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Dance plays a vital role in human societies across time and culture, with
different communities having invented different systems for artistic expression
through movement (genres). Differences between genres can be described
by experts in words and movements, but these descriptions can only be
appreciated by people with certain background abilities. Existing dance notation
schemes could be applied to describe genre-differences, however they fall
substantially short of being able to capture the important details of movement
across a wide spectrum of genres. Our knowledge and practice around
dance would benefit from a general, quantitative and human-understandable
method of characterizing meaningful differences between aspects of any
dance style; a computational kinematics of dance. Here we introduce and
apply a novel system for encoding bodily movement as 17 macroscopic,
interpretable features, such as expandedness of the body or the frequency of
sharp movements. We use this encoding to analyze Hip Hop Dance genres, in
part by building a low-cost machine-learning classifier that distinguishes genre
with high accuracy. Our study relies on an open dataset (AIST++) of pose-
sequences from dancers instructed to perform one of ten Hip Hop genres, such
as Breakdance, Popping, or Krump. For comparison we evaluate moderately
experienced human observers at discerning these sequence’s genres from
movements alone (38% where chance = 10%). The performance of a baseline,
Ridge classifier model was fair (48%) and that of the model resulting from
our automated machine learning pipeline was strong (76%). This indicates that
the selected features represent important dimensions of movement for the
expression of the attitudes, stories, and aesthetic values manifested in these
dance forms. Our study offers a new window into significant relations of
similarity and difference between the genres studied. Given the rich, complex,
and culturally shaped nature of these genres, the interpretability of our features,
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and the lightweight techniques used, our approach has significant potential
for generalization to other movement domains and movement-related
applications.

KEYWORDS

dance,movement analysis, machine learning, genre classification, hip hop dance, dance
perception, movement representation

1 Introduction

The way we move our bodies is abundant with meaning. Slightly
tilting one’s head or shifting one’s feet can speak volumes. Some of
these connotations are intentional, some are specific to culture or
locality, and some arise from prehistoric aspects of our embodied
activity in the world. Expressive movement is perhaps most vivid
in dance, where it is sculpted, explored, and composed to artistic
ends. The complex and culturally shaped nature of dance presents a
challenge for formal analysis. Although experts develop an implicit
understanding of dance styles, and some can verbalize components
of style, the work developing effective quantitative approaches has
been highly limited. There are notation schemes to record dance
movement, such as Labanotation and Benesh notation, which have
served as important tools, especially for documentation of classical
western styles (Guest and Anderson, 1970). Some researchers in
robotics have developed quantitative means to represent abstract
elements of dance, drawing on labanotation or focusing on a
specific form of dance, like Ballet (LaViers et al., 2011; El Raheb and
Ioannidis, 2013; Pakrasi et al., 2018). However, these approaches are
substantially restricted in their precision and generalizability. To
our knowledge there has been no algorithmically implementable
description of full-bodied movement that captures significant
aspects ofmovement across diverse dance genres. Here we introduce
and examine a system designed to fill this gap–a computational
kinematics. By applying our system to the richly textured realm
of Hip Hop Dance, we uncover readily interpretable aspects of
movement that make a difference to the attitude or aesthetic of a Hip
Hop dancer. We also shed new light on the characteristics of these
genres and the relations between them.

Dance genres emerge as unique expressions of different
communities, and the socio-historical context surrounding modern
Hip Hop genres make them a crucial subject of study
(New Cultural Studies of Dance, 1997; Thomas, 2003; Bennett, 2022).
HipHop originates in Black and LatinX communities inNewYorkCity
in the70s, and is rooted inafro-diasporic formsofmusic andmovement
(Rivera, 2003; Chang, 2005; Schloss, 2009; Charnas, 2010; Morgan and
Bennett, 2011; Durden, 2022). Hip Hop quickly transcended its initial
birthplace, proliferating globally through media technologies by the
80s. Television shows such as “Soul Train” and films like “Breakin”
brought Hip Hop to international audiences. Elite dancers and groups
like Rock Steady Crew and the Electric Boogaloos started traveling to
share their craft and compete in international competitions, and later
the internet greatly amplified Hip Hop’s renown. This globalization has
been supported by Hip Hop’s entwinement with commercial sectors,
notably entertainment and fashion, which have frequently adopted and
contributed toaHipHopaesthetic (Osumare, 2007;Bennett, 2022).Hip
Hop Dance culture emphasizes inclusivity and community, steering
away from a need for formal training and prestigious venues, and

instead invites dancers to converse with their neighbors and family
and distinguish themselves through unique characters of movement.
The dance form serves as a vehicle for these communities to express
solidarity and resistance in the face of institutional marginalization and
stigmatization, and the perspectives embodied in Hip Hop movement
are often sidelined in scientific and technological investigations. Given
its participatory ethos, its emphasis on individual style, and theway it is
simultaneously tied to a local setting and to commerce,HipHopDance
has undergone rapid and extensive “genrefication” on street corners and
stages almost everywhere in the world. This makes Hip Hop Dance an
ideal subjectof study inwhich toexploreanew,computational approach
to developing knowledge around expressive movement.

The present moment offers great potential to leverage advances
in computational tools to further our understanding of dance
and movement. New opportunities have arisen due to significant
advances in pose estimation and machine learning techniques
(Wang et al., 2021; Wang and Yan, 2023), as well as the compilation
of large and freely available movement datasets, including datasets
of dance sequences labeled according to genre (Castro et al.,
2018; Li et al., 2021). There are, however, substantial challenges to
extracting meaningful qualities of dance using these tools. Consider
that a genre might stand out as being relatively communal as
opposed to confrontational, as House compares to Breakdancing, or
as accessible as opposed to uncanny, as LA Hip Hop compares to
Krump (DeFrantz, 2022).These are qualities of dance forms that can
be untangled from contextual elements like the music or setting, so
they should have reliable forms of presentation in movement data.
Yet they unfold through changing dynamics across many parts of
the body and do not relate straightforwardly to the change of pose
between two frames of a video. While audiences can often sense
abstract features of a movement, substantial expertise is required
to describe them in any detail. To formalize these differences in
mathematical functions of frame-to-frame changes in joint-position
calls for a fusion of knowledge in computational techniques and
in dance.

