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Shared autonomy holds promise for assistive robotics, whereby physically-
impaired people can direct robots to perform various tasks for them. However,
a robot that is capable of many tasks also introduces many choices for the user,
such as which object or location should be the target of interaction. In the
context of non-invasive brain-computer interfaces for shared autonomy—most
commonly electroencephalography-based—the two most common choices
are to provide either auditory or visual stimuli to the user—each with their
respective pros and cons. Using the oddball paradigm, we designed comparable
auditory and visual interfaces to speak/display the choices to the user, and had
users complete a multi-stage robotic manipulation task involving location and
object selection. Users displayed differing competencies—and preferences—for
the different interfaces, highlighting the importance of considering modalities
outside of vision when constructing human-robot interfaces.
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1 Introduction

One of the major promises of artificial intelligence (AI) and robotics is to be able
automate tasks that need to be performed in the real world. Prominent use-cases for industry
are warehouse robots and self-driving cars, but for individuals—particularly, physically-
impaired individuals—an important domain is assistive robotics (Brose et al., 2010). Robots
that can help with various household tasks would greatly improve quality of life for many
people, from the elderly to those with disabilities.

For such a demographic, a dominant interaction paradigm is via brain-computer
interfaces (Nicolas-Alonso and Gomez-Gil, 2012; Bi et al., 2013; Krishnan et al., 2016;
Aljalal et al., 2020). Using non-invasive electroencephalography (EEG), users can control
robots to accomplish tasks directly using their thoughts. However, due to the poor signal-
to-noise ratio of EEG, realtime robot controller speeds, and themental workload that would
be required, direct control of a robot’s joint/end-effector space can be difficult. Although
this has been a common choice (Hochberg et al., 2012; Zhu et al., 2020), hierarchical shared
autonomy, whereby the user specifies a high-level task for the robot to perform, is easier and
more scalable (Meng et al., 2016; Akinola et al., 2017; Lee et al., 2023). The most advanced
example of such an approach is the neural signal operated intelligent robot (Lee et al.,
2023), which combines the steady state visually evoked potentials and motor imagery EEG
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paradigms to allow a user to select an object from a tabletop, and
where and how to interact with it.

With advances in “end-to-end” AI (LeCun et al., 2015), the
landscape of robot control has gradually also shifted to shorter
pipelines and components that are learned. In particular, advances
in natural language processing and computer vision (Radford et al.,
2021) have spurred language-conditioned imitation learning for
robotics (Ahn et al., 2022; Shridhar et al., 2022a; Brohan et al.,
2022; Shridhar et al., 2022b; Driess et al., 2023; Goyal et al.,
2023). These range from sample-efficient solutions relying on
hybrid AI techniques (Shridhar et al., 2022a; Shridhar et al.,
2022b; Goyal et al., 2023) to large-scale models (Ahn et al., 2022;
Brohan et al., 2022; Driess et al., 2023), but both allow robots to
learn how to perform a range of tasks using a single algorithm,
and with human-interpretable natural language commands. We
posit that such methods are therefore promising for human-robot
interaction, and hence BCI with robot systems should be designed
using these.

Considering such robot systemswould be capable of performing
a range of tasks, a question that arises is how best to direct them.
Furthermore, would a visual interface, that is the most common
choice in these scenarios, be best, or would an auditory interface,
which allows the user to focus their visual attention on the robot,
be preferred? In this work we investigate this question by designing
and testing novel context-dependent visual and auditory BCIs based
on the commonly-used oddball paradigm (Squires et al., 1975).
We then perform a user study, using the language-conditioned
Perceiver-Actor (Shridhar et al., 2022b) model to control a robot
arm to perform a multi-stage task, cleaning up a table. We find
that users prefer different interfaces, and hence personalised BCIs
(Ma et al., 2022) should be considered when developing future BCI
+ robot systems.

