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Modeling of slip rate-dependent
traversability for path planning of
wheeled mobile robot in sandy
terrain

Go Sakayori* and Genya Ishigami

Graduate School of Integrated Design Engineering, Faculty of Science and Technology, Keio
University, Tokyo, Japan

A planetary exploration rover has been employed for scientific endeavors or as
a precursor for upcoming manned missions. Predicting rover traversability from
its wheel slip ensures safe and efficient autonomous operations of rovers on
deformable planetary surfaces; path planning algorithms that reduce slips by
considering wheel-soil interaction or terrain data can minimize the risk of the
rover becoming immobilized. Understanding wheel-soil interaction in transient
states is vital for developing a more precise slip ratio prediction model, while
path planning in the past assumes that slips generated at the path is a series
of slip ratio in steady state. In this paper, we focus on the transient slip, or slip
rate the time derivative of slip ratio, to explicitly address it into the cost function
of path planning algorithm. We elaborated a regression model that takes slip
rate and traction force as inputs and outputs slip ratio, which is employed in
the cost function to minimize the rover slip in path planning phase. Experiments
using a single wheel testbed revealed that even with the same wheel traction
force, the slip ratio varies with different slip rates; we confirmed that the smaller
the absolute value of the slip rate, the larger the slip ratio for the same traction
force. The statistical analysis of the regression model confirms that the model
can estimate the slip ratio within an accuracy of 85% in average. The path
planning simulation with the regression model confirmed a reduction of 58%
slip experienced by the rover when driving through rough terrain environments.
The dynamics simulation results insisted that the proposed method can reduce
the slip rate in rough terrain environments.

KEYWORDS

wheel-soil interaction, rough terrain, slip rate, slip ratio, terramechanics, path planning

1 Introduction

Enhancing the autonomy of planetary rovers stands as a critical need in the
exploration of expansive celestial surfaces within tight mission schedules. An illustrative
instance is the NASA Mars Sample Return campaign’s demand for the sample fetch
rover to cover distances of up to 20 km within 150 Martian solar days, aimed
at gathering a variety of materials, including rocks, soils, and atmospheric data
(Muirhead et al., 2020). Historically, Martian rovers equipped with autonomous mobility
faced limitations in achieving swift traversal due to frequent human interventions
necessitated by the evaluation of potentially hazardous terrain in the presence of
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communication delays. Additionally, rover slippage on
extraterrestrial terrains, particularly deformable surfaces, has
proven to be a significant concern, as illustrated by the significant
slippage experienced by the Curiosity rover on the rippled sand
within Hidden Valley (Rankin et al., 2020). This necessitated
adjustments to the route for safer paths. Therefore, it is crucial
to conduct a dependable assessment of terrain traversability on
deformable surfaces, as this enables faster and more extensive
rover exploration.

When a wheeled-based rover traverses on loose soil, it
experiences complex interaction between the wheel and soil,
including soil deformation, particle displacement, and slip. The
occurrence of large slip while traveling can notably impact
the rover’s traction, steering, and overall mobility, resulting in
increased power consumption and reduced operational efficiency.
Therefore, revealing the mechanisms of the wheel-soil interaction
and optimizing the rover motion is crucial for developing
reliable planetary rovers. To pre-optimize the rover motion, path
planning algorithms considering the wheel-soil interaction would
be essential.

Most of the work related to rover path planning addresses
steady state motion, while few works consider transient state
motion. Here, a steady state refers to a situation where both
the velocity command to the rover and its translational velocity
are constant. This is a commonly observed state when traveling
on flat terrains. On the other hand, a transient state refers to
a situation where either the velocity command value, the actual
translational velocity, or both are changing over time. For instance,
at the start of traveling on a slope, even if the velocity command
remains constant, the translational velocity can change due to
the influence of gravitational factors. There are also cases, such
as during braking, where the velocity command changes, but the
translational velocity remains constant. Velocity change causes
acceleration, therefore, translational acceleration or acceleration
command occurs in transient states. During planetary exploration,
the rover is likely to experience transient state motion. Therefore,
understanding the wheel-soil interaction under varying acceleration
condition is crucial for optimizing rover motion.

In this study, we aim to investigate the importance of the
acceleration dimension in the wheel-soil interaction and its impact
on the path planning phase for planetary rovers. First, we introduce
the concept of “slip rate”, which is the time derivative of the slip
ratio, and reveal how the forces acting on the wheel change when
it travels at a constant slip rate. Here, slip rate is a physical quantity
that considers both the angular acceleration and translational
acceleration of the wheel. Subsequently, we clarify the impact of
slip rate on the relationship between traction force and slip ratio
and develop a regression model. Using this relationship, we apply
it to aid the path planning algorithm for planetary rovers. Lasetly,
simulation studies confirmed that it is possible to reduce the slip
ratio experienced by the rover when driving on rough terrains.

The contributions of this paper are as follows:

• We defined the term slip rate, and explain the
physical phenomena.
• We conducted single-wheel experiments under constant slip
rate conditions and revealed that the same traction force can
generate different slip ratios depending on the slip rate.

• We designed regression models for traction force versus slip
ratio that are dependent on the slip rate, to be employed in the
path planning cost function.

The rest of the paper is organized as follows: Section 2 introduces
related research and reveals the issues when considering transition
state motion. Section 3 shows the results of the slip rate experiment
obtained from the single wheel testbed and discusses the effect of
slip rate. Section 4 explains the path planning method employing
a regression model that takes slip rate, traction force as the input
and outputs slip ratio. Section 5 draws the conclusion and presents
a direction for future studies.

