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Hierarchical path planning from
speech instructions with spatial
concept-based topometric
semantic mapping

Akira Taniguchi*, Shuya Ito and Tadahiro Taniguchi

Emergent Systems Laboratory, Ritsumeikan University, Kusatsu, Shiga, Japan

Assisting individuals in their daily activities through autonomous mobile robots
is a significant concern, especially for users without specialized knowledge.
Specifically, the capability of a robot to navigate to destinations based on human
speech instructions is crucial. Although robots can take different paths toward
the same objective, the shortest path is not always the most suitable. A preferred
approach would be to accommodate waypoint specifications flexibly for
planning an improved alternative path even with detours. Furthermore, robots
require real-time inference capabilities. In this sense, spatial representations
include semantic, topological, and metric-level representations, each capturing
different aspects of the environment. This study aimed to realize a hierarchical
spatial representation using a topometric semantic map and path planning with
speech instructions by including waypoints. Thus, we present a hierarchical path
planning method called spatial concept-based topometric semantic mapping
for hierarchical path planning (SpCoTMHP), which integrates place connectivity.
This approach provides a novel integrated probabilistic generative model and
fast approximate inferences with interactions among the hierarchy levels. A
formulation based on “control as probabilistic inference” theoretically supports
the proposed path planning algorithm. We conducted experiments in a home
environment using the Toyota human support robot on the SIGVerse simulator
and in a lab–office environment with the real robot Albert. Here, the user
issues speech commands that specify the waypoint and goal, such as “Go
to the bedroom via the corridor.” Navigation experiments were performed
using speech instructions with a waypoint to demonstrate the performance
improvement of the SpCoTMHP over the baseline hierarchical path planning
method with heuristic path costs (HPP-I) in terms of the weighted success rate
at which the robot reaches the closest target (0.590) and passes the correct
waypoints. The computation time was significantly improved by 7.14 s with
the SpCoTMHP than the baseline HPP-I in advanced tasks. Thus, hierarchical
spatial representations provide mutually understandable instruction forms for
both humans and robots, thus enabling language-based navigation.

KEYWORDS

control as probabilistic inference, language navigation, hierarchical path planning,
probabilistic generative model, semantic map, topological map
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1 Introduction

Autonomous robots are often tasked with linguistic
interactions such as navigation for seamless integration into
human environments. Navigation using the concepts and
vocabulary tailored to specific locations learned from human and
environmental interactions is a complex challenge for these robots
(Taniguchi et al., 2016b; Taniguchi et al., 2019). Such robots are
required to construct adaptive spatial structures and place semantics
from multimodal observations acquired during movements within
the environment (Kostavelis andGasteratos, 2015; Garg et al., 2020).
This concept is closely linked to the anchoring problem, which
is concerned with the relationships between symbols and sensor
observations (Coradeschi and Saffiotti, 2003; Galindo et al., 2005).
Understanding the specific place or concept to which a word or
phrase refers, i.e., the denotation, is therefore crucial.

The motivation for research on this topic stems from the
necessity for autonomous robots to operate effectively in human
environments. This requires them to understand human language
and navigate complex environments accordingly. The significance
of this research lies in enabling autonomous robots to interact
withinhumanenvironmentsbotheffectivelyand intuitively, thereby
assisting the users.The primary issue in hierarchical path planning
is the increased computational cost owing to the complexity
of the model, which poses a risk to real-time responsiveness
and efficiency. Additionally, the challenge with everyday natural
languagecommandsprovidedby theusers is theexistenceof specific
place names that are not generally known and the occurrence of
different places within an environment that share the same name.
Therefore, robots need to possess environment-specific knowledge.
Enhancements in the navigation success rates and computational
efficiency, especially for tasks involving linguistic instructions,
could significantly broaden the applications of autonomous robots;
these applications would extend beyond home support to include
disaster rescue, medical assistance, and more.

Topometric semantic maps are a combination of metric
and topological maps with semantics that are helpful for path
planning using generalized place units. Thus, they facilitate
human–robot linguistic interactions and assist humans. One of
the key challenges here is the robot’s capacity to efficiently
construct and utilize these hierarchical spatial representations
for interaction tasks. Hierarchical spatial representations provide
mutually understandable instruction forms for both humans and
robots to enable language-based navigation. They are generalized
appropriately at each level and can accommodate combinations
of paths that were not considered during training. As shown in
Figure 1 (left), this study entails three levels of spatial representation:
(i) semantic level that represents place categories associated with
various words and abstracted by multimodal observations; (ii)
topological level that represents the probabilistic adjacency of
places in a graph structure; (iii) metric level that represents
the occupancy grid map and is obtained through simultaneous
localization and mapping (SLAM) (Grisetti et al., 2007). In this
paper, the term spatial concepts refers to semantic–topological
knowledge grounded in real-world environments.

The main goal of this study was to realize efficient spatial
representations and high-speed path planning from human speech
instructions by specifying waypoints using topological semantic

maps incorporating place connectivity. This study was conducted
in two phases, namely spatial concept learning and path planning.
Spatial concept learning phase: In this phase, a user guides
a robot in the environment by providing natural language
cues1, i.e., providing utterances about various locations, such as
“This is my father Bob’s study space, and it has many books.”
Furthermore, the robot collects multimodal sensor observations
from the environment, including images, depth data, odometry,
and speech signals. Using these sensor observations, the robot
acquires knowledge of the environmental map as well as connection
relationships between the places, spatial concepts, and place names.
Path planning phase: In this phase, the robot considers speech
instructions such as “go to the kitchen” as basic tasks and “go to the
kitchen through the bedroom” as advanced tasks (Figure 1 (right)).
In particular, this study was focused on hierarchical path planning
in advanced tasks. Although the shortest paths may not always
be the most suitable, robots can select alternative paths to avoid
certain areas or perform specific tasks based on the user instructions.
For example, the robot may choose a different route to avoid the
living room with guests or to check on the pets in the bedroom.
Thus, users can guide the robot to an improved path by specifying
waypoints. Furthermore, when multiple locations have the same
name (e.g., three bedrooms), selecting the closest route among them
is appropriate. By specifying the closest waypoint to the target, the
robot can accurately select the target even when many places share
the same name.

In this study, “optimal” refers to the scenario that maximizes the
probability of a trajectory distribution under the given conditions.
Specifically, the robot should plan an overall optimal path through
the designated locations.This ensures that the robot’s path planning
is practical and reduces the travel distance as well as time by
considering real-world constraints and objectives. It also allows
greater flexibility in guiding the robot through the waypoints,
thereby enabling users to direct it along preferred routes while
maintaining the overall effectiveness.

