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Implementing and deploying advanced technologies are principal in improving
manufacturing processes, signifying a transformative stride in the industrial
sector. Computer vision plays a crucial innovation role during this technological
advancement, demonstrating broad applicability and profound impact across
various industrial operations. This pivotal technology is not merely an
additive enhancement but a revolutionary approach that redefines quality
control, automation, and operational efficiency parameters in manufacturing
landscapes. By integrating computer vision, industries are positioned to optimize
their current processes significantly and spearhead innovations that could
set new standards for future industrial endeavors. However, the integration
of computer vision in these contexts necessitates comprehensive training
programs for operators, given this advanced system’s complexity and abstract
nature. Historically, training modalities have grappled with the complexities
of understanding concepts as advanced as computer vision. Despite these
challenges, computer vision has recently surged to the forefront across
various disciplines, attributed to its versatility and superior performance, often
matching or exceeding the capabilities of other established technologies.
Nonetheless, there is a noticeable knowledge gap among students, particularly
in comprehending the application of Artificial Intelligence (AI) within Computer
Vision. This disconnect underscores the need for an educational paradigm
transcending traditional theoretical instruction. Cultivating a more practical
understanding of the symbiotic relationship between AI and computer vision
is essential. To address this, the current work proposes a project-based
instructional approach to bridge the educational divide. This methodology will
enable students to engage directly with the practical aspects of computer
vision applications within AI. By guiding students through a hands-on project,
they will learn how to effectively utilize a dataset, train an object detection
model, and implement it within a microcomputer infrastructure. This immersive
experience is intended to bolster theoretical knowledge and provide a practical
understanding of deploying AI techniques within computer vision. The main
goal is to equip students with a robust skill set that translates into practical
acumen, preparing a competent workforce to navigate and innovate in the
complex landscape of Industry 4.0. This approach emphasizes the criticality
of adapting educational strategies to meet the evolving demands of advanced

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1331249
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1331249&domain=pdf&date_stamp=2024-06-10
mailto:pedro.ponce@tec.mx
mailto:pedro.ponce@tec.mx
https://doi.org/10.3389/frobt.2024.1331249
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1331249/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1331249/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1331249/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Medina et al. 10.3389/frobt.2024.1331249

technological infrastructures. It ensures that emerging professionals are adept
at harnessing the potential of transformative tools like computer vision in
industrial settings.

KEYWORDS

education, educational innovation, higher education, manufacturing, quality control,
object detection, Tiny YOLO v4, computer vision

1 Introduction

The imperative of instructing students in complex Artificial
Intelligence (AI) implementations has ascended to prominence
within contemporary university curriculums. The diverse
applications that AI boasts across various fields have rendered it
an indispensable inclusion in the curriculum plans of engineering
degrees. However, the difficulties inherent in this subject may
engender anxiety among students, particularly if they perceive the
concepts as impossible (Wang et al., 2022). Therefore, this paper
proposes a project-based learning strategy to enhance students’
understanding of the subject matter and mitigate the apprehension
it could evoke by facilitating hands-on engagement and real-world
application.

Computer Vision (CV) plays a pivotal role in optimizing and
organizing the material flow on the production floor, which is
crucial for streamlining, enhancing efficiency, and minimizing
errors within manufacturing processes. Comprehensive learning
about CV’s applications in managing material flow, requires
students to understand how automated sorting mechanisms can
categorize materials based on distinct characteristics such as
size, shape, and color. Such computerized systems negate the
need for manual intervention, thereby boosting efficiency and
curtailing labor costs. Further, real-time monitoring of material
logistics using CV, maintains operational continuity and pinpoints
bottlenecks. Simultaneously, the data harnessed from CV systems
are instrumental in informed decision-making processes related to
material flow and inventory management. The ability of CV to trace
materials throughout the manufacturing stages is indispensable
for quality assurance, compliance with regulatory standards,
and maintaining comprehensive inspection trails. Additionally,
CV supports robotic configurations in accurately identifying,
selecting, and positioning materials, amplifying precision and
velocity in material handling tasks. Understanding the integration
of CV into Automated Guided Vehicles (AGVs) and conveyor
systems offers insights into the uninterrupted transportation of
materials and the overarching automation of material flow on the
production floor (Korchagin et al., 2021).

Safety protocols are also substantially bolstered through CV’s
capacity to identify potential hazards related to material movement,
such as overflow or obstructions, significantly diminishing accident
risks. Insights into how CV ensures compliance with safety
regulations during material transportation and handling are
fundamental in fostering a secure operational atmosphere. CV’s
role in minimizing material loss is equally paramount, achieved by
identifying and signaling any material discrepancies during transit,
thereby preventing operational disruptions stemming frommaterial
deficits. Concurrently, the continuous inspection ofmaterials as they
progress along the production line guarantees adherence to quality

benchmarks. The faculty of CV to discern and isolate substandard
materials ensures the manufacturing echelon is preserved. CV
systems can be adapted to various materials to accommodate
the unique demands of diverse manufacturing environments.
Students must comprehend how these systems can be modified
to meet differing material and product specifications. By grasping
the integral function of Computer Vision in managing material
flow within production areas, students acquire competencies that
deal with the difficulties and technological strides of the modern
manufacturing sector. This understanding enhances their career
preparation and gives them the proficiency to drive forward
technological innovations (Meier, 2022).

Teaching complicated subjects has regularly been a challenging
endeavor. Students exhibit diverse learning modalities regardless
of the educator’s proficiency, particularly in assimilating abstract
concepts. Scholars advocate formore experiential teaching strategies
like project-based learning. However, Williams suggested that
relying solely on a practical project, devoid of foundational
theoretical instruction, can be counterproductive. Nevertheless, it
is often more advisable than a curriculum that is entirely theory-
laden (Williams, 2003).

Integrating artificial intelligence (AI) into education indicates a
transformative era, offering unparalleled opportunities to improve
various disciplines. A critical aspect lies in equipping undergraduate
students with the proficiency to comprehend and implement
cutting-edge technologies in their respective fields. This necessitates
establishing a robust framework tailored to student projects,
underscoring its importance. Numerous scholars have advocated
for pedagogical approaches to imbue undergraduates with AI
proficiency. For instance (Eaton, 2017), advocates for a project-
centric curriculum employing robots to acquaint students with
the fusion of AI Computer Vision (CV) and advanced robotics.
Similarly, Murphy (1998) encourage a course catering to chemistry
students, facilitating their utilization of object detection techniques.
Despite their efficacy, these methodologies are often confined
within specific domains, posing challenges in their broader
application across diverse fields. A critical observation reveals
that existing literature predominantly focuses on integrating AI
tools into educational curricula, neglecting the imperative of
fostering students’ capability to conceptualize and execute AI
projects that facilitate learning. Consequently, a notable absence of
methodologies is dedicated to teaching AI in CV for manufacturing
applications, compounded by the absence of a universal framework
adaptable to varied disciplines. In light of these deficiencies, the
imperative to devise a comprehensive framework for student-led
projects becomes evident. Such a framework empowers students
to delve into AI applications and cultivates their problem-solving
and critical-thinking skills. Students gain firsthand experience
tackling real-world challenges by embarking on project-based
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FIGURE 1
V-model competences methodology.

learning journeys, bridging the gap between theoretical knowledge
and practical implementation. Creating a versatile framework
for student project development is an indispensable endeavor in
modern education. Beyond imparting technical competencies, it
fosters innovation and interdisciplinary collaboration and prepares
the next-generation of professionals to navigate the intricacies of AI
integration across diverse domains.