2 Related research

This paper integrates the notion of wheel-soil interaction, and
path planning considering traversability and slip risks.The following
subsections summarize the related literature in these fields.

2.1 Terramechanics

A classical wheel-soil interaction model based on
terramechanics has been widely employed for mobility analysis
of wheeled robots and utilized for wheel traction control to reduce
the risks of wheel slip. Recent research has developed a wheel-soil
interaction model for a lightweight vehicle based on comprehensive
measurements of the wheel driving characteristics on loose soil
(Horiko and Ishigami, 2020; Tsubaki and Ishigami, 2021). This
model can provide insights into the complex physics of the wheel-
soil interaction and help optimize the design and control of wheel-
based rovers for various terrain conditions. However, due to the
complex shape of the contact surface between the wheel and the soil,
the distribution of shear stresses and normal stresses greatly depends
on the wheel shape, making it challenging to discuss uniformly.
Moreover, computing net traction force or rolling resistance using
simple integral calculations is also difficult. A modeling method to
address such problems is the Resistive ForceTheory (RFT) (Li et al.,
2013; Agarwal et al., 2019).The feature of RFT is finding consistency
in the behavior of soil and enabling forces to be calculated with a
single parameter. Dynamic Resistive ForceTheory (DRFT) has been
developed as a modeling method suitable for wheels traveling at
high speeds, by extending RFT with the introduction of velocity
dependency (Agarwal et al., 2021).

However, an open issue is that none of the wheel-soil interaction
models reveal the mechanical phenomena in the transient state.
Incorporating a time dependent term into the terramechanics
equation orwheel-soilmodels that take accelerationdimensions into
account will be indispensable to improve the prediction accuracy
of rover slip.

2.2 Terrain traversability prediction

Numerous research studies have been proposed to estimate the
slip ratio by utilizing information obtained from sensors mounted
on wheels and rovers (Cross et al., 2013; Bouguelia et al., 2017;
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Song et al., 2017; Kim and Cho, 2023). Omura et al. (Omura and
Ishigami, 2017) proposed a machine learning algorithm, which
classifies the wheel slippage into three categories: non-stuck wheel,
quasi-stuck wheel, and stuck wheel. The force applied to the wheel
and the contact range information are taken as inputs to output the
slippage category. Gonzalez et al. (2018) proposed an unsupervised
learning model to detect various levels of slip and also explored the
optimal placement of IMU sensors on the rover chassis to optimize
slip detection.

Various planning algorithms are proposed to predict terrain
traversability utilizing visual and geometric information. Camera
images are employed to classify the terrain and to predict
the slippage of each terrain (Helmick et al., 2009; Brooks and
Iagnemma, 2012; Ono et al., 2015; Otsu et al., 2016; Rothrock et al.,
2016; Feng et al., 2022; Wang et al., 2023). Regression-based
algorithmsmodel traversability in accordancewithwheel slip, which
is often estimated from terrain inclination (Skonieczny et al., 2019).
Cunningham et al. (2017) trained a machine learning algorithm to
predict slip from both terrain type and slope using data from the
Curiosity rover. Hedrick et al. (2020) proposed online map updates
with information gathered around the rover.

However, the prediction models determine only the
feasibility/infeasibility of driving in a steady state, and they do not
address predictions in the transient state. Since the traversable area
should differ depending on the driving conditions, it is necessary to
understand the phenomena of slip in transient state and to create slip
prediction model including transient state phenomena. Modeling
the slip prediction, it could be used in the path planning phase.

2.3 Risk aware planning

Numerous risk-aware planning methods have been proposed
in which mobility risk is expressed as a function of rover wheel
slippage, with the generation of paths that constrain risk (Lee et al.,
2016; Endo et al., 2023; Park and Chung, 2023). Inotsume et al.,
(2020) proposed a path planning algorithm based on Rapidly-
exploring Random Trees (RRT), allowing users to define slip-
based risk thresholds. Candela and Wettergreen (2022) proposed
a probabilistic path planning framework that quantifies science
investigation and mobility risk of rover exploration, where they
employed the slip prediction model proposed by Cunningham et al.
(2017). Mizuno and Kubota (2020) also use a RRT*based path
planner, but they model slip uncertainty with particle filters. Endo
and Ishigami (2022) propose a framework that updates the latent
traversability model by exploring informative terrain under the
constraints of stochastic rover slip.

Risk-aware planning considers the slip ratio as one type of risk,
but it was a series of steady-state slip. Understanding the phenomena
of slip in transient state will enable to predict risks that are close to
natural phenomena.

3 Slip rate experiment

This section describes the definition of slip rate, and discusses
the result obtained from the constant slip rate experiment.
Section 3.1 defines the term slip rate and explains expected physical

phenomena of wheels. Section 3.2 explains the experimental
setup and condition to conduct a constant slip rate experiment.
Section 3.3 discusses the result obtained from constant slip
rate experiment.

3.1 Definition of slip rate

The longitudinal slip s, defined as the ratio between the wheel’s
circumferential velocity rω and the translational velocity vx, is
defined as the following equation:

s =
{{
{{
{

1−
vx
rω
(vx ≤ rω)

rω
vx
− 1 (vx > rω)

(1)

where r is the wheel radius andω is the angular velocity of the wheel.
Negative slip, a rare phenomenon, occurs in specific situations such
as when braking is applied but the rover continues to descend
a slope. Therefore, this paper will only address regions where
positive slip occurs.