This paper proposes a spatial concept-based topometric
semantic mapping for hierarchical path planning (SpCoTMHP)
approach with a probabilistic generative model2. The topometric
semantic map enables path planning by combining abstract
place transitions and geometrical structures in the environment.
SpCoTMHP is based on a probabilistic generative model that
integrates the metric, topological, and semantic levels with speech
and language models into a unified framework. Learning occurs in
an unsupervised manner through the joint posterior distribution
derived from multimodal observations. To enhance the capture of
topological structures, a learning method inspired by the function
of replay in the hippocampus is introduced (Foster and Wilson,
2006). Ambiguities related to the locations and words are addressed
through a probabilistic approach informed by robot experience. In
addition, we develop approximate inference methods for effective

1 Alternatively, learning can be realized by active exploration based on

generating questions or image captioning (Mokady et al., 2021) for the

user (Ishikawa et al., 2023; Taniguchi et al., 2023). For example, the robot

asks questions such as “What kind of place is this?” to the users.

2 The source code is available at https://github.com/a-

taniguchi/SpCoTMHP.git.
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FIGURE 1
Overview of the proposed method. Left: hierarchy of spatial representation with topometric semantic mapping. Right: path planning from spoken
instructions with waypoint and goal specifications.

path planning, where each hierarchy level influences the others.
The proposed path planning is theoretically supported by the idea
of control as probabilistic inference (CaI) (Levine, 2018), which
has been shown to bridge the theoretical gap between probabilistic
inference and control problems, including reinforcement learning.

The proposed approach is based on symbol emergence in
robotics (Taniguchi et al., 2016b, 2019) and has the advantage
of enabling navigation using unique spatial divisions and local
names learned without annotations, which are tailored to each
individual family or community environment. Hence, the users can
simply communicate with the robot throughout the process from
learning to task execution, thus eliminating the need for robotics
expertise. Moreover, the approach is based on the robot’s real-world
experiences that enable daily behavioral patterns to be captured,
such as where to travel more/less frequently.

We conducted experiments in the home environment using
the Toyota human support robot (HSR) on the SIGVerse simulator
(Inamura and Mizuchi, 2021) and in a lab–office environment with
the real robot Albert (Stachniss, 2003). SpCoTMHP was compared
with baseline hierarchical path planning methods in navigation
experiments using speech instructions with a designated waypoint.
The main contributions of this study are as follows:

1. We demonstrated that hierarchical path planning
incorporating topological maps through probabilistic
inference achieves higher success rates and shorter
computation times for language instructions involving
waypoints compared to methods utilizing heuristic costs.

2. We illustrated that semanticmapping based on spatial concepts
and considering topological maps achieves higher learning

performance than SpCoSLAM, which does not incorporate
topological maps.

In particular, the significance of this work is characterized by the
following four items:

1. Integrated learning–planning model: The learning–planning
integratedmodel autonomously constructs hierarchical spatial
representations, including topological place connectivity, from
the multimodal observations of the robot, leading to improved
performances for learning and planning.

2. Probabilistic inference for real-time planning: The
approximate probabilistic inference based on CaI enables real-
time planning of adaptive paths from the waypoint and goal
candidates.

3. Many-to-many relationships for path optimization: The
probabilistic many-to-many relationships between words and
locations enable planning closer paths when there are multiple
target locations.

4. Spatial concepts for environment-specific planning:The spatial
concepts learned in real environments are effective for path
planning with environment-specific words.

The remainder of this paper is organized as follows. Section 2
presents related works on topometric semantic mapping,
hierarchical path planning, and the spatial concept-based approach.
Section 3 describes the proposed method SpCoTHMP. Section 4
presents experiments performed using a simulator inmultiple home
environments. Section 5 discusses some experiments performed in
real environments. Finally, Section 6 presents the conclusions of
this paper.
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TABLE 1 Main characteristics of map representation and differences between the related works.

Reference Metric Topological Semantic Class label/Vocabulary

Shatkay and Kaelbling (2002) ✓ ✓ — —

Rangel et al. (2017) ✓ ✓ ✓ Preset label

Zheng et al. (2018) ✓ ✓ ✓ Preset label

Karaoğuz et al. (2016) ✓ — ✓ Preset label

Kostavelis et al. (2016) ✓ ✓ ✓ Preset label

Luperto and Amigoni (2018) ✓ — ✓ Preset label

Gomez et al. (2020) ✓ ✓ ✓ Free area or transit area (door)

Rosinol et al. (2021) ✓ ✓ ✓ Preset label

Hiller et al. (2019) ✓ ✓ ✓ Preset label

Sousa and Bassani (2022) ✓ — ✓ Preset label

Taniguchi et al. (2017,
2020a)

✓ — ✓ On-site learning (environment-specific words)

SpCoTMHP (Present study) ✓ ✓ ✓ On-site learning (environment-specific words)

2 Related works

This section describes topometric semantic mapping in
Section 2.1, hierarchical path planning in Section 2.2, robotic
planning using large language models (LLMs) and foundation
models in Section 2.3, and the spatial concept-based approach in
Section 2.4. Table 1 displays the main characteristics of the map
representation and differences between the related works. Table 2
presents the main characteristics of path planning and differences
between the related works.

2.1 Topometric semantic mapping

For bridging the topological–geometrical gap, geometrically
constrained hidden Markov models have been proposed as
probabilistic models for robot navigation in the past (Shatkay and
Kaelbling, 2002). The similarity between these models and that
proposed in this study is that probabilistic inference is realized
for path planning. However, the earlier models do not introduce
semantics, such as location names.

Research on semanticmapping has been increasingly emphasized
inrecentyears. Inparticular, semanticmappingassignsplacemeanings
to the map of a robot (Kostavelis and Gasteratos, 2015; Garg et al.,
2020). However, numerous studies have provided preset location
labels for areas on a map. For example, LexToMap (Rangel et al.,
2017) assigns convolutional neural network (CNN)-recognized
lexical labels to a topological map, where the approach enables
unsupervised learning based on multimodal perceptual information
for categorizing unknown places

The use of topological structures enables more accurate
semantic mapping (Zheng et al., 2018); this method is expected

to improve performance by introducing topological levels. The
nodes in a topological map can vary depending on the methods
used, such as room units or small regions (Karaoğuz et al., 2016;
Kostavelis et al., 2016; Luperto and Amigoni, 2018; Gomez et al.,
2020). Kimera (Rosinol et al., 2021) used multiple levels of spatial
hierarchical representation, such asmetrics, rooms, places, semantic
levels, objects, and agents; here, the robot automatically determined
the spatial segmentation unit based on experience.

In several semantic mapping studies (Hiller et al., 2019; Sousa
and Bassani, 2022), topological semantic maps were constructed
from visual images or metric maps using CNNs. However, these
studies have not considered path planning. In contrast, the method
proposed herein is characterized by an integrated model that
includes learning and planning.

2.2 Hierarchical path planning

Hierarchical path planning has been a significant topic of study
for long, e.g., hierarchical A⋆ (Holte et al., 1996). Using topological
maps for path planning (including learning the paths between
edges) is more effective for reducing the computational complexity
than considering only the movements between cells in a metric
map (Kostavelis et al., 2016; Stein et al., 2020; Rosinol et al., 2021).
In addition, the extension of map representations to hierarchical
semantic maps has enabled navigation based on speech.

