framework.

4 Results

In this section the preliminary results of the module will
be presented. Even though the methodology is still in an
inceptive phase, the following analysis triggered the update of the
methodology and effectively enabled the next versions of themodule
to better reflect the problem at hand. For all the sets of experiments
the parameters of the voxels that constitute the BHM designs are
provided in Table 1 and maintained the same throughout all the
experiments presented in this Section. Also, all experiments run on
a system with Intel Xeon CPU E5-2650 with 48 cores at 2.20 GHz
and 64 GB RAM.

4.1 First set of experiments

In the first set of the experiments, the functionality of the
framework was tested in order to be adapted to the problem
at hand (i.e., designing a BHM catheter actuator), by altering
only the boundary conditions of the available design area within
the simulation. The boundary conditions are set as illustrated in
Figure 2. Note that the red star indicates the (0,0,0) coordinates. In
detail, the green plane is a fixed boundary condition for translation
and rotation displacement of all the voxels that are adjacent to that
plane (i.e., plane YZ for X = 0). Moreover, the purple plane (i.e.,
plane YZ forX = 8) is set to a free boundary condition, meaning that
all the adjacent voxels to that plane are free to move in whatever
way the simulation dictates. The rest of the setting is maintained
the same as with the original open-source code. Most importantly,
the available design area is set to 8× 8× 7 voxels and the fitness
function is defined as the maximum displacement of the center
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FIGURE 12
(A) Initial and (B) final position (after 10 s of simulated time) of the second run champion morphology.

of mass of the designed BHM after 10 s of simulated time (given
one more second for the morphology to settle under gravity at
the start of the simulation). Consequently, the basic description of
the problem here is defined as a 8× 8× 7 configuration of voxels
that can be active, passive or empty (with the aforementioned
physical characteristics) and thewhole configuration should be fixed
on one end, to imitate the entry point of a catheter, whereas the
distal catheter tip is free to move and navigate into a tortuous
network of vessels.

While the optimization methodology starts with some
interesting individuals (i.e., the ones that are randomly generated,
Figure 3A) and the fitness values are constantly increasing (as
illustrated in Figure 4), the champion after five generations
(Figure 3B) has a unique characteristic. As illustrated in Figure 3B
(where the yellow star indicates the point with coordinates (0,0,0)),
the produced morphology is not attached to the fixed plane. This
means that during evolution, the morphologies manage to “escape”
the definition of the problem. Thus, this solution/individual better
suits the description of a BHM that moves the furthest of the
initial position rather than perform a bending movement. The
rest of individuals produced through evolution, follow the same
concept (i.e., the final champion after 1976 generations that is
depicted in Figure 3C). This situation demonstrates perfectly that
evolutionary methodologies tend to take advantage of weak points
in the description of the problem, the constraints of the problem, or
simulators that introduce levels of abstraction to effectively reflect
real phenomena in digital computers. This is also apparent from the
graph of the fitness of the champion in every generation that reaches
the value 8 at the end of the 2000 generations (Figure 4). The fitness
here is the displacement of the center of mass of the morphology in
voxel lengths.

As a result, this setting was not duplicated. On the contrary, to
better describe the problem, an additional constraint was inserted
into the methodology. In specific, the morphology should be
attached to the plane YZ with X = 0, otherwise the morphology
design is considered invalid and another individual is produced
through the mutation operator. The results after the new constraint
was included are shown in Figure 5. Also, the fitness of the
champions throughout evolution is illustrated in Figure 6. Here,

the individuals only consist of muscle tissue (i.e., active voxels)
and as dictated by the new constraint all of them are attached
to the plane YZ at X = 0. Even though no other champion is
found after generation 71 that can outperform the current one
(as depicted in Figure 6), an interesting individual is discovered
after the evaluation of the predefined amount of generations. In
Figure 7 the initial state of the actuator is depicted alongside the
final state after the 10 s of simulated time. It can be observed that
the actuator bends so that its free end is now at a location around
60° from the initial position. Moreover, although the fitness of the
second run individuals (Figure 6) is significantly lower than the ones
discovered in the first run (Figure 4), it is obvious that the ones
discovered during the second run fit better the objective, despite the
smaller fitness values. This is because of the insufficiently defined
constraints.

4.2 Second set of experiments

Taking into consideration the results from the first set of
experiments and aiming to achieve a BHM morphology that can
bend at even larger angles, themaximumX dimensionwas increased
from 8 to 20 voxels. In that way the produced morphologies
would better depict a BHM actuator that can bend the catheter’s
body to greater angles. Consequently, all the parameters were kept
fixed, except for the available voxels in X dimension, resulting
in a slightly updated basic description of the problem; namely,
updating only the last description’s dimensions to 20× 8× 7 voxels.
Note that this alternation significantly decelerated the simulations
and, as a result, the following experiments would not reach the
2000 generations stopping criterion, but the computational budget
limit of 48 h.