The time derivative of the longitudinal slip ̇s (hereafter referred
to as the slip rate) can be written as follows:

̇s =
rvxω̇− rω ̇vx

r2ω2 (vx ≤ rω) (2)

When the rover is controlled with a target of a constant
speed, the wheel is moving at a constant circumferential velocity;
it maintains a constant rotational angular velocity. Under this
condition, the slip ratio can be described as follows:

̇s =
− ̇vx
rω
(∵ ω̇ = 0) (3)

Depending on the sign of the time derivative of the translational
velocity, which is the translational acceleration, the sign of the slip
rate is determined. The value of the slip rate is determined by
the ratio of translational acceleration to circumferential velocity.
Specifically, a positive slip rate indicates a state where the rover is
approaching a stuck condition, whereas a negative slip rate signifies
a state where it is escaping from stuck. The value of the slip rate
signifies the speed at which it becomes stuck or escaping from stuck.

When the rover adjusts its translational velocity via accelerating,
the sign and value of the slip rate are determined based on
the relationship between the wheel’s rotational angular velocity,
rotational angular acceleration, translational velocity, and
translational acceleration. When the translational velocity is
constant due to external factors, such as during a slope ascent, the
slip ratio at that instant can be calculated from the ratio of angular
velocity to angular acceleration, as described in Eq. 4.

̇s =
vxω̇
rω2 = (1− s)

ω̇
ω
(∵ v̇x = 0) (4)

In this study, to reveal the differences in wheel-soil interaction,
the slip rate was set as a variable under conditions of constant
circumferential velocity, considering the actual operation of
planetary rovers. The experimental setup will be discussed in the
following subsection.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1320261
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Sakayori and Ishigami 10.3389/frobt.2024.1320261

3.2 Experimental setup

The single wheel test bed, as shown in Figure 1A, is filled with
soil with a dimension of 3,500 mm in length, 600 mm in width, and
1,200 mm in depth. The experimental setup comprises a carriage
stage equipped with a wheel that possesses the capability to move
both horizontally and vertically through the utilization of slide
guides. The stage is further linked to a carriage motor via a timing
pulley belt. Therefore, this test bed possesses the capability to adjust
the wheel’s circumferential velocity rω and translational velocity vx
relative to the ground; the wheel slip can be arbitrarily adjusted.
The time derivative of the horizontal displacement of the carriage
measured by the magnetic scale (linear encoder) on the wheel
test bed provides vx, and the motor encoder measures the wheel
angle of rotation with respect to time, giving the angular velocity
ω. Feedback controls are performed for the wheel motor and the
carriage motor to obtain the desired circumferential velocity rω
and translational velocity vx. The vertical displacement measured
by the magnetic scale on the wheel test bed provides the sinkage of
the wheel. To measure the forces and torques applied to the entire
wheel, we use a 6-axis force/torque sensor. The force measured in
the longitudinal direction by this sensor is the net traction force
(hereinafter traction force).

In this paper, to maintain a constant slip rate, we decided to
keep the circumferential velocity constant and vary the translational
velocity; by adjusting the translational acceleration we can achieve a
constant slip rate. The angular velocity ω was set to 10° and 20°/s to
achieve constant circumferential velocity, taking into consideration
that the selected values align with the operational context of the
operated rovers. The initial slip ratio was set to 0.0, then the
carriage motor moved the wheel with slip rates of 1, 2, 5, 10,
and 20 1/s to simulate scenarios where the wheel is gradually
becoming stuck (s = 1.0). On the other hand, to simulate scenarios
where the wheel is escaping from stuck, we set the initial slip
ratio to 1.0 and employed slip rates of −1, −2, −5, −10, and
−20 1/s. Additionally, to simulate situations where the wheel gets
stuck and then escapes, we started with an initial slip ratio of 0.0,

moved the wheel to 1.0 slip ratio with a constant slip rate, and
then moved it back to 0 slip ratio with a negative constant slip
rate (absolute value of the slip rate is equivalent). In this paper,
we call this experimental condition a round trip. Two types of
wheels with grousers, as shown in Figure 1B, were adopted to
reveal the relationship between traction force and slip ratio. For
each wheel, by loading an appropriate weight on the top of the
wheel, we achieved a condition where a load of 10 kg is applied
to the wheel. The soil covering the wheel test bed is Toyoura sand
(Zhang et al., 2013).

3.3 Experimental results

The experiment was designed to observe how the forces
acting on the wheel will vary during the transitional phase of
increasing/decreasing slip ratio. Futhermore we focused on how
the traction force varied with different slip rates. In this study,
data acquisition from the single wheel testbed was conducted at
a frequency of 10 Hz. The processing of this data involved the
use of a moving average filter, specifically implemented with a
window size of 5, to ensure optimal data smoothing and accuracy.
The traction force gradually increases for a positive slip rate, as
shown in Figure 2A. On the other hand, the traction force is
seen to gradually decrease for a negative slip rate, as shown in
Figure 2B. This can be explained by the amount of wheel sinkage.
The traction force is increased as the sinkage increases; the contact
area between the wheel and the soil increases (Figure 3A), leading
to a larger integrated value of shear stress. On the other hand,
when the sinkage decreases, the contact area is reduced (Figure 3B).
Therefore, the traction force is reduced due to a smaller integrated
value of shear stress. Phenomena where the traction force remains
constant despite an increase or decrease in sinkage, can be explained
by the normal and shear stresses beneath the wheel. The traction
force is obtained by the difference in the longitudinal direction
components of normal stress and shear stress. It is believed that the
changes in shear stress and normal stress are well-balanced in this

FIGURE 1
Experimental setup. (A) Overview of test bed. (B) Wheels used in experiment.
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FIGURE 2
Experimental result with constant slip rate (ω = 10°/s, Wheel 1). (A) Slip rate 1. (B) Slip rate −1. (C) Round trip: Slip rate 1.