We introduce a novel system of encoding and analyzing human
movement, apply our method in an analysis of ten Hip Hop Dance
genres, and use it to equip a machine learning system to distinguish
among these genres to a high degree of accuracy (Figure 1). Drawing
on our personal experience with dance and human movement, we
develop a set of 17 human-understandable movement features, such
as bodily expansion, the lifting of the ankles, or how often there
are sharp movements. We extract these features from sequences in
the AIST++ dataset (Li et al., 2021), and train a machine learning
classifier to recognize genre from this movement data (using no
auditory information).We provide statistical analyses of the features
in this data, evaluate the performance of our classifier along several
metrics, and examine the influence of various features on themodel’s
classifications.
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FIGURE 1
Overview of our machine learning pipeline for classifying Hip Hop dance genre. (A) The first stage involves the extraction of pose data from the
dancer’s performance, visualized here with a skeletal pose overlaid on a dancer mid-routine (B) This raw pose data is then transformed into a set of
high-level features, represented here by the dotted lines and symbols (C) The genres in the dataset are compared in terms of the features (D) These
features are used by the machine learning classifier to make a prediction about the genre of the dance, here visualized by a bar plot representing the
model’s probability assessments and a prediction for the genre. Images of dancers provided by TheFlavorContinues.org.

In order to offer a comparison to our automated system,
we also investigate human perception of these genres of
movement. There have been studies of the human capacity to
distinguish various abstract categories from minimal displays of
movement, including emotion, gender, and specific individuals
(Johansson, 1973; Dittrich et al., 1996; Brownlow et al., 1997;
Sevdalis and Keller, 2012). In some cases humans can very
quickly identify the genre of a dance, but this ability varies
considerably with experience and genre (Calvo-Merino et al.,
2005). We conducted an online experiment where subjects were
presented with clips of simplified, stick-figure renditions of
dances from the dataset, and were asked to identify the dance
genre. We have left the experiment online at https://genrejudge.
experiments.kordinglab.com/, where the reader can experience the
task firsthand.

2 Related work

Existing approaches to movement classification fall into two
categories; those that rely principally on deep learning systems
to find movement features that serve the classification task, and

those that rely on handcrafted movement features (Wang and Yan,
2023), (Pareek and Thakkar, 2021). Handcrafted approaches have
an advantage in computational costs and in the interpretability of
models, but deep learning approaches have tended to outperform
them in recent years and have become standard.

Handcrafted features used in prior research have captured low-
level aspects of movement, focusing in on local motion at the
scale of individual pixels or specific keypoints. For example, one
prevalent method is optical flow, which represents the pattern of
motion between two consecutive frames in terms of the direction
and speed of apparent motion at each pixel. Other techniques
include relying on a histogram of motion gradients (HOG),
using the change in intensity or color between adjacent pixels
to capture the orientation and magnitude of local movements
across the body, or relying on the covariance of motion between
every pair of joints on the body. Each of these techniques
essentially dissect movement into many local measurements,
resulting in long feature vectors (typically hundreds of values
per frame) that can be used in a variety of computational
classification methods.

Learned features are extracted through deep learning
algorithms, and have become increasingly popular inHumanAction
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Recognition (HAR). The input to these networks is a per-frame,
detailed body representation, obtained from the pose-estimation
method of choice, or sometimes from the kind of handcrafted
measures described above. A commonly employed model is the
Skinned Multi-Person Linear (SMPL) model, which creates a
detailed mesh covering the depicted human body’s shape using
millions of vertices (Loper et al., 2015). Recent approaches have
gone beyond looking within each frame, using relationships across
frames to derive temporal features. For instance, Spatial Temporal
Graph Convolutional Networks (ST-GCN) can capture dynamic
patterns of skeletal movement, providing a helpful framework
for recognizing human actions (Yan et al., 2018). Another recent
technique is PoseConv3D, which builds on this approach by
representing human skeletons as a 3D heatmap volume instead of a
graph sequence, enhancing the robustness against pose estimation
noise (Duan et al., 2022). These approaches incorporate temporal
information and leverage deep learning, providing powerful means
for classifying complex movements, although they often come with
high computational demands and challenges to interpretability.

The computational genre-classification of dance is a relatively
new Frontier in the field of human action classification, where only
a few have offered ways of modeling differences among dance styles.
One such effort is a study exploring the influence ofmusical genre on
improvisedmovement (Carlson et al., 2020).These researchers used
music labeled according to genre as stimuli, prompted participants
to dance freely, and used machine learning to predict musical
genre. Their model performed above chance at 23.5% for an 8-
class problem (chance equals 12.5%). Notably, the model was
substantially better at identifying individual dancers than it was at
discerning musical genres, suggesting idiosyncrasies in a specific
person’s movement style are easier to pick out than the marks of
a genre, at least for prevailing techniques. Another study, which
is closest to our own in that it explicitly looks at genres of dance
movement, utilized the “Let’s Dance” dataset, consisting of 1000
videos of dances from 10 genres from a broad range of historical and
cultural settings (Castro et al., 2018). The best performing approach
in this study uses RGB image data (for each frame) and optical flow
data (between frames) as inputs into a convolutional neural network
(CNN). This method demonstrated a notable level of success, with
genre classification accuracy reaching around 70% in the best cases.
As compared to the AIST++ dataset we rely on, the “Let’s Dance”
dataset is made up of shorter (10 s) sequences, contains only 2D
data, and includes genres that are more socio-historically distinct
and adhere to stricter movement conventions, making them easier
to distinguish by a naive audience. These studies highlight the
ongoing challenges and progress toward computational modeling of
the aspects of human movement that characterize dance genres.