Given that the proposed method realizes a hierarchy based on
the CaI framework (Levine, 2018), it is theoretically connected
with hierarchical reinforcement learning, where the subgoals
and policies are estimated autonomously (Kulkarni et al., 2016;
Haarnoja et al., 2018). This study investigates tasks similar to
hierarchical reinforcement learning to infer the probabilistic
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TABLE 2 Main characteristics of path planning and differences between the related works.

Reference Planning approach Instruction for navigation Goal determination

Holte et al. (1996) Classical (A⋆) — Explicitly given as a point

Kostavelis et al. (2016) Dijkstra and long short-term memory go-to commands through a graphical
interface

Explicitly given by the user

Stein et al. (2020) Learned subgoal planning — Explicitly given as a point

Rosinol et al. (2021) Multilevel A⋆ Semantic queries Explicitly given from queries

Kulkarni et al. (2016),
Haarnoja et al. (2018)

Hierarchical reinforcement learning — Autonomously estimated

Krantz et al. (2020),
Gu et al. (2022),
Huang et al. (2023)

Vision and language navigation Unambiguous and detailed description Non-explicit (vision based)

Anderson et al. (2018b), Chen et al. (2021) Deep reinforcement learning Unambiguous and detailed description Non-explicit (vision-based)

Taniguchi et al. (2020b) CaI framework Daily short speech sentences
(containing environment-specific
words)

Non-explicit (probabilistic)

SpCoTMHP (Present study) Hierarchical CaI framework Daily short speech sentences
(containing environment-specific
words and waypoints)

Non-explicit (probabilistic)

models, which are expected to be theoretically readable and
integrable with other methods. Vision and language navigation
(VLN) aims to help an agent navigate through an environment
assisted by natural language instructions while using visual
information from the environment (Krantz et al., 2020; Gu et al.,
2022; Huang et al., 2023). The present study differs from those
on VLNs in several respects. The first difference is in the
complexity of the instructions. In VLN tasks, unambiguous and
detailed natural language instructions are provided; in contrast, the
proposed method involves tasks characterized by the terseness and
ambiguity with which people speak daily. The second difference
is the training scenario. The VLN dataset uses only common
words annotated in advance by people. In contrast, the proposed
approach can handle spatial words in communities living in specific
environments.The third difference is that although VLNs use vision
during path planning, vision was used in the present work to
generalize spatial concepts only during training of the proposed
method. This is due to the difference between sequential action
decisions and global path planning. Finally, deep and reinforcement
learning techniques have been used in recent studies on VLNs
(Anderson et al., 2018b; Chen et al., 2021); however, the proposed
probabilistic model autonomously navigates toward the target
location using speech instructions as the modality.

2.3 Robotic planning using LLM and
foundation models

Recently, there has been growing utilization of LLMs and
foundational models for enhancing robot autonomy (Firoozi et al.,
2023; Vemprala et al., 2023; Zeng et al., 2023). SayCan (Ahn et al.,

2022) integrates pretrained LLMs and behavioral skills to empower
the robots to execute context-aware and appropriate actions in
real-world settings; in this approach, the LLM conducts higher-
level planning based on language while facilitating lower-level
action decisions grounded in physical constraints. However, a
key challenge remains in accurately capturing the characteristics
of the physical space, such as the walls, distances, and room
shapes, using only LLMs. In contrast, our study tightly integrates
language, spatial semantics, and physical space to estimate
the trajectories comprehensively. Furthermore, our proposed
method is designed to complement LLM-based planning and
natural language processing, with the expectation of seamless
integration.

Several studies have employedLLMs and foundationalmodels to
accomplish navigation tasks. LM-Nav (Shah et al., 2022) integrates
contrastive language–image pretraining (CLIP) (Radford et al.,
2021) and generative pretrained transformer-3 (GPT-3)
(Brown et al., 2020); this system enables navigation directly through
language instructions and robot-perspective images alone.However,
this approach necessitates substantial amounts of driving data from
the target environment. Conversely, an approach that combines
vision–language models (VLMs) and semantic maps has also been
proposed. CLIP-Fields (Shafiullah et al., 2023), natural language
maps (NLMap) (Chen et al., 2023), and VLMaps (Huang et al.,
2023) use LLMs and VLMs to create 2D or 3D spaces and language
associations to enable navigation for natural language queries;
these approaches mainly record the placements of objects on
the map and cannot understand the meanings of the locations
or planning for each location. Additionally, LLM/VLM-based
approaches have a large common-sense vocabulary similar to an
open vocabulary. However, using pretrained place recognizers
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alone makes it difficult to handle environment-specific names
(e.g., Alice’s room). Although LLMs have the potential to handle
environment-specific names through in-context learning, they
have not been integrated with mapping and navigation in existing
models at present. Our spatial concept-based approach addresses
knowledge specific to the home environment through on-site
learning.

2.4 Spatial concept-based approach

In Section 3, we present two major previous studies
on which the proposed method is based. As presented in
our previous research, SpCoSLAM (Taniguchi et al., 2017,
2020a) forms spatial concept-based semantic maps based on
multimodal observations obtained from the environment; here,
the multimodal observations for spatial concept formation refer to
the images, depth sensor values, odometry, and speech signals.
Moreover, the approach can acquire novel place categories
and vocabularies from unknown environments. However,
SpCoSLAM cannot estimate the topological level, i.e., whether
one place is spatially connected with another. The details
of the formulation of the probabilistic generative model are
described in Supplementary Appendix SA1.The learning procedure
for each step is described in Supplementary Appendix SA2.
In the present study, we applied the hidden semi-Markov
model (HSMM) (Johnson and Willsky, 2013) that estimates the
transition probabilities between places and constructs a topological
graph instead of the Gaussian mixture model (GMM) used in
SpCoSLAM.

In addition, SpCoNavi (Taniguchi et al., 2020b) plans the
path in the CaI framework (Levine, 2018) by focusing on
the action decisions in the probabilistic generative model of
SpCoSLAM. The details on the formulation of CaI are described
in Supplementary Appendix SA3. Notably, SpCoNavi realizes
navigation from simple speech instructions using a spatial concept
acquired autonomously by the robot. However, SpCoNavi does not
demonstrate hierarchical path planning, and scenarios specifying
a waypoint are not considered. In addition, there are several
problems that need to be solved: SpCoNavi based on the Viterbi
algorithm (Viterbi, 1967) is computationally expensive given
that all the grids of the occupied grid map are used as the state
space; it is vulnerable to the real-time performance required
for robot navigation; SpCoNavi based on the A⋆ approximation
has reduced computational cost but inferior performance to
that of the Viterbi approach. Therefore, in the present study, we
utilized a topological semantic map based on spatial concepts to
reduce the number of states and rapidly infer the possible paths
among the states.

3 Proposed method: SpCoTMHP

We propose the spatial concept-based topometric semantic
mapping for hierarchical path planning (SpCoTMHP) approach
herein. Spatial concepts refer to categorical knowledge of places from
multimodal information obtained through unsupervised learning.
The proposed method realizes efficient navigation from human

speech instructions through inference based on a probabilistic
generative model. The proposed approach also enhances human
comprehensibility and explainability for communication by
employing Gaussian distributions as the fundamental spatial
units (i.e., representing a single place). The capabilities of the
proposed generative model are as follows: (i) place categorization
by extracting the connection relations between places through
unsupervised learning; (ii) many-to-many correspondences
between words and places; (iii) efficient hierarchical path planning
by introducing two variables (t and e) with different time
constants.