region. It can be seen from Figure 2C that the same phenomenon
occurs in the round trip experiment as well. Furthermore, even
with the same amount of sinkage, the value of the traction force
differs depending on the sign of slip rate (Figure 4). Positive slip
rates have larger traction force comparing with negative slip rate.
This can be explained as follows: the increase in traction force at a
positive slip rate is likely due to the amount of sand accumulated
on the wheel’s surface. This traction force is a result of the balance
between thrust force and traction resistance. With a positive slip
rate, sand starts to accumulate in the wheel’s forward direction
as the slip ratio approaches 1. In contrast, a negative slip rate
leads to the wheel sinking and a large accumulation of sand at the
beginning. Even as the slip ratio decreases,more sand is accumulated
and pushed forward. The quantity of sand affects traction

resistance, suggesting that higher traction forces are generated at a
positive slip rate.

Figure 5 shows the relationship of the traction force and slip ratio
under various experimental conditions. As shown in Figure 5A, it
can be observed that the region of the slip ratio where the traction
force remains constant differs depending on the wheel. This is due
to the influence of the grouser attached to each wheel. However,
from a macro perspective, it can be said that the trend of traction
force increasing around a slip ratio of 0–0.2 and saturating between
0.8 and 1 remains consistent. The slip ratio rises with a smaller
traction force as the angular velocity increases, but the overall trend
where the traction force starts to increase and the saturating region
remains consistent (Figure 5B). As shown in Figures 5C, D, the
traction force variation where the slip ratio is low or high are similar
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FIGURE 3
Relationship between wheel sinkage and slip rate. (A) Positive slip rate (=1). (B) Negative slip rate (=−1).

FIGURE 4
Sinkage vs traction force (ω 10°/s, Wheel 1). (A) Slip rate 1 and −1. (B) Roundtrip. (C) Positive slip rate. (D) Negative slip rate.

regardless of the slip rate. However, differences can be observed in
the region where the traction force remains constant while the slip
ratio increases. When the slip rate is small, a larger slip ratio occurs
with a smaller traction force due to a large sinkage. Furthermore,
from Figure 4C, even with the same wheel sinkage, a larger traction
force occurs when the slip rate is positive and larger. On the other
hand, from Figure 5D, it can be observed that a larger traction force
occurs when the slip rate is negative and its absolute value is smaller.

In summary, the results indicate that evenwith the same traction
force, the slip ratio varies according to the value of the slip rate.
Furthermore, larger traction force occur with positive slip rates than
with negative ones, despite the same wheel sinkage. By utilizing
these experimentally obtained results in path planning, it becomes
possible to generate paths that ensure the rover’s safety and improve
its operational efficiency. In the next section, we will discuss the
application of the obtained experimental results to path planning.
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FIGURE 5
Traction force vs slip ratio. (A) Wheel difference (ω 10◦/s). (B) Velocity difference (Wheel1). (C) Positive slip rate. (D) Negative slip rate.

4 Slip rate dependent regression
model for path planning

This section describes the path planning method considering
slip rate-dependent traversability in the cost function. Modeling
slip rate-dependent traversability is realized by elaborating a
regression model from the experiment results. Section 4.1 defines
the cost function for path planning, and explains how slip
ratio could be derived from rover pose and terrain information.
Section 4.2 explains the slip rate-dependent regression model
to predict slip ratio, and evaluate the fitting accuracy using
statistical indicators. Section 4.3 discusses the result obtained from
simulation studies.

4.1 Cost function for path planning

A path is defined as a series of robot states from the start state
to the goal state. The path planner searches for an optimal or sub-
optimal pathwith respect to a specified cost functionwhile satisfying
user-defined constraints. In this paper, we introduce a cost function
that takes into account of slip rate-dependent traversability.This cost
function can be adopted both in graph-based and sampling-based
path planning.

First, we consider the balances of forces during slope
traversal. From Eq. 3 the transitional acceleration a could be
derived as follows:

a =
dvx
dt
= −rω ̇s (5)

The traction load Ftr acting on the rover balances with the traction
force Fx, which is the sum of wheel traction forces Fx = ∑Fxi . Thus
the equation of motion can be described as follows:

m ̈x = Fx +mg sinθy (6)

wherem is the mass of the rover, θy is the rover pitch angle, and g is
the gravity.The pitch angle will be positive when descending a slope,
and negative when ascending.The traction force could be derived by
substituting Eq. 5, 6.

−(mrω ̇s+mg sinθy) = Fx (7)

The traction force can be expressed as a function Fx(θy, ̇s) with pitch
angle and slip rate as inputs.The slip ratio can be estimated from the
relationship between the traction force and slip ratio obtained from
the experimental results.Therefore, the slip ratio estimationmodel is
expressed as s(Fx(θy, ̇s)) = s(θy, ̇s). In this case, the slip rate is treated
as a parameter. If the slope angle increases, the slip rate will take a
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FIGURE 6
Schematic view of rover. (A) Top view. (B) Left side view.

positive value, and if the slope angle decreases, it will take a negative
value. As a result, to consider the slip variation we defined the cost
between adjacent nodes cij as follows:

cij =Ws

|s(θy, ̇s) |

Ns
+Wθx

|θx|
Nθx

(8)

where θx is the rover roll angle, W• are weighting factors, N•
is the normalization factor. Here nodes refer to either nodes
utilized in graph search planning or sampling states in sampling-
based planning. The definition of nodes used in this paper will
be mentioned later. The relationship between the traction force
and slip ratio obtained from the experimental results is made
more manageable by creating a regression model. Details about
the regression model will be discussed in the next subsection.
The rover roll angle is introduced to minimize risks such as
rollover. Calculating the roll and pitch angle at each node would
be sufficient for the cost function. Slip rate-dependent traversability
can be defined as the slip ratio term included in the cost
function. Incorporating changes in the slip ratio based on slope
variations, namely, the slip rate, our approach effectively tackles
quasi-dynamic conditions.