In Figures 8, 9 the champions of this configuration are illustrated
for two independent runs with different initial populations. Note
that two perspectives of each individual are given in each figure
and the voxel with coordinates (0,0,0) is illustrated with a yellow
star in all the figures as a point of reference. Both champions
are the best individuals found after 48 h of wall time execution
of the optimization algorithm (the one in Figure 8 was originally
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FIGURE 13
The champions of the 10 independent runs (A–J) of evolutionary optimization for the third set of experiments in a front section view.

discovered at generation number 1235, while the one in Figure 9 at
generation number 786, as depicted in Figures 10, 11 respectively).

Both individuals are intriguing morphologies for a BHM
actuator, however, the desired behavior of greater angles compared
with the results from the first set of experiments is not achieved
here. On the contrary, evolutionary optimization seems to have

pinpointed again a weak area in the definition of the problem
and exploited it by producing individuals that obtain high fitness
valueswithout fitting the problem’s specification. In fact, in Figure 12
the initial position of the second champion and its position after
the 10 s of simulated movement are illustrated. The morphology
has two features that can be characterized as tentacles that are
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FIGURE 14
Fitness of the champion of each generation throughout evolution for each of the ten runs in the third set of experiments. The bold lines represent the
fitness of the current run, while the thin lines the fitness of the rest of runs for comparison measure.

separated from the main body of the morphology and, thus, can
oscillate away from the main body. The calculation of the center
of mass total displacement takes into account all the voxels’ mass
and location. As a result, the development of tentacles manages
to distort the fitness function. While the simulated actuator does
not bend or turn significantly from the initial position (when
compared with previous results), the tentacles end up notably
away from their initial position. This means that the center of
mass has significantly moved away from the initial position, thus,
higher values in the fitness function have been achieved, without
the desired functionality being present in the currently evolved
morphologies. This can be observed by the fitness values achieved
throughout evolution generations by the champions in each run in
Figures 10, 11.

4.3 Third set of experiments

To tackle this faulty behavior, we included the following
alternation in the description of the problem. The fitness function

was updated to better reflect the objective of the evolved BHMs
and the desired behavior that they need to have. Thus, instead of
measuring the total displacement of the center of mass for the
morphology, now the fitness function is defined as the displacement
of the center of mass in the YZ plane. This is calculated in terms
of the Euclidean distance that the projection of center of mass
on the YZ plane from its starting point to the point it rests after
10 s of simulated time. As a result, a clearer goal is set for the
evolution, whereas themanipulation of the previous fitness function
by morphologies with oscillating tentacles and movement on the
X-axis is now discouraged.

Additionally, to better manifest the desired morphologies’
design space and given that the BHM actuator needs to be within
a flexible bioreactor chamber, one more change was included.
Specifically, all the possible actuator morphologies were enclosed
in a frame of soft material or consisting of voxels with parameters
as defined in Table 1 for the passive type of voxels. Note that all the
other parameters are the same as the previous set of experiments.
Thus, in line with the newly introduced fitness function, the problem
description is now revised to generate an 18× 6× 5 configuration
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FIGURE 15
(A) Front section view (B) initial and (C) final position of the first champion (Figure 13) for the third set of experiments.

of voxels surrounded by a passive voxel enclosure with a
thickness of one.

To better depict the morphologies, the front section view (at the
XZ plane for Y = 8) of the champions of the 10 independent runs
of this set of experiments are shown in Figure 13. For reference,
the voxel with coordinates (0,0,0) is marked with a yellow star. We
performed 10 independent runs to verify the results. The addition
of the soft material frame around the evolved BHMs provided an
additional obstacle to the morphologies’ ability to bend or turn.
Thus, all the champions presented in Figure 13manage tomove only
slightly on each way of theX-axis, as a result of the oscillations of the
active voxels being accumulated to the free end of the morphology.
The lower achieved fitness values (or the displacement of the center
of mass in the YZ plane) can also be distinguished in Figure 14,
where the maximum value at the end of the 2000 generations only
slightly overcomes the 0.08 of a voxel length. There is a notable
decrease in fitness values and movement (compared with the results
from the first and second sets). In order to demonstrate the behavior
of the morphologies evolved during these experiments, the initial
and final position of the first champion (Figure 13A) is illustrated in
Figure 15.

5 Discussion

This work demonstrates a proposed first stage of a modular
modeling and simulation framework for the digital design
of BHMs. The benchmark for the optimization is a physics
simulator named Voxelyze which is a fully open-source physics
simulator that is written in platform agnostic C++. Voxelyze
can provide a truly heterogeneous material simulation and can
simulate a mechanism of volumetric actuation that enables the
investigation of BHMs.

While some previous research has attempted to design robotic
morphologies using evolutionarymethods, relying on rigid elements
from a predefined set has imposed serious constraints on the
complexity of the outcomes. In contrast, by drawing inspiration from
nature, we can observe that organisms consist of a diverse array of
cells, including both rigid (e.g., bones) and soft (e.g., muscles) types,
arranged in groups of varying shapes. Nature’s ability to stack these
heterogeneous materials to form novel morphologies has facilitated
the evolution of highly complex and efficiently mobile organisms.