AI shows an abstract domain encompassing a vast array of
applications across multiple fields, presenting a daunting task
for educators aiming to convey these tools’ extensive capabilities
comprehensively. A meticulously designed project can explain to
students the pragmatic applications of AI, particularly in specialized
fields such as CV. CV, being more visual, can aid in students’
understanding of the concepts since the correctness of the CV
algorithm is apparent just by looking at the output of the model.
Moreover, it is paramount for students to discern the extensive
applicability of these concepts in various practical arenas, including
manufacturing. Consequently, this work adopts a manufacturing
project as the medium for instruction. The planning of this project
holds a V-model-based methodological framework (Ponce et al.,
2021), delineated in Figure 1.This structured approach initiates with
an introductory overview provided by the educator, explaining the
mechanics of the chosen object detection algorithm. Subsequently,
students are shown through the network training process, an
integral phase that marks the culmination of the introductory
competencies segment. Upon the training’s completion, the model
undergoes rigorous testing to ascertain its readiness for practical
deployment.

The V-model, initially developed in the late 1980s for software
development, represents a structured approach that illustrates the

sequential nature of the development process and its corresponding
testing stages. Its primary appeal is explicitly depicting the
relationships between different development lifecycle phases,
facilitating a thorough understanding and management of the
process. Over the years, the V-model has been adapted and
optimized to cater to the evolving needs of various technological
domains beyond its original software-centric application. This
adaptability has led to its application in developing Cyber-Physical
Systems (CPS), integrations of computation, networking, and
physical processes. The model has been tailored to address the
unique challenges of CPS, ensuring a systematic and disciplined
approach to their development (Gräßler et al., 2021). Additionally,
the V-model is relevant in electrical and electronic product
development. In this context, the model supports the intricate
process of designing and implementing complex electronic
systems, helping to streamline the development process and
enhance efficiency (Bauer et al., 2022). Moreover, the V-model
has been effectively employed in specific manufacturing contexts,
particularly in Additive Manufacturing (AM). In AM processes,
the V-model provides a comprehensive framework for managing
the development of new products or technologies. It ensures
that each stage of the development process is systematically
planned and executed, leading to the successful implementation of
AM projects (De Lima et al., 2023). In summary, with its structured
and phased approach, the V-model has proven to be a versatile and
robust framework that extends well beyond its original software
development context. Its ability to clearly define and link the various
stages of the development process has made it an enduring and
adaptable tool relevant tomultiple technological andmanufacturing
advancements.
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The ensuing stages encompass comprehensive testing and a
comprehensive evaluation of the model’s real-world performance,
signifying the transition from the development phase to the
consolidation of competencies. This systematic process solidifies
students’ understanding and immerses them in a practical scenario,
fostering a holistic learning experience. The final phase, comprising
a detailed assessment of the entire implementation, marks the peak
of the competency consolidation stage.

This didactic strategy, emphasizing experiential learning
through a blend of foundational theory and hands-on application,
is poised to enhance students’ cognitive engagement, thereby
deepening their understanding of AI’s multifaceted role in
contemporary domains like CV. Furthermore, this approach equips
them with the expertise to navigate and contribute significantly to
the ever-evolving technological landscape.

The manufacturing sector is specifically selected for this
educational framework, acknowledging the substantial likelihood
of students pursuing professional avenues within this industry post-
graduation. Hence, immersing them in this context provides a
pragmatic learning experience directly translatable to their future
occupational settings. Moreover, manufacturing is a dynamic
field characterized by constant evolution, with practitioners and
researchers striving to integrate cutting-edge innovations to
augment efficiency across diverse facets of the industry.

Deep Learning in computer vision is one of the most
versatile and adaptable tools in this continuous advancement,
due to its capabilities to handle large amounts of data and
process it very fast and have the capability of learning from
the data to adapt to scenarios (Russell and Norvig, 2010). Its
efficacy hinges on the capacity to train the neural network
with a robust dataset, empowering it to surmount numerous
limitations that conventional computer vision methodologies
encounter. Such advanced capabilities facilitate the implementation
of these networks in various segments of the manufacturing
chain, surpassing the traditional confines that more straightforward
computer vision tools typically inhabit.

A distinctive advantage of employing more sophisticated
algorithms instead of essential solutions is their adaptability in
challenging environments. These advanced systems maintain their
performance integrity even under conditions marred by occlusions,
suboptimal lighting, or lower-resolution imagery. This resilience is
attributable to the training phase, wherein the model is exposed
to various images captured in diverse settings. The system acquires
a comprehensive experiential base by including these variations,
enhancing its interpretative accuracy and operational adaptability.

Thus, the learning process prepares students for real-world
industrial challenges and introduces a deep understanding of the
transformative potential inherent in advanced AI technologies
like Deep Learning-based computer vision. This knowledge
is instrumental in navigating the present complexities and
contributing innovatively to the future landscape of an ever-evolving
manufacturing sector.

This work introduces a versatile framework designed to facilitate
the teaching of complex subjects. It uses artificial intelligence (AI)
applied in computer vision (CV) formanufacturing as an illustrative
example. The core aim is to equip undergraduate students with the
skills to apply various AI tools in real-world scenarios, transcending
the specific domain of AI in CV. The framework is intended to be

adaptable across different fields, ensuring that students can transfer
and apply the learned concepts to diverse professional settings. The
proposed framework integrates theoretical and practical elements. It
begins with a simplified classroom approach that introduces general
concepts, avoiding intricate details. This theoretical foundation
is linked to the broader research landscape, highlighting many
ideas and tools that can be leveraged in practical applications. The
emphasis is on facilitating students’ engagement with a specific
research topic they can implement in a project.This project-oriented
approach encourages students to internalize general principles
and apply them to devise solutions in their respective fields.
To validate the efficacy of this framework, a combination of
theoretical examinations and student-initiated projects is proposed.
These assessments gauge students’ ability to translate theoretical
knowledge into practical, field-specific applications.

Figure 2 provides a schematic of the framework, illustrating the
integration of research areas—specifically AI and CV—and their
application in a practical context like manufacturing. However,
the framework’s flexibility allows these elements to be tailored to
other sectors, such as agriculture, where AI could be used for tasks
like detecting plant diseases or identifying ripe fruits for robotic
harvesting. The proposed framework is designed to be a dynamic
teaching tool that covers the specifics of AI and CV and empowers
students to apply these technologies across various domains. It
fosters a comprehensive understanding and innovative application
of theoretical concepts in practical scenarios.