The rover considered in this paper is assumed to be a 4 wheeled
mobile robotwith a differential suspension.The rovermass is 38.5 kg
and each dimension is shown in Figure 6. The rover roll and pitch
angle are calculated based on the geometrical constrain between
the differential suspension mechanism and the terrain surface. The
height of each wheel zfl, zrl, zrr, and zfr is derived by a DEM (Digital
Elevation Model) node surrounding each wheel’s contact point.
From the wheel height the left joint angle θl and the right joint angle
θr can be derived as below:

θl = arcsin(
zrl − zfl
lf + lr
) (9)

θr = arcsin(
zrr − zfr
lf + lr
) (10)

where lf and lr are the length from the joint to the front wheel and
rear wheel, respectively. The height of the left joint angle zl and the
right joint angle zr can be calculated based on the wheel contact
points and geometric constraints of the rover:

zl = zrl + (H+ 2r)cosθl − lr sinθl (11)

zr = zrr + (H+ 2r)cosθr − lr sinθr (12)

where H is the height from the wheel to the body, and r is the
wheel radius. Finally, the roll θx and pitch θy angles are geometrically
calculated as below:

θx = arcsin(
zl − zr
T
) (13)

θy =
θl + θr
2

(14)

where T is the distance between the left and right wheels.

4.2 Regression model

To consider slip rate-dependent traversability in the cost
function for path planning, we create a regression model between
the traction force and the slip ratio. The traction force is calculated
from the difference between thrust force and traction resistance, and
the relationship between thrust force and traction resistance changes
as the slip ratio varies. Theoretically, a traction force does not occur
unless the wheel slips to a certain extent, and around a slip ratio of
1 (a stuck state), the traction force saturates. Therefore, we chose a
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FIGURE 7
Regression model for each slip rate (ω 10°/s, Wheel 1). (A) Slip rate 1. (B) Slip rate 2. (C) Slip rate 5. (D) Slip rate 10. (E) Slip rate 20. (F) Slip rate −1. (G) Slip
rate −2. (H) Slip rate −5. (I) Slip rate −10. (J) Slip rate −20.

regression model based on the sigmoid function and represented it
by the following equation:

s(Fx) = k1 +
k2

1+ ek3(Fx−k4)
(15)

where k1,k2,k3,k4 are coefficients. Here, k2/k1 represents the scaling
of the slip ratio, and k4/k3 indicates the offset amount of the
traction force. Other regression functions were considered too, and
the results are shown in the Appendix A. From the experimental
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FIGURE 8
Relationship between each regression model (ω 10°/s, Wheel 1). (A) Positive slip rate. (B) Negative slip rate.

results for each slip rate, we calculated the coefficients for Eq. 15 to
check how well the regression curve fits. By iteratively adjusting the
parameters of a chosen nonlinear model to minimize the difference
between observed data and the model’s predictions. Levenberg-
Marquardt was used for the optimization algorithm. The metrics
used in this study are the Sum of Squares due to Error (SSE), R-
square, Degrees of Freedom for error (DFE), Adjusted R-square,
and Root Mean Squared Error (RMSE). SSE measures the total
deviation of the response values from the fit to the response values.
R-square is the square of the correlation between the response
values and the predicted response values. R-square can take on any
value between 0 and 1, with a value closer to 1 indicating that
a greater proportion of variance is accounted for by the model.
DFE is an adjustment of the R-square statistic previously defined,
based on the residual degrees of freedom. The adjusted R-square
statistic is generally the best indicator of the fit quality when you
compare. The adjusted R-square statistic can take on any value less
than or equal to 1, with a value closer to 1 indicating a better
fit. RMSE is an estimate of the standard deviation of the random
component in the data.

Figure 7 shows the experimental results and the regression
model for each slip rate. Figure 8 shows the relationship between
each regression model. Table 1 shows the values of each metric
when the regression curve is applied. Table 2 shows the coefficients
of the regression curve. Focusing on the adjusted R-square, we
can see that it shows values above 0.8 for results with absolute
slip rates of 2, 5, and 10, indicating a good fit. On the other
hand, the fitting accuracy decreases for absolute slip rates of 1
and 20. We believe that the decrease in fitting accuracy for an
absolute slip rate of 1 can be attributed to a region where the
slip rate increases vertically. Furthermore, for an absolute slip
rate of 20, we believe the reduced fitting accuracy is due to the
shorter time it takes to reach a slip ratio of 1 (or 0), resulting in
fewer data points to represent the relationship between traction
force and slip ratio. The statistical analysis of the regression model
confirms that the model can estimate the slip ratio within an
accuracy of 85% in average. The data presented in Table 2 indicate
that the coefficient exhibits a range of values across different

TABLE 1 Statistics for curve fitting (Sigmoid function).