While there have been several studies comparing visual and
auditory stimuli under the P300 paradigm (Subsubsection 2.2.1;
Furdea et al., 2009; Belitski et al., 2011; Käthner et al., 2013;
Oralhan, 2019), no comparative studies exist during the task
of operating a robot. In contrast to these studies, which found
higher performance associated with the visual interface, our results
(Section 3) indicate that different users can have different affinities
for sensory modalities when directing a robot manipulation task.
Furthermore, whilst NOIR presents an elegant BCI-robot pipeline
with multitask policies and robot learning, their use of predefined
parameterised primitive skills is less scalable than our use of
language-conditioned imitation learning, which we believe is a first
in the context of BCI-robot setups.

2 Materials and methods

2.1 Task

We designed a simple, multi-stage task to test the efficacy of the
two different user interfaces under a shared autonomy paradigm.
The user is tasked in directing a robot arm to tidy up a mock
kitchen table (Figure 1A). Firstly, the robot must open either the
top or bottom drawer of a chest of drawers, and secondly, pick up
either a cup, spoon, or bottle, to put into the open drawer. Once a
full task is completed, the robot arm closes the open drawer, and

another instantiation of the task is provided to the user, e.g., open the
bottom drawer and pick up the bottle.With ourmulti-task imitation
learning setup, described in detail in Section 2.5, we can train the
robot to perform different manipulation tasks in a scalable manner.

The user is provided with decisions at two points: firstly, to
choose between the two drawer locations, and secondly, once the
robot arm has opened the drawer, to choose between the three
kitchen objects. The interface gives the user the task specification
at the beginning of each trial, and after task completion, the
environment is manually reset (the object is put back on the table)
before the next trial begins. The control flow for a single, multi-stage
task is shown in Figure 1B.

For the user, we measure subtask success, i.e., decoding the
correct object to place in thewrong drawer results in 1 success (out of
amaximumof 2) for the trial. For the robot, we alsomeasure subtask
success, including closing the drawer. As an example, opening the
decoded drawer and picking the decoded item, but failing to close
the drawer results in 2 successes (out of a maximum of 3) for the
trial. We consider user and robot success independently. If the user
selects the wrong object, but the robot picks up the object that was
selected, then it is a failure for the user, but a success for the robot.
If the robot fails at its action at any stage, a human experimenter
completes the action in order for the experiment to continue.

2.2 User interfaces

BCIs can be categorised into 3 different interaction types: active,
reactive, and passive (Hramov et al., 2021). Active BCIs are effortful,
and require the user to make use of some form of mental imagery
(most commonly motor imagery) to control a system, whilst passive
BCIs detect the user’s mental condition (e.g., attention or emotional
state) to provide feedback to an external system. Reactive BCIs
generally provide the best signal-to-noise ratio, as they rely on the
user’s brain reacting to external stimuli, and hence we chose to
design our interface based on this interaction type.

2.2.1 Oddball paradigm
Our interface relies on detecting the event-related potential

(Luck, 2012) associated with oddball stimuli (Squires et al., 1975);
this is the response of the brain to the rare occurrence of a
target stimulus amongst sequences of non-target stimuli. When
combined with decision making, the oddball paradigm elicits the
P300 response (Polich, 2007), which is a higher amplitude signal
occurring at the parietal lobe after 300 ms beyond the presentation
of the target stimulus.

Various experimental conditions affect the P300 elicited:
stimulus categorisation time increases latency (Kutas et al.,
1977), greater similarity between target and non-target stimuli
reduces the difference in magnitude between their responses
(Azizian et al., 2006), and the magnitude of the response
increases with target stimuli rarity (Donchin and Isreal, 1980).
In short, the target stimulus must be relatively surprising
(Donchin, 1981). Typical stimuli include coloured circles for
visual interfaces and simple tones/sounds for auditory interfaces
(Fayaz et al., 2020).

However, without a natural mapping (Norman, 2013) from
interface controls to their actions in the real world, users can
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FIGURE 1
(A) Experimental layout. The user with the EEG cap sits in front of a small table facing the robot, with a display (for the visual P300 interface only). The
robot is behind a table with chest of drawers and three kitchen objects: a cup, a spoon, and a bottle. (B) Multi-stage task control flow. After the robot
environment is initialised, the robot provides a set of actions that can be performed. These actions are used to create the user interface. After an action
has been decoded by the user interface, the robot performs the chosen action, and then provides the next set of actions. This generic process can be
repeated; however, in our particular task there are two decision points for the user (pick a drawer to open, and item to pick and place), after which the
robot performs a third and final action (close the drawer) autonomously.

find an interface unintuitive. Therefore, we made a decision
to trade off stimuli simplicity for a more flexible, potentially
open-ended design.