2 Computer vision project based on
manufacturing

There are a lot of new solutions to be found with the integration
of complex subjects like AI and CV. Object detectors are flexible
algorithms that allow machines to sense the world in a way that is
closer to the humans perception, which helps researchers implement
these algorithms more easily, this can be seen in the different
implementations that has been presented in the research world
to solve common problems in different fields, such as agriculture
to implement these solutions in harvesting robots (Wang C. et al.,
2023), or energy efficiency by using object detectors to more
accurately detect clothing insulation for thermal comfort calculation
in HVAC use (Medina et al., 2022a); autonomous driving has also
tried these algorithms to detect pedestrians (Chen and Lin, 2019),
other cars (Jin et al., 2020) and even traffic signals (Medina et al.,
2022b). Therefore, the importance of learning how and when to
implement these algorithms is no longer something left for the
graduate students and researchers alone, undergraduate students
must know these tools to help them implement in their workplace,
and help these different fields evolve.

Since there is a high percentage of engineering students that
will work in the manufacturing industry, a manufacturing project
is presented as an example in this paper.

2.1 Theoretical framework

This proposal imparts a theoretical framework that shows
certain concepts, subsequently allowing students to witness the
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FIGURE 2
Proposed framework.

tangible outcomes following implementation. Nonetheless, it is
crucial to underscore the significance of these implementations
within manufacturing environments to students. Additionally,
illustrating alternative techniques is fundamental to fostering
comparative analytical thinking. Manufacturing is a behemoth
industry, historically at the forefront of spearheading myriad
technical innovations, particularly in automating production lines.
However, the uncompromising emphasis on product quality
remains central to these manufacturing processes. Regardless of the
procedures’ sophistication, sustaining a consistent quality standard
is paramount. Consequently, quality control has become one of the
most rigorously studied and indispensable facets of manufacturing.

Computer Vision (CV) integrates various technological
instruments designed for rapid, non-intrusive product inspections,
positioning it as an attractive industry solution. These tools have
garnered acclaim for their straightforward operation, rapidity,
and unparalleled precision. Their integration into manufacturing
practices marks a transformative shift, and here we outline
several vital applications that demonstrate the extent of CV’s
influence (Zhou et al., 2022).

2.1.1 Fault detection
Computer Vision systems are trained to detect product

abnormalities or defects, ensuring that only high-quality items are
shipped. This aids in reducing wastage and enhancing customer

satisfaction by preventing defective products from reaching
the market.

2.1.2 Inventory management
Computer Vision helps track stock levels precisely, recognizing

products and their quantities, which results in efficient inventory
management. It reduces manpower and time needed while
minimizing errors associated with manual inventory tracking and
ensures real-time, accurate data availability.

2.1.3 Safety monitoring
It enables monitoring of workers to ensure adherence to safety

protocols, detecting whether safety equipment like helmets and
gloves are being appropriately used, and identifying potential
hazardous situations to prevent accidents.

2.1.4 Quality control
Beyond defect detection, Computer Vision aids in analyzing

product quality across manufacturing stages, ensuring that each
product adheres to the set quality standards and specifications.

2.1.5 Predictive maintenance
Computer Vision identifies wear and tear in machinery,

predicting when maintenance is due or when a breakdown
is imminent. This leads to reduced downtime and increases
operational efficiency.
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2.1.6 Robotic guidance
It is used for guiding robots on the assembly line, enabling

them to interact with objects and execute tasks like picking, placing,
welding, and assembling precisely and quickly.

2.1.7 Assembly verification
Computer Vision verifies whether components are assembled

correctly in real time, ensuring the integrity of the manufacturing
process and reducing errors in production lines.

2.1.8 Product classification and sorting
It automates product classification and sorting based on

characteristics such as size, shape, and color, increasing throughput
and efficiency.

2.1.9 Dimensional accuracy
Computer Vision assesses the dimensional accuracy of products

by measuring dimensions in real time to ensure they meet the
specified tolerances, enhancing product reliability.

2.1.10 Material handling
With Computer Vision, systems can identify, pick, and place

materials accurately and efficiently, optimizing thematerial handling
process in manufacturing.

2.1.11 No-entry zone supervision
Computer Vision helps monitor restricted areas within the

manufacturing unit and ensures that unauthorized personnel do not
enter these zones, thereby maintaining safety.

2.1.12 Optical character recognition (OCR)
OCR in Computer Vision is used to read, extract, and

authenticate printed or handwritten text information, aiding in tasks
like reading labels, expiration dates, and batch numbers.

Each application of Computer Vision plays a central role
in enhancing manufacturing processes by minimizing errors,
fortifying safety protocols, and bolstering overall productivity
within the sector. Among the array of techniques, some have already
found commercial applications, including color detection. Color
detection is crucial for product classification and establishing item
dispositions based on color. More than mere sorting, this method
verifies that products are infused with the intended colors. Examples
span a variety of products, from soda and paint cans to fabrics,
labels, pharmaceutical capsules, and sample books. Implementing
this technique requires a color sensor with precise calibration and
strategically positioned cameras or color sensors within a rigorously
controlled lighting environment. The label manufacturing industry
heavily relies on this technique, given the paramount significance of
color accuracy for labels, another importantmanufacturing industry
that relies heavily on color sensing for quality control is wire
manufacturing (Tsai and Cheng, 2022).

Edge detection is another sophisticated computer vision
technique crucial for isolating desired objects within an image
(Prince, 2012). This process involves initially identifying the target
object and then eliminating background information to prevent
miscalculations in edge definition. Given their acute sensitivity
to lighting conditions and the contrast between objects and their
surroundings, these procedures demand accurate execution. A

filter—often Gaussian—is first employed to mitigate noise (Bradski
and Kaehler, 2008). The image is then converted to a binary
format, intensifying the contrast essential for differentiating the
object from its background and isolating the target information.
Establishing a threshold is critical in discerning what is identified
as white and what is relegated as black, with the flexibility to
tweak this demarcation to enhance precision. Subsequently, pixel
gradients and associated directions are calculated, identifying
areas of sudden color transitions. Although viable with color
images, this method proves most potent with transitions from
black to white or vice versa. For color imagery, thresholds are
applicable, yet binary conversions often provide superior accuracy.
The Canny edge detector is a typical algorithm for this purpose,
renowned for its precision in discerning edges. Figure 3 illustrates
an example of this advanced algorithm at work. At work, this
example is created using the can lid dataset obtained from Kaggle
at https://www.kaggle.com/code/rrighart/detection-of-product-
defects-using-yolov7/input. By understanding these complex
techniques, stakeholders in manufacturing can harness Computer
Vision’s full potential, optimizing processes and outcomes in this
ever-evolving industrial landscape.