Slip
rate

SSE R-
Square

DFE Adjusted
R-

square

RMSE

1 2.01e+05 0.757 937 0.756 14.6

2 2.13e+04 0.950 476 0.950 6.69

5 4.71e+03 0.973 192 0.973 4.95

10 6.77e+03 0.928 100 0.926 8.23

20 3.83e+03 0.924 54 0.920 8.42

−1 1.98e+05 0.757 940 0.756 14.5

−2 7.98e+04 0.809 475 0.808 13.0

−5 2.45e+04 0.857 195 0.855 11.2

−10 1.38e+04 0.839 98 0.834 11.9

−20 1.29e+04 0.712 52 0.695 15.7

slip rates. This variation suggests the impracticality of applying
a uniform coefficient for all slip rates, highlighting the need
for a more nuanced approach in coefficient selection. However,
since the primary focus is on path planning using the estimated
slip rate values for a given traction force and their variations,
further modeling of the slip rate and its validity verification
is out of scope.

For each slip rate, the possible traction force is calculated
using Eq. 6, and the slip ratio is estimated using the generated
regression model based on the calculated results. Since the slip
ratio estimated for each slip rate varies, the mean, standard
deviation, maximum, and minimum values are computed.
For this study, the slip ratio used in Eq. 8 will be based on
the mean value.
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TABLE 2 Sigmoid function coefficients.

Slip rate k1 k2 k3 k4

1 99.64 −110.6 0.1409 13.72

2 −5.068 97.38 −0.2022 14.87

5 95.51 −115.4 0.162 14.95

10 130.5 −130.6 0.1254 23.17

20 87.99 −89.23 0.2327 21.63

−1 −44.19 136.3 −0.1616 2.664

−2 10.26 77.04 −0.2235 6.863

−5 −2,824 2,921 −0.03337 −115.1

−10 6.282 104.4 −0.08599 18.31

−20 12.87 75.73 −0.1426 16.14

4.3 Path planning simulation

To verify the usefulness of the proposed slip rate-based
traction force - slip ratio regression model, we conducted path
planning simulations for crater type environments and rough terrain
environments. Each terrain has an uneven height information
generated by the fractal approach (Yokokohji et al., 2004) to simulate
planetary surface roughness. We use DEM as an expression for the
terrain data, and by treating each grid point as a node, we execute
path planning. In this study, we decided to adopt the A*algorithm
(Hart et al., 1968) for path planning and defined the cost function
between nodes as fproposedij = cij + gij gij is a heuristic function, and in
this paper, it is defined as the Euclidean distance from the next node
where the rover will move to the goal. Additionally, as a comparison
for the proposed method, we define the cost function as below:

fclassicalij =Wθx

θx
Nθx
+Wθy

θy
Nθy
+ gij (16)

where θx is the rover roll angle, θy is the rover pitch angle, W•
are weighting factors, N• is the normalization factor. We use the
same heuristic function as the proposed method. Thresholds were
set for the roll and pitch angles, ensuring that paths where the
roll or pitch angle exceeds the threshold are not generated. The
normalization factor for the roll and pitch angles was set to be the
same as this threshold value. The weight factor for both was set to
0.5, the threshold for each angle were set to 10.0°, and the wheel
angular velocity was set to 10°/s to employ the regression model.
Futhermore, to observe the effect of theweighting factor, simulations
were conducted with different types of Ws for the proposed path
planning: Incremental values ranging from 0.1 to 0.9, with steps
of 0.1, were used for analysis. The sum of the weighting factors is
assumed to be 1; in other words, Wθx is taken to be 1−Ws. Path
tracking employing a dynamics simulator was not implemented in
this study due to its close association with control theory and the
potential variability in the rover’s slip ratio based on the design of

the control method. Instead, the results focused on evaluating the
generated path by analyzing the shape and the estimated slip ratio
obtained from Eq. 15.

Figure 9 shows the results of generated paths for two
representative terrains. The start node is (x,y) = (1.0,1.0) and the
goal node is (x,y) = (18.0,18.0). As can be seen from Figure 9A, the
classicalmethod generates a path that passes close to the inner rim of
the crater, while the proposed method generates a path that slightly
avoids the rim of the crater. This can be explained from Figure 9B,
showing that the proposed path is passing through regions with
a smaller slip ratio. Throughout the journey, the expected mean
slip ratio is 0.189, with a expected maximum slip ratio of 0.753,
and a standard deviation of 0.151 for the classical path. For the
proposed path the expectedmean slip ratio is 0.0633, with a expected
maximum slip ratio of 0.439, and a standard deviation of 0.0459.
As can be seen from Figure 9C, both the classical and proposed
methods produce similar paths. Near the center of the terrain at
(x,y) = (10.0,10.0), the classical method overcomes a steep slope,
whereas the proposed method travels relatively small inclination
slopes. This can be inferred to be due to the proposed method
generating a path that results in a smaller slip ratio, which can also be
explained fromFigure 9D; showing that the proposed path is passing
through regions with a smaller slip ratio. Throughout the journey,
the expected mean slip ratio is 0.178, with a expected maximum
slip ratio of 0.845 for the classical path. For the proposed path the
expected mean slip ratio is 0.0747, with a expected maximum slip
ratio of 0.459.

Figure 9E shows the results when theweighting factor is changed
for a single crater environment. From Figure 9E, it can be seen
that by changing the weight for the slip ratio term, the shape of
the generated path varies significantly. For example, when the slip
ratio is hardly considered, whereWs = 0.1, paths are generated that
involve traveling far away from the crater rim and occasionally
passing through bumps, causing large slip to occur. On the other
hand, when considering the slip ratio term, it is possible to reduce
the number of occurrence for large slips. From Table 3, it can be
observed that by increasing the weighting factor, the mean slip and
the maximum slip could be decreased. Especially, whenWs exceeds
0.7, the mean value of slip ratio tends to be reduced. From Table 3, it
can be observed that the mean value of slip ratio tends to be reduced
when Ws exceeds 0.5. These results indicate that the boundaries of
the weighting factors are determined based on the terrain, and it
becomes evident that there are differences in the slip ratios that occur
on either side of these boundaries. Further examination should be
taken into account with various terrain conditions.