Three phases can be distinguished in probabilistic generative
models: (a) model definition in the probability distribution
of the generative process (Section 3.1), (b) inference of the
posterior distribution for parameter learning (Section 3.2), and
(c) probabilistic inference for task execution after learning
(Sections 3.3 and 3.4).

3.1 Definition of the probabilistic
generative model

SpCoTMHP is designed as an integratedmodel for eachmodule:
SLAM, HSMM, multimodal Dirichlet process mixture (MDPM)
for place categorization, and the speech-and-language model.
Therefore, it is simple to distribute the development and further
the module coupling in the framework of Neuro-SERKET
(Taniguchi et al., 2020c). The integrated model has the advantage
of the inference functioning as a whole to complement each
uncertainty. Figure 2 presents the graphical model representation
of SpCoTMHP, and Table 3 lists each variable of the graphical
model. Unlike SpCoSLAM (Taniguchi et al., 2017), SpCoTMHP
introduces two different time units (real-time robot-motion-based
time step t and event-driven time step e) and extends the GMM
to HSMM. The events represent the timings of user utterances
during the learning and switching of locations visited during
planning. The generative process (prior distribution or likelihood
function) is defined by the graphical model representation
of SpCoTMHP.

SLAM (metric level): The probabilistic generative model of
SLAM represents the time-series transition of self-position, and
the state space on the map corresponds to the metric level.
These probability distributions have been standard in SLAM for
probabilistic approaches (Thrun et al., 2005). Accordingly, Eq. (1)
represents a measurement model that is a likelihood of a depth
sensor zt at a given position xt and map m. Equation (2)
represents a motion model that is a state transition related to
the position xt based on the action ut in a previous position
xt−1 in SLAM:

zt ∼ p(zt ∣ xt,m) , t = 1,2,…,T (1)

xt ∼ p(xt ∣ xt−1,ut) . (2)

Here, self-localization assumes a transition at time t due to the
motion of the robot. The variable xt is shared with the HSMM.

HSMM (from metric to topological levels): The HSMM
can be used to cluster the location data of the robot in
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FIGURE 2
Graphical model representation of the SpCoTMHP (top) spatial concept learning and its path planning phases (bottom). The two phases imply different
probabilistic inferences for the same generative model; this has the mathematical advantage that different probabilistic inferences can be applied under
the same model assumptions. The integration of several parts into a single model allows the inferences to consider various probabilities throughout.
The graphical model represents the conditional dependency between random variables. The gray nodes indicate observations or learned parameters
as fixed conditional variables, and white nodes denote unobserved latent variables to be estimated. Arrows from the global variables to local variables
other than T and E are omitted. In the learning phase, multimodal observations are obtained several times. Based on these observables, the latent
variables are estimated. In the planning phase, the parameters estimated in the learning phase and optimality variables are supplied. Under these
conditions, the distribution of trajectories is estimated. De was omitted from the graphical model representation.

terms of position distributions and represent the probabilistic
transitions between the position distributions. This refers to
transitioning from the metric to topological levels. The HSMM

connects two units, namely time t and event e. A binary random
variable that indicates whether there is an event is defined
as in Eq. 3:
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TABLE 3 Descriptions of the random variables used in the
proposed model.

Symbol Definition

m Environmental map (occupancy grid map)

xt Self-position of the robot (state variable)

ut Control data (action variable)

zt Depth sensor data

ot Optimality variable (event-driven)

De Duration length for ot in ie

ie ∈ {k} Category index of the position distributions

Ce ∈ {l} Category index of the spatial concepts

fe Visual features of the camera image

ye Speech signal of the uttered sentence

Se Word sequence in the uttered sentence

μk, Σk Parameters of multivariate Gaussian distribution (position
distribution)

ψk Parameter of state transitions for ie in ie−1 = k

π Parameter of mixture weights for Ce

ϕl Parameter of mixture weights for ie in Ce = l

θl Parameter of feature distributions for fe

Wl Parameter of word distributions for Se

LM Language model (n-gram and word dictionary)

AM Acoustic model for speech recognition

α, β, γ, χ, ω
Hyperparameters of prior distributions

m0, κ0, V0, ν0

T Final time of robot operation

E Total number of user utterances (in the learning phase) or total
number of location moves (in the planning phase)

L Total number of spatial concepts

K Total number of position distributions

ot ∼ p(ot ∣ xt, ie,μ,Σ; {De}) = {
η ⋅N (xt ∣ μie ,Σie) ifot = 1,
1− η ⋅N (xt ∣ μie ,Σie) ifot = 0,

t = te,…, t
′
e,

(3)

where η = 1/∑Kj=1N (xt ∣ μj,Σj) is the normalization constant,N () is
a multivariate Gaussian distribution, μ = {μk}, Σ = {Σk}, and ot = 1 is
the event that occurred at time t. Here, ot ∈ {0,1} takes a binary value.
This event-driven variable corresponds to the optimality variable in

CaI (Levine, 2018). The duration assumes a uniform distribution in
[1,T], as in Eq. 4:

De ∼ Unif (1,T) , e = 1,2,…,E, (4)

where the equation relating t and e is te = ∑e′<eDe′ , and the final
time at the event e is t′e = te +De − 1.Thus, E ≦ T and T = ∑Ee=1De.The
position distribution represents a coherent unit of place and is
represented by aGaussian distribution, i.e., as a node in a topological
map, where μk is a representative point of the node k on the map;
Σk represents the spread of the node location k. To capture the
transitions between the locations as connection weights between the
nodes to represent edges in the topological map, ψk is introduced as
follows, as in Eqs 5–7:

μk ∼N (m0,Σk/κ0) , k = 1,2,…,∞, (5)

Σk ∼ IW(V0,ν0) , (6)

ψk ∼ DP (ω) , (7)

where IW() is the inverseWishart distribution, andDP() represents
the Dirichlet process (DP). The DP assumes an infinite number
of categories and allows infinite mixed HSMMs, thereby enabling
learning of the positional distributions, i.e., nodes of a topological
map, that flexibly depend on the environment. The inverse Wishart
distribution is a conjugate prior distribution on the covariance
matrix of the Gaussian distribution.The conjugate prior distribution
was established because it allows the posterior distribution to be
obtained analytically. Readers are referred to the literature on
machine learning (Murphy, 2012) for the specific formulas of these
probability distributions.