The AIST++ dataset is one of the largest and richest public
datasets of 3D joint positions from complex human movement,
and the only such dataset comprising labeled Hip Hop Dance
genres. This dataset has spurred exciting developments in the
computational generation of dance sequences conditioned on the
genres of AIST++ (Li et al., 2021), (Siyao et al., 2022; Tseng et al.,
2022). The approach from Li et al.‘s “AI Choreographer” relies on a
transformer-based model, which is trained to predict future frames
of motion based on genre. This model utilizes separate transformers
for both motion and music information, each labeled according
to genre. A cross-modal transformer is employed to learn the

correspondences between the embeddings of motion and music.
Their system generates artificial motions that were judged more
musically appropriate than three other approaches used as baselines.
Siyao et al. and Tseng et al. further improve upon the motion-and-
music processing models, outperforming Li et al. in user studies.
They use a transformer-based diffusion model for motion, using
auxiliary losses to enhance kinematic realism, and supplementing
it with a devoted tool for extracting musical features. Siyao et al.
introduce a new component called a ‘choreographic memory’,
implemented by a Vector Quantized-Variational AutoEncoder (VQ-
VAE). This enables their system to learn and recall common dance
positions, contributing to the generation of dance movements
that more closely match human styles. Collectively these studies
have taken innovative strides in generating novel, musically
apt, human-like dance movements. However they require
sophisticated, high-computational-cost techniques involving deep
neural networks and large feature vectors. In contrast, our work
presents a more sparse yet potent method, leveraging a curated
set of 17 human-understandable features to classify and analyze
dance genres. Our methods are low-cost and provide readily
interpretable results, allowing for greater understanding of aspects
of expressive movements in Hip Hop Dance. Given the rich,
complex, and culturally shaped nature of the differentiation of
Hip Hop Dance genres, our approach has great potential for
generalization to other movement domains and movement-related
applications.

3 Methods

3.1 Data

We use joint-position sequences from different dance genres
collected in the AIST++ Dance Motion Dataset. This dataset was
constructed from the AIST Dance Video Database, and contains
1,408 sequences of 3D human dance motion captured at 60 frames-
per-second (Tsuchida, 2023), (Li et al., 2021).These dance sequences
span a duration range from7.4 s to 48.0 s, and are equally distributed
across ten dance genres: Ballet Jazz, Breakdance, House, Krump, LA
Hip Hop, Lock, Middle Hip Hop, Pop, Street Jazz, and Waack. The
sequences represent a variety of movements within each genre and
total over 5 hours of dance footage. This dataset constitutes one of
the largest and richest publicly available collections of 3D keypoints
fromcomplex humanmovement, and the only such collection ofHip
Hop movement labeled by genre.

Importantly, the keypoint data is divided into “Basic” and
“Advanced” sequences. Basic sequences average 9.25 s in length
(SD 1.6), and tend to depict standard dance movements that
repeat several times. Advanced sequences average around 36.5 s (SD
6.1) and are more dynamic and individualized. There are many
more Basic than Advanced sequences; approximately 1200 and
200, respectively. We felt that it would be most interesting to test
genre classification on the Advanced pieces, because a more general
representation of genre is required to recognize the longer and more
variable sequences. Further, given a training set composed almost
entirely of Basic sequences (>90%), our model must be capable of
some generalization in order to succeed on a test set composed
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entirely of Advanced pieces. Therefore a solution to the genre-
classification task, posed on this split of this dataset, demands a
versatile method of processing complex movement data.

3.2 Features

Having extensively participated in, observed, and discussed
various dance genres, we sought to encode high-level aspects of
human motion that make movements visually and kinesthetically
distinct from one another. To extract the features we developed
a pipeline that processes 3D joint position data and outputs a
vectorized dance sequence. The pipeline first derives some essential
measures from the raw data: it approximates the sacrum’s position
and calculates the first three derivatives of position—velocity,
acceleration, and jerk—for each joint. A Savitzky-Golay filter
(Savitzky and Golay, 1964) was employed to smooth these derived
measures, reducing noise while preserving the overall trends. These
computations laid the foundation for the extraction of our 17
features into a vector representation of the dance sequence. Our
method is flexible enough to accommodate a variety of joint
data arrays and the features can be straightforwardly refined or
augmented, making it adaptable for various investigations of dance
and movement.

The featurewe used can be divided into four broad categories: (1)
movement of the sacrum, (2)movement of the extremities, (3) global
angular momentum centered at the sacrum, (4) how expanded the
body is from the sacrum.

The sacrum is situated at the base of the spine, and plays a pivotal
role in the mechanics of all full-body movements. Forces must
traverse the spine in order to direct themotion of the rest of the body,
meaning large differences in degree or type of overall movement
are reflected in sacral movement. The sacrum also provides for a
simple approximation of the degree of translational motion in the
XZ plane and the rising and falling of a dance in the Y dimension.
The AIST++ dataset uses the common COCO human pose format,
which omits the sacrum (and the rest of the spine). To overcome this,
we approximate the sacrum’s position by averaging the coordinates
of the hip joints. From this, we extract several measures of sacral
movement, enabling us to capture essential dynamics of the dance.