From the above results, the proposed method is possible to
generate a path that can reduce the expected slip ratio. Especially
in the example of crater traversal, a reduction of 66% in the slip
ratio was confirmed, and in the example of rough terrain traversal,
a reduction of 58% was confirmed. Also, we confirmed that by
increasing the weighting factor of the slip ratio term, it is possible
to suppress potential slips.

4.4 Dynamics simulation

Dynamics simulators are pivotal in the field of robotics research,
where they are extensively used for testing and proving theoretical
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FIGURE 9
Path planning results. (A) Path comparison (Single crater). (B) Slip comparison (Single crater). (C) Path comparison (Rough terrain). (D) Slip comparison
(Rough terrain). (E) Path comparison (Weighting factor variation). (F) Slip comparison (Weighting factor variation).

TABLE 3 Effect of weighting factor for slip ratio (Single crater).

Ws Single crater Rough terrain

Mean slip [-] Max slip [-] Std. dev [-] Mean slip [-] Max slip [-] Std. dev [-]

0.1 0.0666 0.299 0.0588 0.0950 0.498 0.0804

0.2 0.0639 0.289 0.0498 0.0815 0.348 0.0658

0.3 0.0596 0.281 0.0508 0.0823 0.348 0.0690

0.4 0.0621 0.299 0.0460 0.0823 0.348 0.0648

0.5 0.0633 0.297 0.0515 0.0747 0.329 0.0582

0.6 0.0660 0.341 0.0599 0.0739 0.338 0.0555

0.7 0.0580 0.228 0.0419 0.0764 0.338 0.0544

0.8 0.0600 0.336 0.0460 0.0750 0.328 0.0544

0.9 0.0590 0.297 0.0427 0.0747 0.329 0.0582
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FIGURE 10
Dynamics simulation results. (A) Single crater. (B) Rough terrain.

TABLE 4 Dynamics simulation results with different weighting factor
(Rough terrain).

Mean
slip

ratio [-]

Slip
ratio

std. dev
[-]

Mean
slip rate
[1/s]

Slip rate
std. dev

[-]

0.1 0.189 0.0765 0.847 1.75

0.2 0.196 0.0764 0.771 1.61

0.3 0.197 0.0840 0.723 1.45

0.4 0.196 0.0811 0.863 1.71

0.5 0.205 0.0840 0.674 1.27

0.6 0.211 0.0936 0.697 1.57

0.7 0.206 0.0845 0.683 1.42

0.8 0.192 0.0799 0.640 1.48

0.9 0.191 0.0832 0.639 1.45

methods. Given that robots can be expensive, fragile, and scarce,
it is a common practice to initially or exclusively conduct tests
and validations within these simulators. The development of a
wide range of dynamics simulators has significantly facilitated
this process, enabling researchers to explore and refine their
ideas in a controlled and cost-effective virtual environment
(Collins et al., 2021).

Project Chrono (Mazhar et al., 2013), an open-source physics
engine, is particularly reasonable for simulating sandy terrains. Its
capability to model granular materials such as sand is crucial for
understanding the challenges unique to sandy environments, like
shifting surfaces and variable traction. The engine provides high-
fidelity simulations of complex physical interactions, including
the dynamics of friction, slippage, and terrain deformation,
essential for realistic representation of wheel-soil interactions.

The Soil contact model in Project Chrono is a sophisticated
simulation tool based on terramechanics principles. It leverages
the Bekker theory, a foundational framework in terramechanics, to
understand and calculate the pressure-sinkage relationships and
shear displacement in deformable terrains. Soil contact model
allows for customization of soil parameters such as cohesion,
internal friction angle, and compaction properties, enabling
precise simulations of different soil types. The model’s capability
to simulate complex interactions between wheel load, motion,
and soil characteristics, along with its integration into the multi-
body dynamics makes it an invaluable resource for comprehensive
studies of robot dynamics. From the above mentioned
features, Project Chrono is chosen as the dynamics simulator
for this study.

The soil parameters are set to match the experimental
conditions. The robot configuration is the same as the one
used in path planing simulation. Each simulation step was set
to 0.001 s, the rover wheel angular velocity to 20°/s, and the
path tracking algorithm was implemented by employing the slip
compensation method (Ishigami et al., 2009). The slip rate in the
dynamics simulation can be derived by dividing the slip ratio by
the time step.

Figure 10 show the results of dynamics simulation for two
representative terrains. From Figure 10A, it can be seen that the
rover’s slip ratio is reduced by using the proposed method where
the rover travels near the crater rim. The mean value of slip ratio
is 0.201 for the classical path, and 0.197 for the proposed path. The
mean value of slip rate is 0.606 for the classical path, and 0.591 for
the proposed path. These results insist that the proposed method
can reduce the slip ratio and slip rate. From Figure 10B, it can
be seen that the rover’s slip ratio does not change significantly by
using the proposed method; however, the slip rate is reduced. The
mean value of slip ratio is 0.188 for the classical path, and 0.205
for the proposed path. The mean value of slip rate us 0.898 for
the classical path, and 0.674 for the proposed path. The decrease
in slip rate is 2% in the single crater scenario, and 25% for the
rough terrain scenario. This suggests that the use of the proposed
cost results in the generation of paths with minimal variations in
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TABLE 5 Statistics for curve fitting (Different regression model).