2.2 Dataset and object detection concept’s
introduction

A more advanced solution for quality control involves
integrating Artificial Intelligence (AI) techniques with computer
vision systems.The adaptability inherent in such integration enables
smooth translation across various settings, with correctly trained AI
proving less susceptible to variables like lighting conditions, camera
angles, occlusions, or low-resolution imaging. Significantly, the
versatility of AI extends beyond computer vision, as demonstrated
by numerous studies showcasing diverse industrial applications
of these algorithms (Lee et al., 2017). Compiling a comprehensive
dataset is central to successfully implementing this sophisticated
technique. This dataset can be curated from custom images, those
sourced from the internet, or collections from platforms offering
datasets for purchase or free. While paid datasets usually undergo
rigorous error-checking and feature a wide variety of scenarios,
they can be costly, mainly if there is a need to amalgamate
multiple datasets to encompass a range of object instances. In
contrast, free datasets, although financially more accessible, may
contain mislabeling and lack diversity in background scenarios,
potentially resulting in suboptimal feature extraction and false
detections. The selected images must be rich in background detail
for effective model training. Utilizing images with uniform color or
plain backgrounds could impede the model’s capability in feature
recognition, as training for image classification often relies on such
images, centering on single objects amidst minimal background
interference. Optimally, images should blend objects with their
surroundings and even include occlusions to enhance the model’s
proficiency in object localization during training sessions, this
can either be intentionally captured when building the dataset
or artificially made using mosaic transformations (Hao and Zhili,
2020). Once a robust collection of images is collected, the training
phase of object detectors should emphasize both the classification
and precise localization of objects. This precision underscores the
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FIGURE 3
Edge detection algorithm.

importance of including images with occlusions in the dataset.
Following this, the crucial process of labeling or annotating the
dataset begins. Object detection involves drawing bounding boxes
around the objects and categorizing them.

For the annotation process, complimentary tools are available,
such as labelImg (Tzutalin, 2015), accessible via its GitHub
repository. This user-friendly tool facilitates the meticulous drawing
of bounding boxes around the objects, ensuring they do not
intersect with object edges and omit irrelevant background
content. Moreover, labelImg is versatile, offering label generation in
compatible formats and detailing each bounding box’s class, center
coordinates, width, and height, streamlining the annotation process
for enhanced model training (Tzutalin, 2015).

Figure 4 visually represents the labelImg tool’s functionalities,
showcasing various features such as the ability to open individual
images or an entire directory allocated for training and testing.
Additionally, the tool offers navigation controls to peruse images
and select labeling formats, with the You Only Look Once (YOLO)
format, which corresponds to an algorithm that will be discussed
later, being the choice in this example. The interface includes
creating and duplicating rectangles, deleting, and zooming options.
On the right side of the screen, the labels assigned to each bounding
box are visible, allowing formodifying a selected bounding box label,
which is accentuated in blue in the visual and dark blue within the
label list. Furthermore, Figure 4 details the labeling process, with
green indicators marking the corners of each bounding box, each
tied to a specific label. The image’s left segment displays a toolbox,
enabling users to craft additional bounding boxes via the “Create
Rectangle” feature. This action modifies the cursor into an extended
cross along the X and Y-axes, simplifying the labeling process for
objects with non-linear perimeters. After establishing the bounding
box through a left-click and drag motion, a dialog box appears for
label input.

Data augmentation becomes valuable when datasets are scarce
or limited to a few hundred images. This approach enhances the size
of the image dataset by applying various computer vision methods
to alter existing images. Data augmentation is particularly beneficial
when time restrictions prevent the collection of an ample dataset.
Transformations applied include adjustments to characteristics such
as contrast, brightness, color, orientation, and the introduction of

noise or blur. These adaptations expand the dataset and prepare
the model for training in diverse conditions, including suboptimal
lighting or reduced image resolution. One innovative method
involves cropping sections of objects and assembling collages,
thereby generating occlusions that compel the object detector
to identify objects within more intricate environments. Figure 5
exhibits the initial image selected for modification, while Figure 6
illustrates a series of transformations. These altered images are
produced using CLODSA (Casado-García et al., 2019), a Python-
based application that not only adjusts images but also adapts
bounding boxes as needed—for instance, when an image flip
requires a repositioning of the original coordinates to maintain
alignment with the bounding box, assuming it is perfectly centered.

Numerous object detection algorithms exist, but many
researchers agree that among the most efficient lightweight
models are the YOLO algorithms (Redmon et al., 2016). These
algorithms are particularly advantageous because they are open
source, providing a GitHub repository that users can clone, thereby
facilitating the training of custom models. Notably, the scaled-down
versions of these algorithms, often referred to as “Tiny” versions
or “n” in more recent iterations, have proven fast and accurate
enough for use on constrained systems like the Raspberry Pi 4.
The training time for these algorithms can vary depending on
the number of classes and images, and it differs across various
implementations. While there are no strict guidelines, a common
practice is to train the model for approximately 2,000 epochs per
class, ensuring that the total number of epochs is at least equal
to the number of images. Object detection has shown significant
effectiveness in manufacturing environments, serving roles beyond
merely identifying defective items. It is crucial in recognizing
safety equipment on personnel, monitoring restricted areas for
unauthorized access, and more. Numerous potential applications
remain unexplored, underscoring the adaptability of these models.
However, it is vital to keep similar problems within the scope
of a single algorithm to maintain the integrity of the model’s
performance. For example, a model designed for detecting defective
items should not be mixed with functionality for identifying safety
equipment. The strength of these models lies in their versatility,
allowing them to address a wide range of issues within certain
limitations. By focusing on solving related problems within one
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FIGURE 4
LabelImg tool.

FIGURE 5
Original image.

model, we can maximize the benefits of object detection across
various manufacturing contexts, ensuring superior outcomes.

As stated in the introduction, a project-based approach can
facilitate a better understanding of complex concepts, though
a certain degree of theoretical background is still necessary.
This foundation helps students grasp the subject matter more
comprehensively and prevents potential misconceptions or

misinterpretations during project execution. Therefore, a brief
overview of the YOLO algorithm is provided to deepen readers’
comprehension of its workings. It is essential to recognize that
specific details may differ between versions; hence, it is paramount
to confirm the version in use and comprehend these differences.

YOLOv4 begins by resizing the input image to a 640 × 640 pixel
resolution, a task accomplished by the OpenCV library. The image
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FIGURE 6
Vertical flip (top left), horizontal flip (middle top), average blur (top right), rotation (bottom left), vertical and horizontal flip (middle bottom) and raise
hue (bottom right).

is then introduced into the convolutional neural network, which
undergoes various operations and is eventually converted into a
matrix. This matrix represents every pixel’s information throughout
the color channels. YOLOv4 (Bochkovskiy et al., 2020) employs pre-
established boxes called anchor boxes for object detection. These
boxes have predetermined height and width dimensions that mirror
the training bounding boxes, but they differ in shape and position
to cover various object forms throughout the image. Each anchor
box is assigned a score that reflects the likelihood of an object’s
presence within it. The system then adjusts the center’s location and
the bounding box’s width and height based on the offset between the
anchor box and the training bounding box. This offset is measured
using the Intersection over Union (IoU) metric, representing the
overlapping area’s ratio between the predicted bounding box and
the original bounding boxes to the total area encompassing both,
as illustrated in Figure 7.