Wedesigned our interface based on thewell-studied P300 speller
interface (Farwell and Donchin, 1988). The standard P300 speller
consists of a grid of characters that flash in a random sequence,
with the user eliciting a P300 response when the target character
flashes. Instead, our task presents either two (“top” or “bottom”) or
three (“cup”, “spoon” or “bottle”) semantic choices at each decision
point. As iterating between few options makes all stimuli (target
and non-target) presentations surprising, we added “blank” items
to our interface (Figure 1A), to make a total of 6 items to choose
between; this was a tradeoff between increasing the target rarity
and the speed with which all items could be iterated over. To the
best of our knowledge, research based on P300 spellers have only
considered a minimum of 4 items, and so the use of blank/null
items is a novel solution to using the tried-and-tested P300 speller
paradigm with a small number of choice items.

2.2.2 Visual user interface
Our visual interface is based on the standard P300 speller

interface, with a 2D matrix of monochrome items arranged
on a plain background (Farwell and Donchin, 1988). When
the robot requires a decision from the human, it sends a
list of the choices to the interface, which then makes and
displays the matrix of items (Figure 1A). The 6 items (including
blanks) are laid out in a 2× 3 grid with a black background.
The current stimuli text flashes white, and otherwise all
text is grey.

The advantages of the visual user interface are: humans have
a stronger ERP response to visual stimuli (in contrast to auditory
stimuli (Fayaz et al., 2020)), there is a larger design space for
visual interfaces, they can have a high information density, and
in general there is more research on visual BCI (Gao et al.,
2014). The major disadvantage is that the user has to focus away
from the environment and on the interface, resulting in divided
attention (Liu, 2001).
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2.2.3 Auditory user interface
There have also been several attempts to build auditory

analogues of the P300 speller, typicallymapping simple audio stimuli
to the rows and columns of the visual version (Furdea et al., 2009;
Klobassa et al., 2009). We instead chose to directly play back the
choices through speech in a random sequence, generated by a
pretrained SpeechT5 text-to-speech model (Ao et al., 2022).

With the visual interface, all items are presented simultaneously,
with a maximum of one item being highlighted at once. However,
this is not feasible with the auditory interface, which uses words
spoken sequentially.The onset of speech can be surprising, therefore
a constant stream of white noise was added in the background to
mitigate this effect; the white noise is played continuously, and the
words are spoken at regular intervals.We believe this does not have a
significantly negative effect on ERP detection, as prior research has
shown that P300 responses can still be elicited in the presence of
background white noise (Salisbury et al., 2002).

In contrast to the visual user interface, there is less flexibility
in designing the auditory interface, but it does allow the user to
maintain their visual focus on the scene in front of them. As there is
less indirection, the auditory interface can induce greater feelings of
having “mind control” over the robot, increasing engagement.

2.2.4 Experimental schema
In our user study (Section 2.6), we first collect EEG data using

just the interface to train decoders for each user, and then perform
online decoding with a real robot. The main difference in the
interface between these two phases is that with online decoding, the
robot performs the action once chosen.

For each trial (requiring first a choice of location, and then
a choice of item), each choice proceeds as follows for the visual
interface. Firstly, the target is displayed for 5 s. Then a neutral
interface (all items grey) is displayed for 0.6 s. Then the interface
loops through a random permutation of the items (all words are
flashed once in one “loop”), with a stimuli presentation time of 0.25 s
and a neutral inter-stimuli display time of 0.05 s, with 5 loops for
data collection and up to 10 loops for online decoding. We record
the EEG data associated with the stimuli presentation and inter-
stimuli display times as a single EEG epoch. During data collection
we collect data for all choices that may occur when interacting with
the environment (“top” and “bottom”, and separately “cup”, “spoon”
and “bottle”).

For the auditory interface, we had to increase the stimuli
presentation time to 0.5 s to avoid words being cut off, increased
the delay between stimuli presentations to 0.55 s to ensure smoother
speech playback, and also introduced a ping as a cue between the
specification of the target and the loop to reduce surprise.