Thewrists and ankles play a crucial role in the overall impression
and execution of a dance. Patterns of movement of the wrists
contribute substantially to the feeling of the dance, as in when
they flare out energetically, or lazily trail through space. The ankles
serve as the point of contact with the ground, and therefore
significantly reflect how a dancer’s weight is distributed. The extent
and speed with which ankles lift away from the ground can
distinguish between styles that emphasize light, leaping movements,
or staccato footwork, or stability and groundedness. By tracking
these extremities, we capture vital components of the dancer’s
relationship with space and rhythm.

Angular momentum around the sacrum reflects the degree to
which a dancer engages in turning or twisting motion. Dance is
replete with rotation, and this comes in many shades—fast, slow,
rising, falling, drawing inward (centripetal), or spiraling outward
(centrifugal). Moreover, sharp dance movements translate into
peaks in the trace of angular momentum over time, and these peaks

can be counted to provide a measure of how much sharp movement
a dance contains and in which directions.

Finally, an important aspect of the way a dancer uses space is a
matter of how expanded or contracted their body is, and how this
changes throughout the piece. For instance, wide, open movements
can connote joy, strength, or freedom, while tightly contained
movements can evoke introspection, restraint, or sorrow. Of course
these kinds of expressions vary across context, but nonetheless a
dancer’s expandedness corresponds significantly to the overall style
of their dance.

Within each of the above categories of movement features we
derived between two and six related measures, resulting in a total
feature vector length of 17. Thus we arrive at a low-dimensional
representation of a pose-sequence, where each feature speaks
directly to an abstract but intuitive aspect of bodily movement.

Here we present mathematical expressions for a representative
subset of the features. The remaining features can be
straightforwardly derived from these expressions.

Letting SPi represent the 3D sacrum position at the ith frame
of a sequence (and given a constant interval between frames) finite
differences can be used to estimate the first three derivatives of
motion SV i (velocity), SAi (acceleration) and SJ i (jerk) as follows:

SVi =
SPi+1 − SPi
ΔT

SAi =
SVi+1 − SVi

ΔT

SJi =
SAi+1 − SAi

ΔT
=
SPi+3 − 3SPi+2 + 3SPi+1 − SPi

(ΔT)3

To accommodate noise in position estimate, we used a Savitsky-
Golay smoothing filter after each discrete difference calculation.The
feature for Sacrum Jerkiness is just the average magnitude of jerk
for the sequence, given by summing the absolute value of SJ i and
dividing over the number of frames, N.

SacrumJerkiness = SJ = 1
N

N

∑
i=1
|SJi|

The acceleration of the ankles or wrists can be derived using
the finite differences method above, applied specifically to the joints
in question. Further, using the position in the Y-dimension of the
ankles, YRankle,i and YLankle,i the floor height can be taken from the
minimal value of either ankle. The Ankle Height can be taken by
subtracting this value from the ankle positions at each frame to get
per-frame heightH i and averaging across all frames in the sequence.

floor = mini(YR−ankle,i, i)

Hi =
YL−ankle,i +YR−ankle,i

2
− floor

AnkleHeight =H = 1
N

N

∑
i=1

Hi

Given sacrum position SPi, for each non-sacrum joint j, let Pji
be the 3D position vector of the joint at the ith frame and Vji be its
velocity vector. By subtracting SPi from Pji we get Rji, the position
of each joint relative to the sacrum. The angular momentum Lij for
the jth joint at the ith frame is the cross product of Rji and |Vji|.
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We get mean angular momentum by summing and dividing Lij
over the number of joints J and frames N. By looking at the angular
momentum in only the X and Z dimensions, we derive a dancer’s
horizontal rotation.

Rij = Pij − SPi

Lij = Rij × |Vij|

MeanAngularMomentum = L = 1
J×N

J

∑
j=1

N

∑
i=1

Lij

Finally the distance Dji of each joint j from the sacrum at frame
i is given by the magnitude of the relative position vector Rji shown

above. We get mean expandedness by summing and dividing Dji
over joints and frames.

Dij = |Rij|

MeanExpandedness = E = 1
J×N

J

∑
j=1

N

∑
i=1

Dij

We visualize the spread of four of these features across all
ten genres in violin plots (Figure 2), illustrating some of the
characteristic differences among the genres while also showing
that the genres’ exhibition of these features overlaps substantially,
meaning one or even several of these measures together will be
insufficient to identify the genre of a piece. We also visualize the
correlation of these features with one another (Figure 3), further
depicting the ways these genres differ and pointing to the way our
model can use various of these features in combination to make
accurate genre predictions.

3.3 ML classification pipeline

In order to train ML classifiers that utilize our handcrafted
features, we use auto-sklearn (Feurer et al., 2015; Feurer et al.,
2020), an automated machine learning framework that provides
an objective end-to-end process for feature pre-processing, model
selection, andmodel optimization (Figure 4). Auto-sklearn operates
by first selecting promising initializations ofmodel hyperparameters
(i.e., parameters that control the model’s training process), then
adjusting model hyperparameters using Bayesian optimization.
Automatic selection of models and hyperparameters yields slightly
better performance than hand tuning in most cases, and helps
prevent overfitting through user bias (e.g., a preference for a
particular model or knowledge of the test set data) (Saeb et al.,
2016; Hosseini et al., 2020; Shen et al., 2020). By using an automated
machine learning framework, we ensure that our dance genre
classification models are both performant and robust. This process
can be represented as follows:

f:Θ→ℝ

P(Y|X,Θ)

multiclass log loss f = − 1
M

M
∑
m=1

K
∑
k=1

ymk log (pmk)

ŷ =
M

∑
i=1

wihi(X)

The approach takes a probability distribution P that estimates
model performance on the target variable (genre) Y, given
input X (features) and hyperparameters and optimizes the
hyperparameters according to objective function f, which is the
multi-class log loss function. In f, M is the number of instances
(sequences), K is the number of classes (10 genres), ymk is a binary
indicator of whether k is the correct class label for instance m, and
pmk is the predicted probability that instance m belongs to class k.
(Further details on the optimization process can be found in Feurer
et al., 2020). This process results in an ensemble of models, so that a
weighted sum of the predictions of these models is used for the final
prediction. Ensemble prediction is given by the above sum where
M is the number of models in the ensemble (20 in our case), wi is
the weight of the ith model and hi is the prediction function of the
ith model.