HSMM + MDPM connection (from topological to semantic
levels): The variable ie of the topological node is shared between the
HSMMandMDPM.Theprobability distribution of ie for connecting
two modules is defined by unigram rescaling (UR) (Gildea and
Hofmann, 1999), as in Eqs 8, 9:

ie ∼ p(ie ∣ ie−1,ψ,Ce,ϕ) (8)

UR
≈ Mult(ie ∣ ψie−1

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Transitionprob.

byHSMM

Mult(ie ∣ ϕCe
)

∑L
c′=1

Mult(ie ∣ ϕc′)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Categorydependent term
/Rescalingterm

, (9)

where ψ = {ψk}, ϕ = {ϕl}, and Mult() is a multinomial distribution.
The first term in Eq. (9) denotes the transferability between places,
and the second term denotes correspondence between the spatial
concept and position distribution. The position distribution k = ie
has a high probability when it corresponds to the spatial concept Ce
and is connected to the position distribution ie−1.

MDPM (semantic level): The MDPM is a mixture distribution
model for forming place categories from multimodal observations.
Through the spatial concept l = Ce, the probabilities of themodalities
represented by ϕl, θl, and Wl are corresponded. The MDPM is
positioned at the semantic level, which represents spatial concepts
based on places ie, speech–language Se, and image fe features as
follows, as in Eqs 10–15:

π ∼ DP (α) , (10)
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ϕl ∼ DP (γ) , l = 1,2,…,∞, (11)

θl ∼ Dir(χ) , (12)

Wl ∼ Dir (β) , (13)

Ce ∼Mult (π) , e = 1,2,…,E, (14)

fe ∼Mult(θCe
) , (15)

where Dir() is the Dirichlet distribution. According to the data, the
DP automatically determines the number of spatial concepts L and
their position distributions K. A multinomial distribution is applied
to the discrete variables; and theDirichlet distribution andDPare set
as the conjugate prior distributions for themultinomial distribution.

MDPM + language model connection (semantic level): The
variable of a word sequence Se is shared between the MDPM and
language model. The probability distribution of Se for connecting
the two modules is defined by UR (Gildea and Hofmann, 1999), as
in Eqs 16, 17:

Se ∼ p(Se ∣ Ce,W,LM) (16)

UR
≈ p(Se ∣ LM)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

N−gramprob.

Be

∏
b=1

Mult(Se,b ∣WCe
)

∑L
c′=1

Mult(Se,b ∣Wc′)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Categorydependent term
/Rescalingterm

, (17)

where W = {Wl}. Moreover, Be is the number of words in the
sentence, and Se,b is the b-th word in the sentence at event e.
The first term in Eq. (17) is the probability of occurrence of
a word based on the n-gram language model LM. Specifically,
p(Se ∣ LM) = ∏

Be
b=1p(Se,b ∣ Se,b−n+1:b−1;LM). The second term is the

spatial concept-dependent word probability distribution, which is
computed independently for each word.

Speech-and-language model: The generative process for the
likelihood of speech given a word sequence is, as in Eq. 18:

ye ∼ p(ye ∣ Se,AM) . (18)

This probability distribution does not usually appear explicitly but
is internalized as an acoustic model in probability-based speech
recognition systems.

3.2 Spatial concept learning as topometric
semantic mapping

The joint posterior distribution is described as

p(x0:T,S1:E,C1:E,Θ ∣ u1:T,z1:T,o∗t′1:E
,y1:E, f1:E,h), (19)

where C1:E = {i1:E,C1:E} denotes the set of latent variables, Θ =
{m,μ,Σ,ψ,π,ϕ,θ,W,LM,AM} denotes the set of global model
parameters, and h = {α,β,γ,χ,ω,m0,κ0,V0,ν0} denotes the set of
hyperparameters.The set of event-driven variables is given by o∗t′1:E

=
{ot′e = 1}

E
e=1.

In this paper, as an approximation to sampling fromEq. (19), the
parameters are estimated as follows:

x0:T,m ∼ p(x0:T,m ∣ u1:T,z1:T) , (20)

Se ∼ p(Se ∣ ye,LM,AM) , e = 1,2,…,E, (21)

C1:E,Θ
′ ∼ p(C1:E,Θ

′ ∣ x0:T,o
∗
t′1:E
,S1:E, f1:E,h), (22)

where Θ′ = {μ,Σ,ψ,π,ϕ,θ,W}. Equation (20) is realized using
grid-based FastSLAM 2.0 (Grisetti et al., 2007), and Eq. (21)
represents the speech recognition of ye. Here, LM and AM
were preset. The proposed method then handles uncertainties in
speech recognition by capturing the N-best speech recognition
results as Monte Carlo approximations. The variables in
Eq. (22) can be learned using Gibbs sampling, which is a
Markov-chain Monte-Carlo-based batch learning algorithm,
specifically the weak-limit and direct-assignment sampler
(Johnson and Willsky, 2013).

In the learning phase, the user provides a teaching utterance
each time the robot transitions between locations. Given that the
utterance is event-driven, it is assumed that the variables for the
spatial concepts are observed only at event e. Here, the time of the
e-th event (when the robot observes that an utterance indicates a
place) is t′e. In particular, ot′e = 1 is observed at the instants of t′e, and
ot is unobserved at other times.Therefore, the inference for learning
ie is equivalent to a HMM.

Reverse replay: In the case of spatial movements, we can
transition from ie−1 to ie or vice versa. Therefore, i′E:1, which is
replayed using the steps of e in reverse order, can be used for learning
when sampling ψ. This is based on the replay performed in the
hippocampus of the brain (Foster and Wilson, 2006).

3.3 Hierarchical path planning by control
as inference

The probabilistic distribution, which represents the trajectory
τ = {u1:T,x1:T} when a speech instruction ye is given, is maximized
to estimate an action sequence u1:T (and the path x1:T on the
map) as follows:

u1:T = arg max
u1:T

p(τ ∣ o∗1:T,y1:E,x0,Θ) . (23)

The planning horizon at the metric level T is the final time of the
entire task when a one-time step traverses one grid block on the
metric map. The planning horizon at the topological level E is the
number of event steps used to navigate by speech instruction. As
shown in Eqs. (3, 4), each event step e corresponds to the time series
te:t′e. The metric-level planning horizon in Step e corresponds to the
duration De of the HSMM. In the metric-level planning horizon,
the event-driven variable is always o∗1:T = {ot = 1}

T
t=1 by the CaI. The

speech instruction ye is assumed to be the same as that from e = 1
to E. This indicates that ot and ye are multiple optimals in terms of
the CaI (Kinose and Taniguchi, 2020). From the above, Eq. (23) is
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rewritten as follows:

p(τ ∣ o∗1:T,y1:E,x0,Θ) ≈
E

∏
e=1

[

[

K

∑
ie=1

Mult(ie ∣ ψie−1
)

∑L
c′=1

Mult(ie ∣ ϕc′)
L

∑
Ce=1

Mult(ie ∣ ϕCe
)Mult(Se ∣WCe

)Mult(Ce ∣ π)

t′e
∏
t=te

N (xt ∣ μie ,Σie)p(xt ∣m)p(xt ∣ xt−1,ue)
]

]
, (24)

Se ∼ p(Se ∣ ye,LM,AM) , (25)

where p(xt ∣m) is a probabilistic representation of the cost map,
and D1:E is the maximum limit value given. In addition, the word
sequence Se is obtained by speech recognition of ye as the N-best
bag of words, in Eq. 25. The assumptions, such as the SLAMmodels
and cost map, in the derivation of the equation are the same as those
used for SpCoNavi (Taniguchi et al., 2020b).