2.3 EEG

We acquired EEG data with a 64-channel g. SCARABEO g.
GAMMAcap21 with active electrodes at positions specified by the
extended international 10–20 system.All 64 electrodes were used for
decoding. AFz was used as the ground electrode, with both earlobes

1 https://www.gtec.at/product/g-scarabeo-eeg-electrodes/

as reference. Conductive gel was applied to each electrode until
the impedance was under 20 k Ω. The data stream was collected
at 512Hz, with a notch filter at 50 Hz to reduce line noise, and a
bandpass filter at 0.1–30 Hz, which is standard for ERP detection
(Luck, 2012). Furthermore, we automatically rejected any epochs
which had a maximum peak-to-peak signal amplitude of over
5000 μV using MNE’s drop_bad2 method; this value was chosen
conservatively, allowing many epochs with artefacts to be included
during recording/decoding.

2.4 Decoder

For each user and interface, we trained an ensemble of 10
support vector machine (SVM) classifiers on the log spectrogram
(power spectral density of the short-time Fourier transform)
of the signal. The spectrogram was calculated using scipy’s
spectrogram3 function with segments of size 32, resulting in
7,616 features per data point.The SVMswere trained using stratified
k-fold cross-validation, which means that each SVM was trained
on a different 90% split of the data. To combat the class imbalance
with ERP data, we weighted samples proportionally to the inverse
of their class frequencies. Other than the weighted loss, all SVMs
were trained using the default settings from the scikit-learn library
(Pedregosa et al., 2011). During decoding, we used majority voting
over the ensemble of SVMs to detect ERPs; in the event of a tie
(5/10 predictions of an ERP), then we count it as a detection. If
a maximum of 10 presentations of all stimuli passes without an
ERP being predicted, we consider it a timeout (decoder failure) and
proceed to the next subtask.

2.5 Robot

For our experiments we used a 7 DoF Franka Panda robot arm,
placed in front of a mock kitchen table (Figure 1A). For colour
and depth input, we also placed an Intel RealSense D435i camera
opposite the robot.

To control the robot, we used PerAct (Shridhar et al., 2022b),
a language-conditioned, multitask imitation learning algorithm.
PerAct takes in a voxel view of the scene, proprioceptive
inputs (gripper open/close status and position), and a natural
language instruction (using a pretrained CLIP language encoder;
Radford et al., 2021). These are then processed by a Perceiver
IO Transformer (Jaegle et al., 2022). Finally, the output of the
Transformer is decoded to produce the desired gripper position
(specified in voxel space; James and Davison, 2022), rotation,
open/close status, and motion planning mode. Instead of directly
outputting actions for the robot to execute, PerAct uses a traditional
motion planner—by default, RRT-Connect (Kuffner and LaValle,
2000) within the ROS MoveIt! package (Chitta et al., 2012). PerAct
is trained using supervised learning on input-action tuples from

2 https://mne.tools/stable/generated/mne.Epochs.html#mne.Epochs.

drop_bad

3 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.

spectrogram.html
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a set of demos; we trained a single model on 7 tasks with the
corresponding language commands: “open the top/bottom drawer”,
“pick and place the cup/bottle/spoon”, and “close the top/bottom
drawer”. We collected 60 demos with teleoperation (10 for opening
the drawers +20 for closing the drawers +30 for picking up and
placing the items in the drawer), over a span of 6 h, to train our
multitask PerAct model. We randomised the initial positions of the
small objects during training and testing, and adjusted the drawer
position and orientation slightly while maintaining its position at
the right side of the table. Our changes against the default PerAct
settings include restricting the input and position output to a 603

voxel grid (as opposed to the default of 1003) due to limited GPU
memory, and using keypoints from our teleoperation setup (as
opposed to calculating them heuristically).

2.6 User study

We recruited a total of 7 volunteers for our study (1 female,
average age of 29 years, with a standard deviation of 2.07 years).
Users were initially given a briefing on the purpose of the study
and experimental protocol, and if they consented, proceeded to the
actual experiment. Our studywas given ethical approval by the Shiba
Palace Clinic Ethics Review Committee.