We split the data into separate train and test sets to build and
evaluate our classifier, taking a specialized approach to handle the
difference between “Advanced” and “Basic” movement sequences
(see above, Section 2.1). We wanted to evaluate the classifier’s
performance on “Advanced” sequences only, so we constructed a
test set of 103 Advanced sequences and a training set consisting
of 96 Advanced Sequences and 1199 Basic Sequences. There was a
nearly even distribution of genres in the test set (mean 10.3, SD .82).
Having stratified the data and set up the training and testing phases,
we then applied our automated machine learning pipeline to create
our ensemble of classifiers. To contextualize the performance of our
ensemble model, we compared it against two well-known, simpler
machine learning techniques: a perceptron and a ridge classifier.This
comparison, conducted without fine-tuning these simplermodels, is
designed to benchmark ourmodel’s performance and to speak to the
complexity of the genre classification task.

3.4 Human subjects study

In order to compare our model’s performance with human
ability, we devised a straightforward human subjects study. We
created an online experiment which we shared on social media
platforms and with personal contacts, targeting individuals with
experience of Hip Hop Dance. The experiment begins with a
few short questions to gauge the participants’ familiarity with
the domain. Participants are then tasked with watching sixteen
“Advanced” sequences from the test set we used to evaluate our
model. They were presented with three simultaneous views of the
same stick-figure dance sequence with no music, which would
repeat upon completion, and they could take as long as they
wanted to identify the genre of the dance from a list of the
ten possibilities (Figure 5). We sourced these video sequences
from the AIST++ website. Our web application hosted muted
versions of these videos, where audio had been removed to
avoid providing clues in the musical style or beat. In order to
assess human participant performance on this task, we randomly
selected videos from our test set for human labeling. We recorded
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FIGURE 2
Visualization of Four Selected Dance Movement Features. The (B) show violin plots of four representative features derived from our dataset:
Expandedness, Sacrum Jerk, Wrist Acceleration, and Bounce Regularity. The (A) present images of a dancer marked to illustrate the geometric
interpretation of each feature. Each plot reflects distributions across the ten studied dance genres, showing the range and concentration of each
feature value for each genre. The plots reveal that while the genres differ along these dimensions, there is significant overlap in the feature distributions,
highlighting the complexity of genre-based differences in movement. These abstract features serve as the input for our genre classification model,
capturing subtle aspects of movement to successfully distinguish between dance styles. Images of dancers provided by TheFlavorContinues.org.

participants’ genre guesses for each sequence, as well as metadata
such as how long it took the subject to make a decision, and the
presentation order.

Our informal recruitment process and minimal survey
questions serve to ensure participant confidentiality and lower
costs, however they also have important limitations, especially
in ascertaining the participants’ expertise levels. The short, five-
option questions about participant’s familiarity with Hip Hop
Dance leave substantial room for interpretation, and we did not
find they correlated well with performance. Feedback we received
from individual participants confirmed that the task posed a
significant challenge even for our more experienced subjects,
and suggested that participants without much background felt
they were almost guessing at random, and were liable not to
complete all sixteen guesses (in which case their responses were
not recorded). This and our targeting of subjects make it likely that
most of our results from this experiment come from participants
with moderate to high experience viewing or participating in
Hip Hop Dance. In order to provide a conservative–though
not exhaustive–estimate of moderately experienced human-
level performance, our analysis focuses on those participants
who indicated at least a “sometimes” level of engagement
with hip-hop dance (comprising 50 subjects, for a total of
800 responses).

3.5 Final statistical analysis

To evaluate ourmodel’s predictive performance for classification
across the ten dance genres, we primarily rely on accuracy scores.We
also report precision (for sequences where the classifier predicted
genre G, how many are correct?), recall (for sequences truly of genre
G, how many are correctly classified?), and F1 scores (a balanced
representation of both precision and recall). We also provide
confusionmatrices for both ourMLmodel and the perception study,
allowing for visual comparison of the overall performance of our
machine and our human participants.

In addition to evaluating predictive performance, we also used
dimensionality reduction and feature importance techniques to
further interpret and validate our model. Specifically, we employed
Latent Semantic Analysis (LSA), a technique that allows for the
extraction of underlying “concepts” or “topics” from large volumes
of data, typically textual data. At its core, LSA employs a form
of matrix factorization (specifically, singular value decomposition
(SVD)) to create a reduced-dimension representation of the original
data. This allows us to represent the featurization of the genres
in a 3D space, where each dimension corresponds to some meta-
feature abstracted from our features, providing a visualization of
similarities and differences amongst the genres. Furthermore, we
rely on Shapley Additive Explanations (SHAP), to investigate feature
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FIGURE 3
Feature-based comparison of dance genres. Each of the four subfigures corresponds to a different genre and comprises a bar plot and a correlation
matrix. The bar plot depicts the 17 feature value averages for the genre. The correlation matrix visualizes how these features correlate with each other
within the genre. These form a unique “fingerprint” that characterizes the style of the dance genre. It is evident that the individual features, while not
perfectly distinctive on their own, collectively differentiate the genres to a significant degree. For example, Break has significantly higher values than
Krump for most features relating to angular momentum, and the features relating to extremities are more highly correlated for Break than for Krump.
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FIGURE 4
Automated machine learning through Auto-sklearn provides an end-to-end process for training performant ML models.