Slip rate SSE R-Square DFE Adjusted R-square RMSE

Proposed 20.07 0.757 937 0.756 0.146

Hill function 20.31 0.714 886 0.7138 0.151

Boltzmann function 20.07 0.757 937 0.756 0.146

Five Parameter Sigmoid 19.95 0.758 936 0.757 0.146

Sigmoid Logistic 20.27 0.754 938 0.7537 0.147

Polynomial 19.07 0.769 931 0.767 0.143

slope gradient. As observed in Figure 9C, it is also evident that
the proposed method avoids regions with significant undulations,
particularly in the central area. We have also conducted dynamics
simulation for the weighting factor variation; Table 4 shows the
mean value of slip ratio and slip rate for each weighting factor. As
the weighting factor for the slip term increases, it is observed that
the slip ratio does not change significantly, while the slip rate tends
to decrease.

In the real world, it is observed that the slip ratio
does not change stepwise, indicating that simulators may
not adequately represent transitional states. This underscores
the necessity for further verification through dynamics
simulations that incorporate wheel-soil interaction during
transitional states, as well as experiments conducted on
rough terrain.

5 Conclusion and future work

We focused on the transient slip, or slip rate the time derivative
of slip ratio, to explicitly address it into the cost function of
path planning algorithm. First, we defined the term slip rate and
conducted single wheel testbed experiments with a constant slip
rate. The experimental results revealed that even with the same
traction force, the possible range of the slip ratio depends on the
slip rate. Regarding the experimental results, we applied a regression
model to the relationship between traction force and slip ratio
taking into account of slip rate. For each regression model, we
evaluated the fitting accuracy using statistical indicators. As a result,
we confirmed that a regressionmodel based on the sigmoid function
is suitable, with an average Adjusted R-square of 0.847. Lastly, we
proposed a cost function employing the generated regression model
for path planning, and confirmed that it is possible to minimize
the slip ratio experienced by the rover when driving near craters by
simulation studies. Especially in the example of crater traversal, a
reduction of 66% in the slip ratio was confirmed, and in the example
of rough terrain traversal, a reduction of 58% was confirmed in
the path planning simulation. The dynamics simulation results
also confirmed that the proposed method can reduce the slip rate
in each terrain.

A possible future direction of this study is efficient data
collection to improve the accuracy of the slip rate experiment. The

experimental conditions assumed a small rover, with the wheel’s
angular speed being relatively slow and the wheel load being light.
By increasing these conditions and enriching the data, it is possible
to create a more versatile regression model. Moreover, not only
conducting experiments on flat terrain, but it is also meaningful to
collect data under conditions of climbing or descending slopes.

Another future work possibly includes the implementation of
a new path tracking method based on the experimental results we
observed in this paper. It is acknowledged that there is a need to
develop operation plans that minimize the slip ratio by integrating
wheel-soil interaction to both path planning and path tracking.
Futhermore an online path planning method can be implemented
in the path planning phase. Using online path planning methods,
it is possible to compute the optimal path considering the changes
in the rover’s slip ratio. Employing the regression model, based on
the insights obtained from the experimental results, it is possible to
regenerate a path that is safe and has a high travel efficiency.
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Appendix A

In addition to the functions discussed in Section 3.2, further
curve fitting analysis were conducted. For this analysis, functions
frequently utilized in the field of curve fitting were selected as
the basic functions. The primary functions employed in this study
include the Hill function, Boltzmann function, five-parameter
sigmoid, logistic function, and polynomial. Each of these functions
is expressed as follows:

s(Fx) = k1
Fx

k2

k3
k2 + Fxk2

(17)

s(Fx) =
k1 − k2

1+ e(Fx−k3)/k4
+ k2 (18)

s(Fx) = k1 +
k2

[1+ e−(
Fx−k3
k4
)]

k5
(19)

s(Fx) =
k1

1+ e−k2(Fx−k3)
(20)

s(Fx) =
n

∑
i=0

kiFx
i (21)

where ki are the coefficients. The fitting accuracy of each function
was evaluated using the same statistical indicators as the sigmoid

function, and is shown in Table 5. It can be seen that the polynomial
function (ninth order) has the highest fitting accuracy; however
there might be a risk of overfitting. Other functions have similar
fitting accuracy to the proposed sigmoid function, and it can be
concluded that the proposed function could be suitable for the
regression model. To further enhance the reliability of our curve
fitting approach, additional data acquisition and a fundamental
understanding of the underlying physical phenomena are required.

There is another approach to use learning method based
regression. For example, Gaussian Process Regression (GPR), a
non-parametric, Bayesian approach to regression, offers a flexible
and robust framework for modeling complex data. At its core,
GPR operates under the assumption that the observed data can be
represented as a realization of a Gaussian process; a collection of
random variables, any finite number of which have a joint Gaussian
distribution. The Squared Exponential Kernel was used to conduct
the GPR based regression. By using the GPR the regression model
can be expressed in 0.846 of Adjusted R-square, which exceeds
the proposed sigmoid function based regression models. GPR can
offer flexibility and robust uncertainty quantification, but can be less
intuitive for physical interpretation due to its non-parametric nature
and complexity of the kernel function.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1320261
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related research
	2.1 Terramechanics
	2.2 Terrain traversability prediction
	2.3 Risk aware planning

	3 Slip rate experiment
	3.1 Definition of slip rate
	3.2 Experimental setup
	3.3 Experimental results

	4 Slip rate dependent regression model for path planning
	4.1 Cost function for path planning
	4.2 Regression model
	4.3 Path planning simulation
	4.4 Dynamics simulation

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary Material
	References
	Appendix A