After setting up a user with the EEG cap, we presented themwith
one of the user interfaces and a series of randomised targets in order
to collect training data to calibrate the user-specific EEG decoder.
We collected approximately 20 min of calibration data per user, per
interface, which consisted of 5 presentations of each of the 5 targets
(top/bottom/cup/spoon/bottle), alongside non-target presentations
(with each loop of the interface having 1 target item +5 non-target
items), 10× for the visual interface, and 5× for the auditory interface.
This resulted in amaximumof 1,500 and 750 epochs of data per user
(given that some epochs are automatically rejected), for the visual
and auditory interfaces, respectively. This data was used to train an
ensemble of decoders (Subsection 2.4).

During the online decoding experiments, we measured
decoding and robot success independently (Subsection 2.1). If the
decoder predicted an ERP on a blank stimulus, or timed out, we
sent a random object to the robot to interact with. Online decoding
consisted of a total of 12 trials (2× all combinations of choices). After
the online decoding trails, the user was given a questionnaire with
18 7-level Likert items.

We then repeated data collection and online decoding with the
other interface. To control for learning effects in the results, we split
users so that half used the visual interface first, and the other half
used the auditory interface first. In total, the entire procedure took
up to 3 h per user.

3 Results

3.1 Decoder

Our primary results are based on 336 online decoding choices
(7 users × 2 interfaces × 12 trials × 2 choices). On average, during
online decoding, users had a success rate (rate of successfully
selecting the target item) of 0.23 ± 0.42 for the visual interface,

and 0.25 ± 0.43 for the auditory interface, with only one user
experiencing timeouts. Firstly, we note that our success rates are a
lower bound on the success of a real deployed system, as, in this
study, we allow the interfaces to decode ERPs on the “blank” items,
whereas in practice we could restrict the interface to only select from
valid items. Secondly, different users had different proficiencies,
with some being notably more successful with one interface over
the other (Figure 2). This supports the idea of personalised BCIs
(Ma et al., 2022), as different users may prefer to interact using
completely different modalities. Indeed, althoughmost users tended
to find the auditory interface harder to use, some preferred it,
as they could directly observe the robot instead of looking at a
separate screen.

There was little difference on the decoder training metrics
between interfaces, with a balanced accuracy on k-fold cross-
validation of 0.50 ± 0.05 for the visual interface, and 0.55 ± 0.09
for the auditory interface. Precision and recall was 0.17 ± 0.03
and 0.47 ± 0.15 for the visual interface, and 0.20 ± 0.06 and
0.48 ± 0.19 for the auditory interface. A priori, we believed that
precision would be the most important metric, as minimising
the amount of false positives would reduce the chances of the
decoder selecting the wrong object. However, when calculating
the Pearson correlation coefficient (Freedman, 2009) between
all three decoder training metrics and online success, we did
not find any strong correlations. We believe that this is due to
the domain shift between training and online decoding, as we
discuss below.

As users interacted with the two interfaces sequentially, we
anticipated that there may be learning effects. However, when we
compare the difference in performance between the second and
first sessions (Figure 2), only half the users experienced an increase
in the success rate, regardless of whether they used the auditory
or visual interfaces first. Interestingly, the difference in success
rate is more pronounced than in the balanced accuracy, which
we believe is due to the domain shift between collecting data
from the interface without interacting with the robot, and online
decoding where the user is engaged with trying to control the robot.
Qualitatively, most users felt pressure during the online decoding
sessions, and users who were able to relax the most achieved higher
success. As attention and time-pressure can affect P300 responses
(Hohnsbein et al., 1995), the decoders would need to extrapolate to
out-of-distribution data. Although data collection did not involve
robot interaction to speed up the process, finding a way to make the
offline and online decoder processes more similar should not only
improve online success, but hopefullymake the data collectionmore
engaging for users.