The YOLO algorithm notably enables object localization by
drawing bounding boxes around identified objects. This can
be seen in Figure 8, which is a result of the trained algorithm. You can
see how a rectangle is drawn around the detected object; this rectangle
is known as container box. And then the class and probability that
the detected object belongs to that class, according to the algorithm,
placed on the top left of the container box, the probability is given as
a floating-point value between 0 and 1 where 1 is equivalent to 100%.

The classification phase is an integral component of the
algorithm, during which the system generates a probability score
reflecting the likelihood that the detected object belongs to a specific
class. This score is derived from the features extracted from within
the bounding box. To finalize the creation of a bounding box
in the output, a threshold value is applied to filter out detected
objects associated with lower probabilities, distinguishing them

from those confidently recognized as the targeted objects. Typically,
this threshold is set at 0.5, equating to a 50% probability.

A distinctive feature of the YOLO architecture is its ability
to conduct detections and classifications at different scales: three
in its full versions and two in the “Tiny” iterations. This multi-
scale approach enhances the algorithm’s ability to detect objects of
various sizes within an image. YOLO also boasts custom feature
extractors, termed “backbones,” which form the convolutional
neural network architecture responsible for pulling out pertinent
features required for object classification and detection. For
instance, YOLOv4 employs a backbone known as CSPDarknet53,
which draws inspiration from the DenseNet architecture. In
contrast, TinyYOLOv4 uses a more compact variant named
CSPDarknet53Tiny; this can be seen in Figure 9, which depicts the
YOLOv4 Tiny architecture (Jiang et al., 2020). These backbones are
pivotal in the network’s learning process, significantly influencing
its performance and the accuracy of the features it extracts for
subsequent classification and detection tasks.

Newer models such as YOLOv5 (Jocher et al., 2022), YOLOv6
(Li et al., 2022), YOLOv7 (Wang C. Y. et al., 2023), YOLOv8
(Jocher et al., 2024) and YOLOv9 (Wang et al., 2024), changed the
size of the possible algorithms to include more options, YOLOv5
for example, include five different algorithm sizes ranging from the
smallest named YOLOv5n, often referred to as nano, to the largest
which is YOLOv5x. This size difference is done by scaling different
algorithm parameters to change the algorithm’s size. Since the same
authors developed YOLOv8, it shares the exact five different sizes.
YOLOv6 only has four different sizes, and YOLOv7 has six different
sizes, while the most recent one, YOLOv9, has only five different
sizes. Another significant change at the beginning of thismodel is the
migration from the Darknet framework developed by the original
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FIGURE 7
Intersection over Union (IoU).

FIGURE 8
Bounding box surrounding a damaged can with the correct class
“Damaged” and the probability “1.00” shown.

creator of YOLO Redmon to a more general framework named
PyTorch. The main difference between these two frameworks is that
Darknet is more restrictive with system compatibilities; since it was
developed in a Linux environment, Linux operating systems have
straightforward installation procedures. However, other operating
systems have more steps and complications to install. On the other
hand, PyTorch is more friendly with different operating systems
and can be more easily transferred to different operating systems.
Another difference is that the YOLOv5 was built towards more
efficient training by noticing when the model stops learning and
preventing overfitting.

The evolution of the YOLO (YouOnly LookOnce) algorithmhas
seen various iterations, each bringing forward unique optimizations
that enhance its performance in object detection.While it is possible
to discuss the entire architecture of each version, the focus here will
be on notable improvements that have significantly influenced the
algorithm’s development and application. Starting from YOLOv6, a
distinct shift was made from the traditional anchor-based detection
method to an anchor-free detector. This transition marks a pivotal
change as the model no longer relies on offset values to adjust

the center coordinates of bounding boxes. Instead, it directly
proposes these coordinates, streamlining the process and reducing
computational complexity, leading to faster inference times. In the
subsequent version, YOLOv7, the enhancement was primarily in the
feature extraction phase of the algorithm. The authors introduced a
novel convergence technique, Extended ELAN (Exponential Linear
Activation Network), designed to expedite the model’s convergence
by optimizing the gradient path, thus facilitating a more efficient
learning process. The development continued with YOLOv8, which
aimed to accelerate the processing speed inherited from YOLOv5
and integrated advancements from YOLOv6, like the anchor-free
detection, to refine its performance further.

Moving to YOLOv9, significant strides were made in optimizing
feature extraction, drawing from the advancements in YOLOv7.
It employed GELAN (Generalized ELAN), an improvement on
the previous ELAN, to enhance overall performance. Moreover,
YOLOv9 introduced the Programmable Gradient Information
(PGI), a technique designed to elevate the efficiency of smaller
models, enabling them to achieve performance comparable to larger
architectures.

These iterative enhancements in the YOLO series demonstrate
the algorithm’s evolutionary trajectory and highlight the absence of
peer-reviewed documentation, especially for versions like YOLOv5
and YOLOv8. The latter versions were developed by private
entities without published detailed research papers, creating a
gap in the formal academic discourse regarding their specific
optimizations and technical foundations. Each iteration of the
YOLO algorithm represents a step forward in the field of object
detection, offering nuanced improvements that address both the
computational efficiency and the accuracy of the detection process.

2.3 Model training and testing

Students will be provided with a curated image dataset, already
labeled, it must be noted that labeling the images can help the
student to understand the process however it is encouraged as
an exercise for a class to try on a couple of images instead
of a huge dataset due to the time consumption it takes; and
access to a Google Colab notebook. This notebook will serve as
a comprehensive guide, detailing each step necessary to set up
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FIGURE 9
YOLOv4 Tiny architecture.

the environment and train the TinyYOLOv4 network. Additionally,
it will illustrate how students can execute object detection tasks
on both image and video files directly within the same notebook.
However, it is essential to note that due to the inherent limitations
of Google Colab’s cloud-based infrastructure, access to real-time
hardware components, such as a camera for live feed detection,
is unavailable. Therefore, live detections will require an alternative
setup or platform. The instructional notebook includes detailed
procedures to clone the repository of the selected algorithm from
GitHub, which hosts the essential files needed for this project.
It further guides students through creating and configuring the
necessary settings to train the detection model using the provided
labeled dataset.

Figure 10 shows the results of the training after 6,000 epochs,
where the red line indicates the mean Average Precision for the
training dataset and the blue line represents the Loss function value.