In the present study, we assumed that the robot could extract
words indicating the goal and waypoint from a particular sentence
utterance. In topological-level planning including the waypoint, the
waypoint word is input in the first half while the target word is
presented in the second half of the utterance.

3.4 Approximate inference for hierarchical
path planning

The strict inference of Eq. (24) requires a double-forward
backward calculation. In this case, reducing the calculation cost
is necessary to accelerate path planning, which is one of the
objectives of this study. Therefore, we propose an algorithm to solve
Eq. (24). Algorithm 1 presents the hierarchical planning approach
as produced by SpCoTMHP. Here, the path planning is divided
into topological and metric levels, and the CaI is solved at each
level. Metric-level planning assumes that the partial paths in each
of the transitions between places are solved in A⋆. The partial
paths can be precomputed regardless of the speech instructions.
Topological-level planning is approximated using the probability
distribution of ie by assumingMarkov transitions. Finally, the partial
paths in each of the transitions between places are integrated as a
complete path. Thus, metric and topological planning can influence
each other.

Path planning at the metric level (i.e., partial path xie−1,ie when
transitioning from ie−1 to ie) is described as follows:

xte:t′e = arg max
xte:t′e

t′e
∏
t=te

N (xt ∣ μie ,Σie)

p(xt ∣m)p(xt ∣ xt−1,ut) . (26)

This indicates that a metric-level path inference can be expressed in
terms of the CaI.

Calculating Eq. (24) for all possible positions was difficult.
Therefore, we used the mean or sampled values from the Gaussian
mixture of position distributions as the goal position candidates, i.e.,
x̂
[nie]
t′e|ie
∼N (xt|μie ,Σie). Here, nie is an index that takes values of up to

Nie , which is the number of candidate points sampled for a specific ie.
By sampling multiple points according to the Gaussian distribution,

1:  //Precalculation:

2:  {x̂t′e|ie} ∼ Gaussian_Mixture(ϕ,μ,Σ)

3:  Create a graph between the waypoint candidates

4:  for all nodes, nie−1 → nie, do

5:   x̂
[nie−1 ,nie]
ie−1,ie

← A⋆(x̂
[nie−1]

t′
e−1|ie−1
, x̂
[nie]
t′e|ie
,we)

6:   Calculate likelihoods ŵ
[nie−1 ,nie]
ie−1,ie

for the

partial paths

7:  end for

8:  //When a speech instruction ye is given:

9:  Se← Speech_Recognition(ye,LM,AM)

10:  Estimate an index i0 of the place in the

initial position x0

11:  n1:E,i1:E← Search(i0,Se, ŵ,Θ) //Eq. (28)

12:  Connect the partial paths n1:E as the complete

path x1:E

13:  x1:E← Path_Smoothing(x1:E,m) //optional process

Algorithm 1. Hierarchical path planning algorithm.

the candidate waypoints that follow the rough shape of the place can
be selected. For example, the robot does not necessarily have to go
to the center of a lengthy corridor.

Therefore, as a concrete solution to Eq. (26), the partial paths in
the transitions of the candidate points from place ie−1 to place ie are
estimated as follows, as in Eq. 27:

x̂
[nie−1 ,nie]
ie−1,ie
= A⋆(x̂

[nie−1]
t′e−1|ie−1
, x̂
[nie]
t′e|ie
,we), (27)

where A⋆(s,g,we) denotes the function of the A⋆ search algorithm,
s is the initial position, g is the goal position, and we =
N (xt|μie ,Σie)p(xt|m) is the cost function. The estimated partial path
length can then be interpreted as the estimated value of De.

The selection of a series of partial metric path candidates
corresponds to the selection of the entire path. Thus, we can replace
the formulation of the maximization problem of Eq. (24) with
that of Eq. (28). Each partial metric path has corresponding indices
ie−1 and ie. Therefore, given a series of index pairs representing
transitions between the position distributions, the candidate paths
to be considered can naturally be narrowed down to a series of
corresponding partial paths. The series of candidate indices that
determines the series of candidate paths is thusn1:E = (ni0 ,ni1 ,…,niE)
in this case.This partial path sequence can be regarded as a sampling
approximation of x1:T.

By taking the maximum value instead of the summation i1:E,
path planning at the topological level can be described as

n1:E, i1:E = arg max
n1:E,i1:E

E

∏
e=1

Mult(ie ∣ ψie−1
)

∑L
c′=1

Mult(ie ∣ ϕc′)
ŵ
[nie−1 ,nie]
ie−1,ie

L

∑
Ce=1

Mult(ie ∣ ϕCe
)Mult(Se ∣WCe

)Mult(Ce ∣ π) , (28)

where ŵ
[nie−1 ,nie]
ie−1,ie

is the likelihood of the metric path x̂
[nie−1 ,nie]
ie−1,ie

when
transitioning from a candidate place point ie−1 to the next candidate
place point ie at Step e. In this case, it is equivalent to formulating
the state variables in the distribution for the CaI as x1:E and i1:E.
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Therefore, path planning at the topological level can be expressed
as the CaI at the event step e.

4 Experiment I: planning tasks in a
simulator

We experimented with path planning using spatial concepts by
including topological structures via human speech instructions. In
this experiment, as a first step, we demonstrated that the proposed
method improves the efficiency of path planning when the ideal
spatial concept is used. The simulator environment was SIGVerse
Version 3.0 (Inamura and Mizuchi, 2021), and the virtual robot
model used was the Toyota HSR.We used five three-bedroom home
environments3 with different layouts and room sizes.

4.1 Spatial concept-based topometric
semantic map

There were 11 spatial concepts and position distributions for
each environment (Figure 3 bottom; Supplementary Appendix SA4).
Fifteen utterances were provided by the user for each place as the
training data. The SLAM and speech recognition modules were
inferred individually by splitting from the model, i.e., the self-
location x1:E and word sequence S1:E were input to the model
as observations. An environment map was generated by the
gmapping package that implements grid-based FastSLAM 2.0
(Grisetti et al., 2007) in the robot operating system (ROS). In this
experiment, a word dictionary was prepared in advance for the
vocabulary to be used by considering the focus as evaluation of
path planning. In addition, we assumed that the speech recognition
results were obtained accurately. The model parameters for the
spatial concept were obtained via sampling from a conditional
distribution, i.e., Eq. (22). We adopted the ideal learning results of
the spatial concepts, and the latent variables Ct and it were obtained
accurately. Figure 3 presents two examples of the overhead views
of the home environments built into the simulator and their spatial
concepts (i.e., position distributions and their connections) in the
environmental maps.

