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Evolutionary robotics as a
modelling tool in evolutionary
biology

Alan F. T. Winfield*

Bristol Robotics Laboratory, UWE Bristol, Bristol, United Kingdom

The use of evolutionary robotic systems to model aspects of evolutionary
biology is well-established. Yet, few studies have asked the question, “What
kind of model is an evolutionary robotic system?” This paper seeks to address
that question in several ways. First, it is addressed by applying a structured
model description developed for physical robot models of animal sensorimotor
systems, then by outlining the strengths and limitations of evolutionary robotics
for modelling evolutionary biology, and, finally, by considering the deepest
questions in evolution and which of them might feasibly be modelled by
evolutionary robotics. The paper concludes that although evolutionary robotics
faces serious limitations in exploring deeper questions in evolutionary biology, its
bottom-up approach to modelling populations of evolving phenotypes and their
embodied interactions holds significant value for both testing and generating
hypotheses.
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1 Introduction

Evolutionary algorithms (EAs) are typically used to discover novel solutions to difficult
design problems. Perhaps the most famous real-world example is an evolved satellite
antenna design (Hornby et al., 2006). EA and its application in robotics, evolutionary
robotics (ER), are thus seen as a technique for search or optimisation.However, evolutionary
robotics may also be used to explore questions in evolutionary biology.

The idea of robots as scientific instruments is not new: Grey Walter’s electromechanical
robot tortoises, machina speculatrix, were designed and built to test ideas in neuroscience.
There is no doubt that Walter’s robots were the first biologically inspired robots
(Holland, 2003b). The use of robotics as a comparative method in ecology and
biology is well-established (Krause et al., 2011; Lauder, 2022), and as the literature
surveys of Trianni (2014) and Doncieux et al. (2015) show, ER systems have also
been used to model a wide range of interesting questions in evolutionary biology,
including, notably, the co-evolution of predator–prey behaviour (Floreano and Nolfi,
1997), brain–body co-evolution (Lipson and Pollack, 2000), the evolution of altruism
(Waibel et al., 2011), and the evolution of task specialisation of social insects (Ferrante et al.,
2015). However, few works have sought to ask what kind of model an ER system is.
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This paper proceeds as follows: Section 2 introduces the idea
that robots can be scientific instruments. Section 3 outlines notable
examples of experimental evolutionary robotics that have shed
new light on the evolution of fish backbones, altruism, and
modularity, exploring, with model descriptions, how ER systems
model aspects of evolutionary biology before developing a critique
of these models. Section 4 concludes with a discussion of deeper
questions in evolutionary biology andwhether they can or cannot be
reasonably modelled with ER, as well as a set of recommendations
for roboticists interested in studying evolutionary biology.

2 Robots as scientific instruments

The idea of robots that are not designed for their real-world
utility but instead as scientific instruments is not new. If not the first,
then certainly, the best-known example is W. Grey Walter’smachina
speculatrix. Between 1948 and 1949, Walter, a neurophysiologist,
designed and built two autonomous robots, which he named Elmer
and Elsie. Their design was motivated by his theory of brain
function, in particular that “cerebral functions may derive not so
much from the number of [neurons], as from the richness of
their interconnections” (Walter, 1953). Walter designed the robots’
control system with, as he put it, “a simple two-cell nervous system.”
The ‘cells’ were vacuum tubes, and by variously connecting the
cells with the robot’s sensors and motors, the robots demonstrated
four distinct behaviours: exploration, obstacle avoidance, and both
positive and negative phototaxis (Holland, 2003a).

Figure 1 (left) shows two replicas of Walter’s robots built in the
Bristol Robotics Laboratory by Ian Horsfield. In Figure 1 (right), we
see one of Walter’s famous experiments, in which Elsie first moves
toward a lamp, then ignores the lamp while avoiding an obstacle,
and then shows positive phototaxis to move toward the lamp. When
the robot gets close to the lamp, a combination of positive and
negative phototaxis causes it to move around the lamp. Arguably,
the two cells are equivalent to what we would now call a single-
layer recurrent artificial neural network. The analogy is apt, given
that Walter’s design fully exploited the non-linear properties of the
vacuum tubes. He reportedly “…stressed the importance of using
purely analogue electronics to simulate brain processes at a time
when his contemporaries such as Turing and von Neumann were
all turning toward a view of mental processes in terms of digital
computation”1.

The fact that Walter’s machina speculatrix are robots built with
purely scientific aims is not an accident. Walter was well aware
of the synthetic method, a term employed by the contemporary
psychologist Kenneth Craik “to describe the process of testing
behavioural theories through machine models” (Bisig et al., 2008).
Walter himself wrote: “In general, it is legitimate to study a model
of a mysterious process if three conditions are fulfilled: 1. several
features of the mystery must be known. 2. The model must contain
the absolute minimum of working parts to reproduce the known
features. 3. The model must reproduce other features, either as
predictions or as unexpected combinations” (Walter, 1953, 280).

1 https://en.wikipedia.org/wiki/Elmer_and_Elsie_(robots)

In recent decades, the synthetic method, in which robots are
used as workingmodels, has become well-established in the study of
both animal behaviour andphysiology: an approach that has become
known as either artificial ethology (Holland and McFarland, 2001)
or simply biorobotics (notably, the term biorobotics also includes
biologically inspired or biomimetic robots). Examples include the
landmark work on cricket phonotaxis by Webb (1995) and the
work on collective sorting and segregation byMelhuish et al. (1998).
However, the use of evolutionary robotics for modelling aspects of
evolutionary biology is much less well-established.