Moreover, the notebook offers practical examples of how to
test the newly trained model by running detection tasks on sample
images and videos. Students will learn not only how to initiate
these tests but also how to visualize the results within the notebook
interface. The notebook demonstrates how students can save their
results as a new video file for video testing, allowing them to
choose a preferred filename for this output. The entire process,
from the initial setup to the training phase, is designed to be
efficient and user-friendly. Given that a relatively small data set
is utilized for training purposes, the entire compilation of the
notebook, including the time taken for the actual training, should
not exceed 3 h. This streamlined approach ensures that students
can effectively engage with and understand the fundamental
aspects of implementing and operating the TinyYOLOv4 within a
manageable timeframe.

2.4 Implementation

Regarding the object detection algorithm, the next step is its
practical implementation. Typically, any Personal Computer (PC)
equipped with a GPU can efficiently execute object detection tasks.
However, PCs can sometimes restrict system flexibility due to
limitations, making embedded implementations more desirable.
Embedded systems, in this regard, provide enhanced flexibility in
algorithm deployment. However, the specific setup required for
hardware computations must be considered. Despite their compact
size, devices like the Raspberry Pi 4 canmanage these computational
demands.

The Raspberry Pi 4 with 8 GB of RAM is chosen for
several reasons. Since its creation it was envisioned as an
educational tool. This microcomputer has been highly welcomed by
students and hobbyists alike, therefore the amount of community
support is very big, so if the student wants to use this in
another project he does not need a class to make it. Among
microcomputers it has one of the best processing units, alongside
with a small GPU and 8 GB of RAM making it very flexible for
multiple applications. Finally even though it is not the cheapest
microcomputer out on the market, it is the best cost-benefit relation
considering all the information and projects available, plus its
hardware specs.

The Raspberry Pi is a small but impressively powerful computer
offering various digital opportunities (Kölling, 2016). It boasts a
suite of features that deliver a full-fledged computing experience. Its
processing capabilities, encompassing a robust CPU and dedicated
GPU, ensure seamless user interaction and high-definition visual
content. The device offers multiple RAM options and uses microSD
cards for storage, allowing efficient multitasking and adaptable
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storage solutions. In connectivity, the Raspberry Pi has wireless
LAN, Bluetooth, and Ethernet ports, ensuring solid and diverse
internet and device connections. It also houses various ports, such
as USB for peripherals, HDMI for display output, and General-
Purpose Input/Output (GPIO) pins for broad electronic interfacing
and Internet of Things (IoT) explorations. The device extends its
versatility with dedicated interfaces for cameras and displays. The
Camera Serial Interface (CSI) facilitates the addition of a Raspberry
Pi camera, which is essential for image and video capture tasks, as
well as allowing USB cameras to work with the Raspberry Pi. At
the same time, the Display Serial Interface (DSI) accommodates
touchscreen displays, enhancing interactive applications. For audio-
visual needs, the Raspberry Pi is equipped with a 3.5 mm audio
jack and HDMI ports, supporting high-definition video playback,
making it suitable for multimedia endeavors. Depending on the
model, the power supply is conveniently managed through a USB-
C or micro-USB port. Enhancing Raspberry Pi’s user experience
is a wealth of documentation and an active community offering
ample resources, guidance, and support. Its official operating system,
Raspberry Pi OS, includes a range of applications for general
and developmental use. Given its compactness and versatility, the
Raspberry Pi is an excellent platform for various applications, from
educational projects to professional setups. Its extensive features
and supportive community make it an invaluable tool in digital
exploration. Considering these advantages, the Raspberry Pi is
selected for this project’s implementation. Running the object
detection algorithm on a live feed can be accomplished using
a custom Python script. OpenCV facilitates model recognition
through the “readNetFromDarknet” function within the “dnn”
module, requiring the network configuration and weights files.
The “videoCapture” function captures each frame, which is then
processed by the model for detections. Subsequently, bounding
boxes are drawn at specific coordinates with the most probable
class label displayed alongside, aiding in object classification. This
step involves the “NMSBoxes” function, which requires input of
predicted boxes and confidence levels.This function outputs a vector
detailing each detection, including bounding box coordinates,
dimensions, class identity, and associated confidence levels. To
refine the results, you can adjust threshold values for object
detection and confidence probabilities, ensuring more accurate
identifications.

The steps to implement the trained network in
the Raspberry Pi are listed below:

1. Make sure that the Raspberry Pi has access to the full SD card
space by altering the filesystem configuration and rebooting
the Raspberry Pi.

2. Download the configuration file with the. cfg extension and the
best weights obtained, and place them in a designated folder
inside the Raspberry Pi.

3. Create a Python script that uses opencv mentioned packages
to read the network from the configuration file and load up the
weights; this script should be in the same folder as the. cfg and
weights files.

4. An installation of OpenCV is required however, the version
that is for Raspberry Pi is not compatible with the required
modules so a virtual environment must be created, changing
some lines inside the bashrc file.

5. After initializing the virtual environment in the command
prompt, run the script to the folder containing the files using
the cd command.

2.5 Testing and evaluation

To complete the project, students are tasked with testing the
object detection algorithm on a microcomputer, utilizing a webcam
to acquire live feed data. Following this practical engagement,
they are to conceptualize an application within a manufacturing
context, akin to a conveyor belt or batch quality control system,
reflecting real-world industrial mechanisms. Additionally, students
are expected to articulate insights on potential enhancements to the
model’s precision and operational applications.

This less structured project segment gives students the creative
autonomy to incorporate elements from previous undertakings,
such as automation projects, into their current work. For instance,
they might need to engineer a holder for the Raspberry Pi, which
accommodates an electrical connector, should they decide on a
continuous power supply solution that the implementation context
permits. Alternatively, they could explore battery-powered setups
to grant the system greater autonomy, broadening the scope of
feasible applications. The essential hardware components for this
exercise include the Raspberry Pi and a camera. The choice of
camera is not restricted, though it is pertinent to note that, as
previously mentioned, the algorithm will resize any images to
a 640 × 640 resolution. Consequently, higher resolutions will
undergo a reduction to align with the algorithm’s parameters. To
facilitate real-time monitoring of the detection process, students
can employ a display supplemented by a keyboard and mouse
for seamless navigation within the Raspberry Pi’s interface. This
setup will aid in the initiation of the system and the acquisition of
pertinent results.

Figure 11 illustrates the system’s configuration, featuring the
Raspberry Pi and a schematic of the connection layout. It is
important to highlight that the system is designed to operate via
USB connections, negating the need for specialized connectors.
This simplicity ensures a user-friendly experience and supports a
straightforward replication of the setup, encouraging students to
focus more on the innovative aspects of their implementations. By
engaging in this project, students are not only applying theoretical
knowledge. Still, they are encouraged to think critically and
innovatively, proposing improvements and potentially pioneering
advancements in object detection applications within industrial
settings. This holistic approach aims to provide a comprehensive
educational experience, merging foundational learning with
practical skill development in a contemporary context.