4.2 Path planning from speech instructions

Two types of path planning tasks were performed in the
experiments, which included a variation where the waypoints and
goals were recombined at different places. The waypoint and goal
words in user instructions were extracted by a simple natural
language process and entered into the model as {Se}. Basic task:
The robot obtained the words identifying the target locations
as instructions, e.g., “Go to the bedroom.”Advanced task: The
robot obtained the words identifying the waypoint locations and
targets as speech instructions, such as “Go to the bedroom via
the corridor.” We supplied both the waypoint and target words

3 Three-dimensional (3D) home environment models are available at

https://github.com/a-taniguchi/SweetHome3D_rooms.

as bag of words to SpCoNavi as this task was not demonstrated
previously (Taniguchi et al., 2020b).

We compared the performances of the methods as follows:

(A) A⋆ algorithm (goal estimated by spatial concepts): the goal
positionwas obtained as x∗ ∼ p(x ∣ S∗ ,Θ) in SpCoSLAMusing
the speech recognition results S∗ .

(B) SpCoSLAM (Taniguchi et al., 2017) + SpCoNavi
(Taniguchi et al., 2020b) with the Viterbi algorithm
(Viterbi, 1967).

(C) SpCoSLAM (Taniguchi et al., 2017) + SpCoNavi
(Taniguchi et al., 2020b) with A⋆ approximation.

(D) Hierarchical path planning without CaI, similar
to Niijima et al. (2020): the goal nodes were estimated by
ie ∼ p(ie ∣ S∗ ,Θ). The topological planning used heuristic
costs as the (I) cumulative cost and (II) distances of partial
paths in A⋆.

(E) SpCoTMHP (topological level: Dijkstra, metric level: A⋆)

The evaluation metrics for path planning include the success
weighted by path length (SPL) (Anderson et al., 2018a) when the
robot reaches the target location and calculated runtime in seconds
(time). The N-SPL is the weighted success rate when the robot
reaches the closest target from the initial position for several places
having the same name.TheW-SPL is the weighted success rate when
the robot passes the correct waypoints.TheWN-SPL is the weighted
success rate when the robot reaches the closest target by passing
the correct waypoints; the WN-SPL is the overall measure of path
planning efficiency in advanced tasks.

Conditions: The planning horizons were E = 10 for the
topological level and D = 100 as the maximum limit for the metric
level in SpCoTMHP. The number of position candidates in the
sample was Nie = 1

4. The proposed method subjected the paths to
moving average smoothing with a window size of 5. The planning
horizon of SpCoNaviwasT = 200.Thenumber of goal candidates for
SpCoNavi (A⋆ approximation) was J = 10.The parameters E,D, and
T were large enough for the complexity of the environment, and J
was the same as in the original experimental setting (Taniguchi et al.,
2020b). The global cost map was obtained from the costmap_
2d package in the ROS. The robot’s initial position was set from
arbitrary movable coordinates on the map, and the user provided a
word to indicate the target name. The state of self-position xt was
expressed discretely for each movable cell in the occupancy grid
map m. The motion model was a simple deterministic model, i.e.,
xt = xt−1 + ut. In other words, motion errors were not assumed in the
path planning.The control value ut was assumed tomove by a single
cell on the map for each time step, and the action ut was discretized
as A = {stay, up, down, left, right}. The simulations were
implemented in Python on one central processing unit (CPU)
with an Intel Core i7-6850K having 16 GB DDR4 2133-MHz
synchronous dynamic random-access memory (SDRAM).

Results: Tables 4 and 5 present the evaluation results for
the basic and advanced planning tasks. Figure 4 presents

4 This means a one-sample approximation to the candidate waypoints for

the partial path. A related description can be found in Section 3.4. A

one-sample approximation will be sufficient if the Gaussian distributions

representing the locations and their transitions are obtained accurately.
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FIGURE 3
Overhead view of the simulator environments (top) and ideal spatial concepts expressed by SpCoTMHP on the environmental map (bottom) in
Experiment I. The colors of the position distributions were randomly set. If (ψk1,k2

+ψk1,k2
)/2 > 1/K, the centers μk1 ,μk2 of the Gaussian distributions are

connected by an edge. This means that the edges are drawn only if the average transition probabilities from k1 to k2 and k2 to k1 are higher than the
uniform transition probability.

an example of the estimated path5. Overall, SpCoTMHP
outperformed the comparison methods and had significantly
reduced computation times. The basic task demonstrated that
the proposed method could solve the problem of stopping
along the path before reaching the objective, which occurs in
SpCoSNavi (A⋆ approximation). The N-SPL of the baseline
methods were lower than that of the proposed method because
there were cases where the goal was selected as a bedroom far
from the initial position (Figures 4B, C). This demonstrated the
effectiveness of the proposed method based on probabilistic
inference (i.e., CaI).

The advanced task confirmed that the proposed method
could estimate the path via the waypoint (Figure 4D). Although
SpCoTMHP had the disadvantage of estimating slightly redundant
paths, the reduced computation time and improved planning
performance render it a more practical approach than the
conventional methods. Consequently, the proposed method
achieved better path planning by considering the initial, waypoint,
and goal positions.

5 A video of the robot simulation moving along the estimated path is

available at https://youtu.be/w8vfEPtnWEg.

SpCoTMHP exhibited faster path planning than SpCoNavi
(Viterbi) despite its inferior performance in the basic path
planning task. This improvement stems from the reduced number
of inference states and computational complexity achieved
through hierarchization and approximation. In both the basic and
advanced tasks, SpCoTMHP notably enhanced the path planning
performance over SpCoNavi (A⋆ approximation). Consequently, the
SpCoNavi problem outlined in Section 2.4 was effectively addressed
by SpCoTHMP.

5 Experiment II: real environment

Wedemonstrated that the formationof spatial concepts, including
topological relations between places, could also be realized in a
real-world environment. Real-world datasets are more complex and
involve more uncertainties than simulators. Therefore, as detailed
in Section 5.1, we first confirmed that the proposed method had
improved learning performance over the conventional method
SpCoSLAM. Thereafter, as detailed in Section 5.2, we determined
the impacts of the spatial concept parameters learned in Section 5.1
on the inference of path planning. Additionally, we confirmed that
the proposed method could plan a path based on the learned
topometric semantic map.
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TABLE 4 Evaluation results for path planning in the basic task (Experiment I).

Method Hierarchy CaI SPL↑ N-SPL↑ Time↓

A⋆ - - 0.570 0.463 9.47× 100

SpCoNavi (Viterbi) - ✓ 0.976 0.965 2.68× 103

SpCoNavi (A⋆ approximation) - ✓ 0.404 0.388 5.42× 101

HPP-I (path cost) ✓ - 0.723 0.605 7.56 × 100

HPP-II (path distance) ✓ - 0.714 0.571 7.96× 100

SpCoTMHP ✓ ✓ 0.861 0.812 4.79 × 100

Bold indicates the best evaluation value among the methods compared.

TABLE 5 Evaluation results for path planning in the advanced task (Experiment I).