The questionnaire results weremixed (Figure 3). On the positive
side, users seemed to understand the task and interface well.
On the negative side, users were not so engaged, and were
aware that decoding had a lot of errors. Feedback on the two
interfaces only differed by more than 1 point on 2 items: the
visual interface required less effort, and it was easier to ignore
the non-target with the auditory interface. The latter observation
is supported by a post hoc analysis of the training data, as P300
components were found in the non-target epochs of the visual
interface. Redesigning the interfaces to reduce interference from
non-target stimuli would greatly improve usability and decoder
performance.
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FIGURE 2
EEG decoding results: hatched bars correspond to decoder training, and plain bars correspond to online decoding. The average balanced accuracy,
precision and accuracy across users was 0.50 ± 0.05, 0.17 ± 0.03 and 0.47 ± 0.15 for the visual interface, and 0.55 ± 0.09, 0.20 ± 0.06 and 0.48 ± 0.19 for
the auditory interface, respectively. Average success was 0.23 ± 0.42 for the visual interface, and 0.25 ± 0.43 for the auditory interface. Only one user
experienced timeouts (3, on the auditory interface).

FIGURE 3
Usability questionnaire results. Users understood the interfaces without much difficulty, but were frustrated with poor decoding accuracy. The most
significant difference between the interfaces was the ability to ignore the non-targets, with users finding this particularly difficult with the
visual interface.
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FIGURE 4
PerAct success rates. On average, PerAct had a success rate of 72% on opening the drawer, 78% on closing the drawer, and 45% on picking and
placing objects.

3.2 Robot

Overall, PerAct was 65% successful, over a total of 504
subtasks (7 users × 2 interfaces × 12 trials × 3 subtasks). The
success was highly (sub)task-dependent (Figure 4), with closing
the top drawer being easiest (90% success), and picking up the
spoon hardest (31% success). One of the main difficulties for
PerAct with picking up objects is predicting the gripper position
precisely enough to prevent slippage—an issue we believe could
be ameliorated with a higher resolution voxel grid and better
point cloud noise filtering. A few failures came from picking
up the wrong object, which could have been better handled by
adding segmentation-conditioning to PerAct (Akiyama et al., 2023).
However, the latter algorithm had only been tested on different
object types, and not on referring object detection, e.g., detecting the
“top drawer”. Unfortunately, open-set object detection algorithms
that can perform referring object detection (Liu et al., 2023) still
have poor top-1 accuracy on images from our robot environment.
Finally, some of our failures came from RRT-Connect planning
paths that came too close to obstacles, triggering the robot’s
automatic safety mechanism. Robot learning methods such as
PerAct that predict keypoints can accomplish more tasks, with
greater safety, by instead using an ensemble of path generation
methods (James andAbbeel, 2022), and sowe hope to integrate these
in the future.

4 Discussion

In this work we focused on what we see as the upcoming
setting for BCIs with robots—multi-task (imitation) learning
controllers, combined with context-dependent interfaces. We
trained a PerAct agent (Shridhar et al., 2022b) to open and
close drawers, and pick up and place small household objects
into open drawers, enabling a user to direct a real robot arm
to tidy up a table. In order to control the robot, we designed
novel user BCIs, trialling both visual and auditory modalities.
Users displayed preferences for different interfaces, highlighting
the importance of personalisation in BCI design (Ma et al.,
2022).

The main limitation of our study is the low success rate of
the online decoder. Although all users were able to achieve above
chance success (1/6, the reciprocal of the number of items presented
in one loop of the interface) with at least one modality, none
were able to achieve significantly higher than this. One issue was
the limited training data—we sacrificed potential performance for
improving the users’ comfort. We inferred from user feedback that
the increase in mental workload when operating the real robot
could also have reduced the performance of the decoder, as it is
known that the amplitude of the P300 signal is smaller when mental
workload is high (Gopher and Donchin, 1986; Kramer et al., 1986;
Wintink et al., 2001).

One way to improve the performance of our EEG decoder
would be to collect more training data, or use transfer learning
methods (Wan et al., 2021). More training data would also
enable us to use more sophisticated models for classifying EEG
signals (Lawhern et al., 2018). Similarly, we expect that PerAct’s
success rates could be improved by collecting more demos.
Finally, we would like to highlight that the recent NOIR system
(Lee et al., 2023) presented several innovative design choices
for BMI-robot pipelines that are orthogonal to our work, and
we believe combining these with elements of our approach
could lead to even more flexible and scalable BMI-robot setups
in the future.
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