3 Proof of concept

This research aims to create a framework, demonstrated through
a proof of concept delivered to students of various majors and
academic years in a 2-h session. This session was designed as an
optional course, open for registration on short notice, to assess the
framework’s educational efficacy rather than provide an exhaustive
educational implementation.
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FIGURE 10
Training results.

Theclassbeganwithanannouncementaboutitsobjectives, followed
by a pre-session test to establish a baseline of the students’ knowledge,
which was then repeated post-session to measure learning progress.
Initially, the class provided abrief overviewof computer vision, defining
it,highlightingitsgoals,andmentioningprevalentlibrarieslikeOpenCV
and Scikit-Image. Following this, the session delved into broader
Artificial Intelligence (AI) topics, covering general concepts ofMachine
Learning (ML) and Deep Learning (DL), the primary ML algorithm
types, and fundamental neural network concepts, including types of
layers,convolutionoperations,andperformancemetrics.Thediscussion
also discussed troubleshooting techniques like data augmentation,
learning rate adjustments, anddataset bias correction. Subsequently, the
lecture differentiated between two-stage and one-stage object detection
algorithms, exploring their advantages and drawbacks and facilitating a
conversation about choosing the appropriatemethodbasedondifferent
scenarios.

In the practical application phase, instructions were given
on dataset creation—either from publicly available sources or
from scratch—including the labeling and data augmentation
processes. The training was conducted using Google Colab,
which offers free GPU usage and compatibility with the Darknet

framework, primarily developed for Linux systems, thus enabling the
training of older model types.

For the implementation demonstration, the use of OpenCV to
load trained model weights and integrate with a Raspberry Pi 4-
equipped video camera was showcased, enabling real-time object
detection, just as Figure 11 demonstrates. The session concluded
with a discussion on potential real-world applications of these
algorithms, emphasizing the importance of translating the learned
concepts to various fields.

3.1 Testing proof of concept

The testing of this proof of concept involved analyzing
the impact of a short-notice class on student knowledge using
ANOVA tests to detect any significant differences in test scores
before and after the session. ANOVA (Analysis of Variance) was
selected for this study to assess the statistical significance of
differences between the groups’ average scores before and after the
educational intervention. The choice of ANOVA is particularly apt
for this scenario because it simultaneously compares the means
of multiple groups, which is essential for cohesively analyzing
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FIGURE 11
Raspberry Pi deployment.

the test scores from different student groups and time points. It
provides a clear understanding of the variability within and between
groups, distinguishing whether the changes in scores are due to
intervention or random variations. ANOVA’s efficiency in handling
complex experimental designs and larger datasets makes it a robust
choice for studies, even those with smaller sample sizes like this
proof of concept (St and Wold, 1989). Furthermore, it brings
statistical rigor to the research by calculating a p-value, thereby
facilitating a scientific evaluation of the null hypothesis against
the alternative hypothesis. This methodological approach ensures
that the investigation into the educational framework’s impact on
student learning, particularly in complex subjects like computer
vision and AI algorithms, is both comprehensive and statistically
validated. Initially, 13 undergraduate engineering students from
various majors—including mechatronics, mechanical, robotics, and
computer science—participated.Their pre-class test average was 8.0,
improving to 9.08 post-class. The one-way ANOVA test yielded a
p-value of 0.046, suggesting a statistically significant improvement,
even with the caveat of a small sample size. In a further attempt to
validate the framework’s educational potential, another group of 25
computer science engineering undergraduates was exposed to the
framework through documents detailing its industrial application,
accompanied by Python programs and labeled images. The average
grade before the course was 8.32; after that, it increased to 9.32. The
ANOVA test shows a p-value of approximately 0.0000205, indicating
a statistically significant improvement in the student’s grades after
the course. Most students demonstrated a solid understanding of
computer vision post-session, and about half grasped the YOLO
algorithm and its implementation well. Student feedback was
generally positive, highlighting the effectiveness of the course in
conveying general concepts, though they expressed a desire formore
structured guidance in algorithm implementation. The framework’s

utility is underscored by these initial educational interventions,
showing its potential to enhance understanding complex AI topics
like computer vision and the YOLO algorithm. However, it is
important to note that these tests serve only as preliminary
indicators of the framework’s effectiveness in an educational setting.
The results, while promising, point to the necessity for broader
and more in-depth testing to establish the framework as a robust
educational tool.

Table 1 delineates the questions directed towards the students,
aimed at gauging their comprehension across various facets of the
implementation process. Spanning from theoretical underpinnings
to nuanced technical aspects and practical application inquiries,
these three distinct sections are designed to assess the students’ grasp
of the algorithm’s functionality and their ability to implement it
effectively across diverse scenarios.

The evaluation should be conducted on a large cohort of students
enrolled in the same major and academic year. This approach
ensures a homogeneous group with a similar level of knowledge and
background. In addition to traditional examinations, students will
be required to complete a project demonstrating their ability to apply
the knowledge gained in the course. This project will practically
assess their understanding of the tools discussed during the lectures.

The students’ projects will not only reveal their ability to
implement theoretical knowledge in practical scenarios but will
also allow them to evaluate the advantages and limitations of
these tools. This critical assessment aims to prevent the misuse
of complex solutions when simpler alternatives are adequate.
Furthermore, successfully executing these projects can boost the
students’ confidence in their ability to apply these methodologies in
real-world settings, thereby contributing to the rapid evolution and
adaptation of industry standards to innovative tools and concepts
introduced in academia.
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TABLE 1 Questions were posed to the students from three distinct
perspectives.

Questions

Theoretical
concepts

Technical
details

Implementation
questions

What is computer
vision?

What are anchor boxes,
and why are they
important in YOLO?

For which of the
following tasks can
YOLO be used?

What does YOLO
stand for in the context
of computer vision?

Which of the following
is a core component of
the YOLO
architecture?

What type of data is
crucial for training a
YOLO model?

How does YOLO differ
from traditional object
detection methods?

In YOLO, what is
meant by “non-
max suppression”?

How can YOLO be
optimized for real-time
processing?

What is a potential
challenge when
implementing YOLO for
object detection in new
domains?

Finally, the students were asked to leave a comment about the
syllabus and the perception of their change in understanding on
this topic; most students thanked the syllabus for including general
concepts and linking them to more specific things such as object
detection, which is often left out in other teaching approaches,
commenting that this helped them to understand more easily the
topics covered.

4 Future work

The subsequent phase of the project entails a thorough analysis
of the implementations executed by students within their respective
simulated manufacturing environments. This analysis will focus on
quantifying the system’s impact on various performance metrics,
such as efficiency, accuracy, or any other relevant standard, to
compare results from scenarios where the system was not utilized.
This evaluative approach aims to provide concrete data on the
practical benefits and potential limitations of incorporating object
detection systems in industrial contexts.