FIGURE 5
Human Subjects Study Interface. The (A) presents one of the initial survey questions used to gauge participants’ experience. The (B) presents a
snapshot of the task interface that participants interacted with during the experiment. It shows a stick-figure representation of a dance sequence from
our dataset, followed by the ten possible genre options for the participant to choose from.
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importance (Lundberg and Lee, 2017). SHAP is a method inspired
by cooperative game theory for determining which features aremost
influential in the model’s decisions (the “players” in the game are
the features, and the outcome is the classification). This provides
for better understanding of how particular genre classifications were
influenced by the features. The details of these analyses and the
insights they provided are presented in the Results and Discussion
sections below.

3.6 Limitations

Our methodology is importantly limited by the fact that the
assignment of movement sequences to a genre is not objective.
Further, certain forms of movement are not plausibly assignable
to exactly one genre, as genres borrow from one another or
independently come up with similar movement forms. When we
see a jumping cross step we may ask, is it a toprock from Break
or a groove from Middle Hip Hop? There may be no context-free
answer; nothing in the spatio-temporal aspects of the move may be
able to fully determine the genre.The creators of the AIST++ dataset
were careful and well-informed, but using their labels as “ground
truth” amounts to a substantial idealization. In particular, experts
we consulted with felt that the Street Jazz sequences were not as
representative as others, and said that, while they could distinguish
the LA- andMiddle HipHop varieties after a few examples, these are
not widely recognized names for genres. One implication of this is
that 100% accuracy is not a realistic goal in a task like ours. Further,
some of what a move expresses comes from its interaction with the
music and the local context, which our methods do not capture. To
an extent this also speaks to the power of our approach, since it is
able to discern among genres whose definitions depend first and
foremost on the contexts and aims of dance communities, rather
than on details of position and motion.

Our human subject study is also limited in how it represents the
ability of humanobservers to recognize genre frommovement alone.
Firstly, the issue of quantified genre affects this part of our study
as well, since a single “best answer” is not always well-determined.
Further, our process of recruiting via online solicitation and the
minimal information we asked subjects to provide do not allow for a
close assessment of how human performance on this task varies with
experience, and how experienced our sample was. Without a doubt,
given different backgrounds in watching and practicing dance we
would expect different performance on our task, but our study was
not sufficiently powered to assess this kind of difference. Rather we
were only able to approximately gauge performance of people with
“moderate ormore” experience observingHipHop. Nonetheless, we
think this provides a useful starting point for comparison. It is our
hope that future work can look in more detail at this special human
perceptual ability and its sources of variation.

4 Results

Our model was trained on a set of 96 Advanced Sequences and
1199 Basic Sequences from the AIST++ dataset of 10 genres of Hip
Hop dance (see above, Section 3.1). We designed a custom feature
set that extracted measurements of 17 abstract qualities of human

movement (Section 3.2). We used auto-sklearn, an automated
machine learning framework, to create our classifier (Section 3.3).

We primarily compared our model’s performance to that of
human evaluators, who, with some or more exposure to Hip
Hop dance, achieved a classification accuracy of 38% across 800
attempts. This baseline highlights the nuanced nature of dance
genre classification, a task that even moderately experienced
viewers find challenging. Additionally, we benchmarked against
two straightforward machine learning algorithms: a perceptron and
a Ridge Classifier, which achieved accuracies of 46% and 48%,
respectively, without any fine-tuning. A Ridge classifier relying only
on expandedness (the feature our model found most important, as
we discuss below) achieved 20% accuracy. These figures serve as a
baseline and underscore the complexity of accurately capturing and
classifying the subtleties of dance movements.

Our auto-sklearn ensemble classifier significantly outperformed
these baselines with an accuracy of 76%, rivaling the best human
evaluators in our study (see Table 1). This performance can be
compared indirectly to the findings of Castro et al. (2018) using the
“Let’s Dance” dataset (see related work - a CNN-based approach
relying on 2DRGB data from 10, more-readily distinguished genres,
70% accuracy). Our results demonstrate the efficacy of our approach
to distinguishing these Hip Hop Dance genres, and further suggests
the potential for applicability to other forms of dance and domains
of movement.

5 Discussion and analysis

Our study establishes a novel method of characterizing
significant aspects of Hip Hop Dance movement in a quantitative,
human-understandable form. The 17 measures we used capture
intuitive features of full-body movement, and the strong
performance of our model in distinguishing among the ten
genres indicates that the artistic expressions of different Hip Hop
Dance styles depend significantly on these features. As different
communities have innovated on existing styles and converged on
movement genres that suit their expressive aims, they have explored
and settled on different ways of combining the aspects of movement
we looked at. This confirms first of all that Hip Hop Dance has
evolved in a way where genres have differentiated themselves
according to characteristic movement dynamics, suggesting that
these genres should not primarily be understood in terms of the
associated attire, music, or setting, but in the feel and look of the
movements themselves.

Given the effectiveness and interpretability of our method, it
can provide a basis for linking aspects of a dance’s kinematics
to its personal and cultural connotations - grounds from which
to build bridges between the movements and their meaning. To
begin to uncover the high-level aspects of genre to which our
features relate, a good approach is to visualize and analyze the
similarity-space populated by the dances in this dataset, as defined
by our features. We do this using Latent Semantic Analysis (LSA),
a technique for reducing the dimensionality of our encoding
from 17 down to 3, allowing us to plot the genres in a 3D
space (Figure 6). LSA involves a method of matrix factorization
called Singular Value Decomposition (SVD), wherein the resulting
singular values allow for a compressed representation of the
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TABLE 1 Performance metrics of the machine learning model (an ensemble chosen by automated machine learning pipeline) and of the sample of
human subjects who indicated moderate or more familiarity with Hip Hop Dance.