Method Hierarchy CaI SPL↑ W-SPL↑ N-SPL↑ WN-SPL↑ Time↓

A⋆ - - 0.312 0.449 0.233 0.034 9.44× 100

SpCoNavi (A⋆

approximation)
- ✓ 0.266 0.308 0.252 0.013 5.53× 101

HPP-I (path cost) ✓ - 0.917 0.248 0.773 0.191 7.53 × 100

HPP-II (path distance) ✓ - 0.902 0.250 0.729 0.183 8.03× 100

SpCoTMHP ✓ ✓ 0.922 0.906 0.794 0.781 0.39 × 100

Bold indicates the best evaluation value among the methods compared.

5.1 Spatial concept-based topometric
semantic mapping

Conditions: The experimental environment was identical to
that in the open dataset albert-b-laser-vision6, which was obtained
from the robotics dataset repository (Radish) (Stachniss, 2003). The
details of the dataset are shown in Supplementary Appendix SA5.
The utterances included 70 sentences in Japanese, such as “The
name of this place is student workroom,” “You can find the robot
storage space here,” and “This is a white shelf.” The hyperparameters
for learning were set as follows: α = 0.5, γ = 0.05, β = 0.1, χ = 1.0,
ω = 0.5, m0 = [0,0]T, κ0 = 0.001, V0 = diag(2,2), and ν0 = 3. The
parameters were set empirically within the typical ranges with
reference to SpCoSLAM (Taniguchi et al., 2017, 2020a). The other
settings were identical to those in Experiment I.

Evaluation metrics: Normalized mutual information (NMI)
(Kvalseth, 1987) and adjusted Rand index (ARI) (Hubert and Arabie,
1985), which are the most widely used metrics in clustering tasks for
unsupervised learning,wereusedas theevaluationmetrics for learning
the spatial concepts.TheNMIwasobtainedbynormalizing themutual
information between the clustering results and correct labels in the
range of 0.0–1.0. Moreover, the ARI is 1.0 when the clustering result
matches the correct label and 0.0 when it is random. The time taken
for learning was additionally recorded as a reference value.

6 The dataset is available at https://dspace.mit.edu/handle/1721.1/62291.

Results: Figures 5A–D present an example of spatial concept
learning. For example, the map in Figure 5C caused overlapping
distributions in the upper right corner and skipped connections
to neighboring distributions, which were mitigated by the map in
Figure 5D. Table 6 presents the evaluation results from the average
of ten trials of spatial concept learning. SpCoTMHP achieved
a higher learning performance (i.e., NMI and ARI values) than
SpCoSLAM, indicating that the categorization of spatial concepts
and position distributions was more accurate when considering the
connectivity of the places. In addition, the proposed method with
reverse replay demonstrated the highest performance. Consequently,
using both place transitions during learning and vice versa may
be useful for learning spatial concepts. Moreover, Table 6 shows
that there was no significant difference in the computation time of
the learning algorithm.

5.2 Path planning from speech instructions

The speech instruction provided was “Go to the break room via
the white shelf,” and all other settings were identical to those in
Experiment I. Figures 5E–H present the results for path planning
using the spatial concepts. Although SpCoSLAM could not reach
the waypoint and goal in the map of Figure 5F, SpCoTMHP
could estimate the path to reach the goal via the waypoint in
the maps in Figures 5G, H. The learning with reverse replay in
the map of Figure 5D shortened the additional route that would
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FIGURE 4
Example of path planning in the advanced task. The instruction: “Go to the bedroom via the lavatory” (Experiment I).

have resulted from the transition bias between places during
learning in the map of Figure 5C. The failure observed in Figure 5F
with SpCoNavi using waypoints is primarily attributed to the
inputs with names of the given locations, regardless of these
being waypoints or goals, in the bag-of-words format. The results
revealed that the proposed method performs hierarchical path
planning accurately, although the learning results are incomplete,
as shown in Table 6. As a reference, the inference times for
path planning were 1.02× 103 s for SpCoNavi, 3.97× 10−2 s for
SpCoTMHP, and 2.39× 10−2 s for SpCoTMHP (with reverse
replay). The results of Experiment I (Section 4) thus demonstrate
the computational efficiency of the proposed hierarchical
path planning.

6 Conclusion

We achieved topometric semantic mapping based on
multimodal observations and hierarchical path planning
through waypoint-guided instructions. The experimental results
demonstrated improved performance for spatial concept

learning and path planning in both simulated and real-
world environments. Additionally, the approximate inference
achieved high computational efficiency regardless of the model
complexity.

Although these are encouraging results, our study
has a few limitations as follows:

1. Scalability: The experiments assumed a single waypoint;
however, the proposed method can theoretically handle
multiple waypoints. Although the computational complexity
increases with the topological planning horizon E, scalability
will be sufficiently ensured when the users only require a few
waypoints. In practical scenarios, one or two waypoints are
highly probable in daily life.

2. Instruction variability: A typical instruction representation
was used in the experiment. As a preprocessing step, LLMs can
be used to handle instruction variability (Shah et al., 2022).

3. Redundant waypoints: Our approach may require passing
through redundant waypoints, even if visiting the waypoint
itself is unnecessary. For instance, in Figure 5, if it were possible
to directly specify “the break room next to the white shelf,”
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FIGURE 5
Top (A–D): Results of spatial concept learning. Bottom (E–H): Results of path planning. The speech instruction provided was “Go to the break room via
the white shelf.” The break room was taught in two rooms: upper right and upper left corners. The white shelf is in the second room from the left on
the upper half of the map (Experiment II).

TABLE 6 Learning performances for spatial concepts and position
distributions, as well as computation times of the learning algorithms
(Experiment II).

NMI↑ ARI↑ Time↓

Methods Ce ie Ce ie (sec.)

SpCoSLAM 0.767 0.803 0.539 0.578 1.28× 102

SpCoTMHP 0.779 0.858 0.540 0.656 1.33× 102

SpCoTMHP (with reverse
replay)

0.786 0.862 0.562 0.658 1.29× 102

Bold indicates the best evaluation value among the methods compared.

there would be no need to pass by the white shelf as a
waypoint. In such cases, extending the system to an open-
vocabulary LLM-based semantic map could provide a viable
solution.

4. Path restrictions: The paths generated by the proposed
model are restricted by the transition probabilities between
the locations encountered during training. In contrast,
the model by Banino et al. (2018) can navigate through
paths that are not traversed during training. Exploring the
integration of such vector-based navigation techniques with
our spatial concept-based approach could potentially enable
shorter navigation while enhancing the model’s flexibility and
robustness.

Future research on the proposed approach will therefore include
utilizing common-sense reasoning (Hasegawa et al., 2023), such as

foundation models and transfer of knowledge (Katsumata et al.,
2020) with respect to the spatial adjacencies across multiple
environments. In this study, we trained the model using the
procedure described in Section 3.2. Simultaneous and online
learning for the entire model can also be realized with particle
filters (Taniguchi et al., 2017). The proposed method was found to
be computationally efficient, thus rendering it potentially applicable
to online path planning, such as model predictive control (Stahl and
Hauth, 2011; Li et al., 2019). Additionally, the proposed model has
the potential for visual navigation and generation of linguistic path
explanations through cross-modal inference by the robot.
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