Furthermore, the student’s comprehension and retention of
the subject matter will be assessed through three examinations,
strategically administered at different stages of the lesson plan. The
first test is an initial gauge of the students’ baseline knowledge
regarding object detection concepts, providing a reference point
for subsequent assessments. The second examination follows the
teacher’s presentation of the theoretical framework, aimed at
measuring the students’ grasp of these abstract concepts and
the educational impact of the academic instruction. The final
assessment comes at the project’s conclusion, designed to evaluate
the knowledge acquired throughout the course and explore students’
innovative thought processes. It is important to note that the
questions across these three tests will differ, preventing students
frommerelymemorizing answers and thus ensuring amore accurate

measure of their genuine understanding and learning progression.
However, the complexity and scope of the questions will be
consistent, with some items prompting students to conceptualize
practical applications of their learned skills within real-world
manufacturing settings. This approach seeks to assess whether
the educational goals have been met regarding subject matter
comprehension and the student’s ability to envisage and appreciate
the broader possibilities presented by this technology.

This should be done on a larger group of students from the same
major and the same year to have a more uniform group of students
with similar knowledge. Since previous knowledge may vary since
some majors include general AI concepts on their syllabus, 30
students from different majors will be asked to take the course and
perform the project. Apart from the exams, a project presented by
the students will also be requested to see how they are implementing
the knowledge acquired to present aworking solution using the tools
presented in the class.This project can showcase their understanding
of the pros and cons of these tools to avoid using them unnecessarily
when more straightforward solutions can be used; it will also help to
build confidence in the student to implement this in their workplace
in the future, helping the industry to evolve more quickly and to
adapt the new tools proposed by the academic world.

Incorporating a targeted survey in the educational context
aims to dissect and understand how different sections of a course
contribute to student learning and conceptual comprehension. The
primary intention behind this survey is to capture the students’
perceptions regarding how specific course elements facilitate their
learning process. By meticulously questioning students about each
course segment, educators can identify which aspects are most
effective in enhancing understanding and where improvements are
necessary.This systematic approach ensures that no critical feedback
is overlooked, fostering a more comprehensive enhancement of the
educational experience.

The design will be informed by preexisting research in the field
of educational surveys to construct a robust and reliable survey.
Previous studies and surveys serve as valuable blueprints, offering
insights into structuring questions and framing objectives to yield
meaningful data.While the core structure of these precedent surveys
might be retained, modifications will be made to tailor the questions
to the specific context and objectives of the current course under
evaluation, as exemplified in reference (Vasan et al., 2009).

Moreover, as suggested in the reference (Sarkar et al., 2021), the
survey will incorporate multiple-choice questions to streamline the
response process and enable students to articulate their perceptions
accurately. This format facilitates a more straightforward analysis of
the collected data and accommodates students’ diverse viewpoints,
allowing for a more complete understanding of their learning
experiences. As Willems and Dreiling (2022) highlighted, student
motivation is an essential factor to consider in the survey’s design.
Motivation plays a critical role in the learning process, influencing
both student engagement and perceptions. Understanding the
motivational drivers can provide deeper insights into how course
elements are perceived and interact with students’ intrinsic and
extrinsic motivations, thereby shaping their educational experience.

This focused survey intends to unravel the specific impacts
of course segments on student understanding, leveraging existing
research to formulate a comprehensive and effective tool. By
considering students’ perceptions and motivations, the survey aims
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to gauge each course element’s effectiveness and guide actionable
improvements, enhancing the educational process for learners.

Below is a proposed survey that could be implemented in future
studies to assess students’ learning outcomes and perceptions of the
subject matter.

4.1 Topic understanding and perception
survey

4.1.1 Demographic information

1. What is your year of study?

• Freshman
• Sophomore
• Junior
• Senior
• Graduate

2. What is your major/field of study?

4.1.2 Course content evaluation

3. Please rate how well you understood the concepts presented
in the following sections of the course (1 = Not at all, 5 =
Extremely well):

• Computer vision 1: _______
• Classification algorithms 2: _______
• Yolo algorithms 3: _______
• Implementing Yolo algorithms 4: _______

4. What aspects helped you understand the material better for
each section mentioned above? (Select all that apply)

• Lectures
• Textbook readings
• Practical exercises
• Group discussions
• Online resources
• Other (please specify)

5 learning experience

5. How motivated did you feel to engage with each topic section?

• Computar vision: Very unmotivated - Very motivated
• Classification algorithms 2: Very unmotivated -

Very motivated
• Yolo algorithms 3: Very unmotivated - Very motivated
• Implementing Yolo Algorithms 4: Very unmotivated -

Very motivated

6. What motivated you to engage with the topic content? (Select
all that apply)

• Interest in the subject
• Course requirement
• Instructor’s teaching style
• Peer influence
• Career prospects
• Other (please specify)

6 Feedback and improvement

7. What challenges did you face in understanding the concepts
of the topic?

8. How could these sections be improved to enhance your
understanding and learning experience?

9. Is there anything else about the course that could be changed
or improved to help you learn better?

7 Overall evaluation

Overall, how satisfied are youwith theway the course helped you
understand the subjectmatter? (1 =Not at all satisfied, 5 = Extremely
satisfied).

This survey structure is proposed to elicit detailed feedback on
the effectiveness of various course components, studentmotivations,
and perceived challenges, which can be used to tailor and enhance
the educational experience.

8 Conclusion

This paper has successfully designed a novel educational
framework by integrating a V-model methodology with project-
based learning. It is explicitly tailored to the intricacies of artificial
intelligence (AI) and its application in computer vision (CV). This
innovative approach demystifies AI technologies and showcases
their broad potential across various research and industrial domains.
Implementing this pedagogical model has been instrumental in
deepening students’ comprehension of object detection algorithms
while equipping them with valuable hands-on experience through
projects that mirror real-world manufacturing scenarios. This
immersive learning process enhances academic achievement and
prepares students for the professional world, offering them a solid
portfolio of practical implementations that could elevate their career
opportunities. From an industrial perspective, the paper highlights
the substantial benefits of integrating AI systems into operations,
notably enhancing efficiency and safety. The proactive use of AI for
quality control and the prevention of accidents, such as through
detecting safety equipment misuse or machinery malfunctions,
exemplifies the practical value of these technologies. These
applications facilitate more efficient maintenance processes and
contribute to the overall safety and productivity of the workplace.
Furthermore, as revealed through this research, the scope of AI’s
impact extends beyond immediate manufacturing processes to
include broader operational aspects like routine maintenance, thus
advocating for a comprehensive integration of AI across various
operational spheres. This holistic application of AI underscores
its significance in environments where procedural efficiency and
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safety are paramount. The contribution of this paper lies in its
creation of a structured yet flexible educational framework that
not only fosters a deep understanding of AI and CV technologies
but also emphasizes their practical application in real-world
scenarios. This approach advances academic knowledge and bridges
the gap between theoretical learning and industrial application,
thereby fostering a generation of well-equipped professionals to
drive innovation and enhance efficiency in their respective fields.
Through this framework, the study makes a compelling case for the
transformative potential of AI, promoting a proactive embrace of
these technologies in both educational and industrial settings.
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