The use of direct encodings in the evolutionary optimization
process restricts the search space and makes it challenging for
regularities inmorphologies to naturally emerge, which are essential
for coordinated behaviors. On the other hand, employing indirect
encodings, such as CPPNs, allows for the evolution of highly
complex morphologies with regular and symmetrical patterns, with
or without variations, as highlighted in previous work (Stanley,
2007). Furthermore, it is worth noting that CPPNs’ tendency
towards symmetry and regularity simplifies in vitro production of
BHMs (Kriegman et al., 2020).

The goal of the methodology presented here is to generate an
initial morphology without relying on detailed prior knowledge
of the problem. Instead, it leverages a basic description of what
qualifies as a desirable solution. The simulator’s parameters have
been configured to model two distinct types of materials, each
possessing fixed physical properties (density, stiffness, Poisson’s
ratio, and friction coefficients). One of these materials is passive,
while the other is responsible for actuating to facilitate the necessary
movement of the BHM actuator. Additionally, the simulation
allows for the incorporation of empty spaces within the BHM
morphology, following the previously published methodology
(Kriegman et al., 2020). This choice was made to allow for the
emergence of more complex configurations, potentially leading
to more elaborate movement patterns. While empty space was
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a concern in prior studies (Kriegman et al., 2020) due to the
healing ability of living cells to fill small empty spaces, we have
opted not to include a build-filter in this work. This decision
is based on the absence of small empty spaces in any of the
configurations identified in the final set of experiments (depicted
in Figure 13).

As the objective of the BHM is efficient angular movement and
based on the fact that movement can be achieved more efficiently
when repeating motifs of passive and active tissues are present, the
use of CPPNs is suitable to act as a representation scheme for the
individuals of the evolutionary optimization algorithm. As CPPNs
have a similar formalism as ANNs, we can readily apply efficient
methodologies and strategies proposed for ANNs. A good candidate
is NEAT methodology that evolves progressively more complex
networks. However, for the first version of the software module,
AFPO methodology was implemented for simplicity reasons. The
evolutionary process is repeated until the computation budget is
reached and the best-performing individual in terms of the fitness
function (i.e., the champion of the evolutionary run) is the output of
this first module of the pipeline.

Through experimentation with the code and after the analysis of
the outputs, updates of the methodology and the constraints were
applied to more accurately mimic the problem under study. Given
the predominant focus on individual examples in this field, and
with the objective of enhancing the scalability of the BHMs design
process, in this paper we demonstrated the adaptation of the code to
the specific medical device problem and recommend implementing
this methodology as the initial phase within a software framework
featuring various levels of abstractions. The overarching goal of this
framework is to advance the fabrication of BHMs toward a more
applicable pipeline.

Starting with insufficient constraints, the produced
morphologies evade the problem specifications, despite providing
large fitness values. Thus, additional constraints were added.
When we studied just a cuboid actuator we realised that it can
bent only at lower acute angles. The next version of the code
allowed for longer dimensions to enable larger bending angles.
However, the problematic definition of the fitness function kept
outputting invalid solutions. Consequently, the fitness function
was updated and the methodology was confined with one more
constraint, namely, the enclosure of the actuator into an elastic
frame. The latest results do not perform as well as the ones in
the first set of experiments, because of the increased resistance
of the aforementioned frame, however, future work aspects can
tackle this problem. Namely, we plan to implement more material
types in the methodology and use more sophisticated evolutionary
algorithms.

The presented methods represent the initial phase of a software
framework with progressive levels of abstraction, aiming to shift
the manufacturing of BHMs towards a bio-intelligent paradigm
and model-based engineering. Our plan involves developing a
self-monitoring and self-controlling manufacturing pipeline for
BHMs. To realize such a pipeline, we need to streamline design,
quoting, manufacturing, verification, and reporting processes, thus
significantly reducing error-prone manual steps. Given that BHMs
involve living cell actuators, which greatly expand the parameter
space, we propose leveraging AI-guided modeling to optimize the
search for the most efficient design. The subsequent steps include

experimental testing, optimization, and verification through the
creation of a proof-of-principle re-configurable modular catheter.
Ultimately, we aim to consolidate all necessary manufacturing
equipment into an integrated bio-intelligent manufacturing cell,
demonstrating its adaptable operation.

Aiming towards a self-monitoring and self-controlling
manufacturing pipeline, the simulation-optimization framework
will require to eventually become independent from supervision
of human experts. Nonetheless, the results presented here have
characteristically demonstrated the capacity of evolutionary
optimization methodologies to exploit weak points in problem
definitions or get deceived into local optima (if a robust definition of
the problem is considered). Thus, the current methodology, similar
to previous works (Kriegman et al., 2020), includes an expert-in-
the-loop that have to update the fitness functions, constrains of
the problem or the simulator settings to closer approximate in
vitro results. To alleviate this limitation, our future work will focus
around more robust definitions of the problem by automatically
analysing data and behaviours of in vitro prototypes to tackle the
possible reality-gap (Salvato et al., 2021). On the other hand, the
deception of EAs by specific areas of the fitness landscape has
been previously studied and there are different approaches that
proved to be able to address that (i.e., novelty search optimization
(Lehman and Stanley, 2011; Tsompanas et al., 2020)). Similar
techniques can be included in future iterations of the proposed
methodology.
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