Model results Precision Recall f1-score Support

Ballet Jazz 0.83 1.00 0.91 10

Break 0.83 0.56 0.67 9

House 1.00 0.73 0.84 11

Krump 0.73 1.00 0.85 11

LA Hip Hop 0.67 0.91 0.77 11

Lock 0.71 0.45 0.56 11

Mid Hip Hop 0.71 0.91 0.80 11

Pop 0.78 0.70 0.74 10

Street Jazz 0.83 0.56 0.67 9

Waack 0.64 0.70 0.67 10

accuracy 76% 103

macro avg 0.77 0.75 0.75 103

weighted avg 0.77 0.76 0.75 103

Human results Precision Recall f1-score Support

Ballet Jazz 0.62 0.70 0.66 70

Break 0.83 0.56 0.67 71

House 0.32 0.32 0.32 78

Krump 0.62 0.50 0.55 105

LA Hip Hop 0.20 0.19 0.19 86

Lock 0.39 0.33 0.36 85

Mid Hip Hop 0.30 0.30 0.30 84

Pop 0.27 0.31 0.29 71

Street Jazz 0.28 0.35 0.30 75

Waack 0.26 0.35 0.30 75

accuracy 38% 800

macro avg 0.39 0.38 0.38 800

weighted avg 0.39 0.38 0.38 800

The value for overall accuracy is in bold, representing the most straightforward measure of comparison.

data, made up of features abstracted from the larger-dimensional
representation of the initial encoding. By analogy to text, one
could consider each genre as a document and each movement
feature as a word that might show up in any document, and LSA
as abstracting out the most prevalent semantic features from the

relationships among words (movement features) in the different
documents (genres).

The relationships between points in this similarity-space derived
from our features align with several basic characteristics of these
genres that people experienced with them would find intuitive
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FIGURE 6
Similarity between genres derived from our features, reduced to three dimensions using LSA. As we describe in the discussion section, the first
component correlates with up-and-down movement or “bounce,” the second component with momentum, and the third component with
repetitiveness or regularity of motion.

(characteristics that are not the focus of research we are aware of,
but are rather largely drawn from our experience and discussions
with various practitioners and researchers). For instance, the fact
that Krump, House, and Ballet Jazz are farthest from the center of
the space and each other agrees with the sense that these three are
among the most different from one another in their overall look
and feel. Also that fact that LA Hip Hop sits closest to the center
of the space fits with the thought that this genre is the most hybrid,
historically and aesthetically. LA Hip Hop is the genre that most
commonly appears on popular music videos and stages, its typical
audience probably has more non-dancers than the rest of these
genres, and it draws extensively on elements from several of the other
genres. Because this similarity space seems to correspond well with
some rudimentary facts about these genres, inspecting it further and
bringing to bear more knowledge about these genres offers a way to
deepen our understanding of these dance styles and how they may
have evolved.

First, by considering some characteristics of the genres thatmark
off the outsides of the space, we can get a qualitative sense of what
the 3 dimensions of the space represent, allowing for insights about

how different volumes of the space relate to the history andmeaning
of different Hip Hop styles. Component 1 appears to track vertical
movement or bounce (with higher bounce being negative); House,
Break, and Middle Hip Hop typically have the most regular, global
up-and-down motion, whereas Krump tends to keep a level center-
of-gravity for extended periods. Component 2 appears to track
overall momentum, with the slower, lighter styles of movement at
the positive end. Component 3 appears to track rhythmic regularity,
with the steady, cyclical movements of House (and to an extent,
Ballet Jazz) at the top and the more abrupt and erratic genres at
the bottom.

We can use this similarity space to support certain hypotheses
about how Hip Hop Dance has evolved and what it might explore
in the future. First note that the Hip Hop genres that emerged first
among these are Break and Lock. Ballet Jazz originates considerably
earlier, well before the “Hip Hop” moniker appeared, with roots
in the much older form of Ballet, and is thus the least connected
to the broad category of Hip Hop Dance (Guarino and Oliver,
2014). The distances to various genres from Hip Hop’s origin point
does not seem to correlate well with chronological or geographical
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FIGURE 7
Confusion matrices for human participants (A)and classifier (B).

appearance; LA Hip Hop is the most recent and is mainly located
across the US from Hip Hop’s origins, whereas Pop arrives on the
scene fairly early and also on the East Coast. This lets us see Hip
Hop Dance’s evolution as having modified the movement dynamics
of earlier styles in a way that afforded the artistic aims of the
communities that formed these genres, beginning with Break and
winding its way around the space of possibilities.

One conclusion invited by this analysis is that Hip Hop Dance
communities are unlikely to seek styles withmore overall movement
(Component 2) than the earliest genres. House and Krump become
widely recognized forms later than Break, and while they differ
substantially they appear comparable in terms of Component 2.
Perhaps these styles already approach a level of overall movement
that pushes the human body to certain physiological limits.

This similarity space raises a question about the large,
unoccupied volume in the top-center of the space. A dance in
this area would appear to be halfway between Krump and Ballet
Jazz in its overall energy and bounce, but with substantial rhythmic
regularity comparable to House. Perhaps there is an existing style
outside of the dataset that exhibits this combination of features, but
we are not aware of it. Or perhaps this is a part of the similarity
space where the style of movement fails to be aesthetically desirable
or interpretable, though we doubt it. A plausible hypothesis is thus
that a new genre has yet to coalesce in this region. We hope in future
investigations to identify dance sequences that populate that part of
this space and try to discover what, if anything, might hold some of
them together as a distinctive, emerging kind of dance.

By comparing the performance of our computational classifier
to our sample of human genre-evaluators, we can inquire into the
extent to which our model might explain how people can tell genres
apart.The confusionmatrix (Figure 7) shows how often a prediction

erred in each genre, and which genres were erroneously guessed in
those cases.

Human evaluators found Ballet Jazz easiest to classify by
a considerable margin, followed by Krump, which was closely
followed by Break. Ballet Jazz and Krump were also the two genres
onwhich themodel performed perfectly, and they were separated by
the greatest distance in similarity space. This suggests a substantial
degree of overlap in the features that served prediction by ourmodel
and the characteristics that allow people to distinguish movement
styles, further supporting our claim that the features we chose
capture aspects of dance movement that are salient to human
dancers and appreciators of dance.

On the other hand, several differences in relative performance
point to the fact that people are likely relying on information that
the model is not picking up. For example, the model’s performance
was relatively lower (though absolutely higher) on Break, compared
with humans. This could be partly because breakdancing sequences
often involve particular floor movements that can make a human
observer highly confident in the genre, but that do not dramatically
shape the measures of the entire sequence that our model uses.
Another notable difference in performance was that our human
sample found LA Hip Hop the most difficult to classify whereas the
model performed relatively well on this genre. Again, this could be
due to people making judgments based on a small section of a given
sequence - one or two movements that seem especially indicative of
a genre - where this could lead them astray with LA Hip Hop since
it incorporates various elements from other genres. In future work
we would like to try to better understand human genre judgments
both through closer examination of human performance and by
refining our machine-learning pipelines to integrate its predictions
over many small time-windows comprising a dance sequence.
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FIGURE 8
Influence of features on model output, colored according to genre.

By examining how our model’s performance depends on
the features and relations among them, we see which features
are most closely associated with differences in dance style and
inform further reflection on expressive human movement. We
use SHAP to investigate the relative contribution of different
features to the model’s classification, in general and with respect
to particular genres (Figures 8, 9). Expandedness stands out as the
most important feature on average, and one of the most important
features for many of the genres (with its standard deviation also
playing a significant role). This was one of the first measures we
thought to analyze, and the SHAP results support the idea that
narrative and aesthetic content of movement registers significantly
in how expanded a dancer tends to be, and how this changes
over time. These results also confirm that sacrum movement is
a key feature (2nd overall), which we thought was likely since
the sacrum affects so much of the body’s kinetics as well as
the mood of a dance. We were somewhat surprised that the
standard deviation of ankle height was so high on the list of
important features (3rd overall), and we are led to believe that
this feature works well to differentiate varieties of footwork. It was
also not clear to us initially that the model would need to rely so

substantially on so many features. If even a few of these features
are removed performance begins to drop considerably. This speaks
to the complexity of the way kinematics vary across genres to
enable the complex range of expressions embodied within each
of the genres.

One kind of feature we were surprised to find did not especially
contribute to our model’s ability to distinguish genre; our attempts
to measure rhythmic uniformity. We assume changes in angular
momentum to some extent correspond with the musicality of
movement, as the dancer’s rotational motion should tend to
accelerate and decelerate alongside certain repetitive aspects of the
music. This led us to think that a dance sequence that is quite
rhythmically uniform - matching an unchanging beat through the
sequence - should have similar values for angular momentum in
regular intervals, as the dancer repeatedly hits the same beat in a
similar way. In that case the autocorrelation of angular momentum
(a measure of the degree of similarity between a given time series
and a lagged version of itself over successful time intervals) should
exhibit prominent peaks at this regular interval, for rhythmically
uniform sequences, and not so many peaks for more sporadic, or
rhythmically variable sequence. However, we added 3 additional
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FIGURE 9
Top five most influential features for House, Break, Pop, and Krump, where the color of each dot reflects the value of the feature for one sequence, and
its position reflects the degree of positive or negative impact on the model’s output. The general importance of expandedness is evidenced, as are
various distinguishing aspects of these four genres, such as the relative significance of sharp movements and movements of the extremities.

features to the set of 17 discussed above, a count of prominent peaks
of the autocorrelation along each of the three spatial dimensions
of angular momentum, and we found that these were the 3 least-
important features in the set according to SHAP, and that model
performance improved only marginally. Noting that the third
component of our LSA-based dimension-reduction of our features
appears to correspond with rhythmic regularity, one reasonable
interpretation is that the combination of the other 17 features
substantially constrains the rhythmic uniformity of a sequence.

In addition to shedding new light on these forms of Hip Hop
Dance and the significant aspects of movement, our approach can
readily be adapted to learn about other domains of movement and
to develop applications that deal with full-body movement. The
variations that distinguish these genres of HipHopDance are subtle,
as they must be to allow dancers within each to explore a broad
range of artistic expressions. This is evidenced by the fact that a
person requires substantial experience to tell these genres apart at all,
and even given moderate experience people often fail to accurately
recognize the genre from movement alone. The nuanced nature
of distinguishing these movement forms is further supported by
the fact that the perceptron and ridge classifier had worse than
50% accuracy, and that using only one or few of our features
yielded much poorer performance (20% for a Ridge Classifier

using expandedness). Therefore we think it likely that the aspects
of movement that enable our model to distinguish these genres
could provide insight into significant categories of movement in
other styles of dance, in athletics, and in rehabilitative medicine.
If indeed our computational kinematics can generalize to various
domains, it could be applied to develop powerful technologies that
are sensitive to the nuances of human movement. Our methods
could enable new advances of computationally assisted movement
training and therapies for dancers, athletes, and anyonewith the goal
of developing certain movement abilities. Our study opens a path to
creating ways for choreographers to craft pieces that intentionally
blend or contrast key features, or for trainers to better instruct
people in safe and effective movement. The prospect of applying our
methods to a wider array of movement data and integrating them
with other advances in computational and material sciences offers a
host of exciting possibilities for enhancing knowledge and practices
around human movement.
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