2.1 Related work

There are few works that critically examine the potential of ER
as a tool for addressing questions in evolutionary biology, although
the rationale for doing so was neatly articulated by Maynard Smith
in 1992: “so far, we have been able to study only one evolving system,
and we cannot wait for interstellar flight to provide us with a second.
If we want to discover generalizations about evolving systems, we
have to look at artificial ones” (Maynard Smith, 1992).

In ‘Evolutionary robotics: model or design?’ Trianni (2014)
offered, perhaps, the first thorough review and critique of
evolutionary robotics as a modelling tool for biology. Trianni
makes the case that ER uniquely provides us with a bottom–up
model of an evolving population of model organisms that allows
us to “identify the causal relationship between selective pressures
and adaptive traits, thanks to the possibility of having complete
control over the evolutionary process.” In ‘Evolutionary robotics:
what, why, and where to,’ Doncieux et al. (2015) asked the question
“Evolutionary robotics, for whom?” and addressed biologists,
asserting that “evolutionary robotics provides tools for modelling
and simulating evolution with unique properties: considering
embodied agents that are located in a realistic environment makes
it possible to study hypotheses on the mechanistic constraints at
play during evolution” that are “particularly relevant for modelling
behaviours where complex interactions within the group and with
the environment are at work.”

This paper aims to build upon and complement these works by
addressing the question, “What kind of model is an ER system?”
This question is explored by outlining three notable ER models
of evolutionary biology alongside model descriptions using the
approach proposed by Webb (2001) (introduced below), and by
doing so, this paper addresses Eiben (2021)’s call for “instruments
to formally describe and analyse evolutionary robot systems.” The
subsidiary contributions are as follows: (i) a proposed extension to
Webb’s model for ER, (ii) an analysis of the strengths and limitations
of ER for modelling evolutionary biology, (iii) a review of the major
transitions in evolution and which of these might be addressed by
ER, and (iv) recommendations for roboticists proposing to model
biology with ER.

3 What kind of model is an
evolutionary robotic system?

In seeking to address this question, a good place to start is
Barbara Webb’s paper titled ‘Can robots make good models of
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FIGURE 1
Left: Amy and Ninja, replicas of Walter’s machina speculatrix. Right: a time-lapse photograph of one of Walter’s 1949–50 experiments with Elsie
showing obstacle avoidance and both positive and negative phototaxis (image: archive of the Burden Neurological Institute).

biological behaviour?’ (Webb, 2001), which focuses on building
physical robot models of biological sensorimotor systems in order
to investigate problems in biology. The paper sets out a framework
with seven dimensions for comparing robot models of biological
behaviour as a structured approach for evaluating and comparing
different modelling approaches in the context of biological systems.
Webb concluded that “a dimensional description should not be
primarily considered as a means of ranking models as ‘better’
or ‘worse’ but rather as an elucidation of potential strategies,”
with a strategy of “increasing relevance and commitment to really
testing biological hypotheses; …aspiring to accuracy but concerned
with building complete systems; looking for a closer behavioural
match; and using real physical interaction as part of the medium.”
Webb’s seven dimensions, the questions they each address, and a
commentary/interpretation are given in Table 1.

Let us now review three notable examples of artificial
evolutionary systems that have addressed questions in evolutionary
biology. These three case studies have been chosen to represent very
different levels of generality, abstraction, and structural accuracy.
They also cover a very broad range of targets: physical traits of
aquatic vertebrae, collective behaviour within a model ecosystem,
and the evolution of modularity. For each of these studies, a
description using Webb’s dimensions is made in order to compare
and contrast the three models.

3.1 The evolution of fish biomechanics

John Long is well known for his use of evolutionary robotics
to investigate the biomechanics of fish (Long, 2012). We consider
his work using ER to test the hypothesis that vertebrae in ancient
fish “evolved as a locomotor adaptation, stiffening the body axis and
enhancing swimming performance” (Long et al., 2006). Long and

his team extended biomimetic evolutionary analysis (BEA), which
builds physical simulations of extinct systems, to include the use
of autonomous robots as models of early vertebrates competing
in a foraging task. They designed a biomimetic tadpole robot,
called Tadro, with a biomimetic tail. Tadro has a single eyespot
(photoresistor), a flapping tail, and a controller that converts the light
intensity at the eyespot into a turning angle at the tail.

In this work, three physical Tadro robots compete to reach
and encircle a light source (the food target) in a water tank. The
robots’ fitness, called navigational prowess (NP), was rewarded
by four measures: short time to reach the target, small orbital
radius, fast swimming speed, and low robot wobble. The genome
coded for two parameters, the robot’s flapping tail bending
modulus and length, which together determine stiffness. Following
selection, crossover, and mutation, the next-generation robot’s
tails (biomimetic notochords) were fabricated by hand with
cylindrical hydro-gels formed fromgelatine (analogous to individual
vertebrae), which were then connected by a flexible glue (analogous
to inter-vertebral discs). Long et al. (2006) concluded that “we see
evidence to support the classical hypothesis that vertebrae stiffen
the body and that increased tail stiffness increases thrust production
and steady swimming speed,” although interestingly adding the
rider that “this formulation, however, avoids a central evolutionary
question: under what ecological and selective conditions might
vertebrae evolve?”.

Table 2 describes Long’s model using Webb’s dimensions. Here,
we see that the biological relevance is high with a clearly identified
target: the evolution of vertebrae in ancient fish. The level, or unit,
of the model is very specific: a backbone with variable stiffness.
The model is not abstract and has relatively low complexity, yet it
has sufficient structural accuracy to model the effect of vertebrae
stiffness on swimming, thus both supporting the classical hypothesis
and providing a good performance match.
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TABLE 1 Webb’s seven dimensions for describing models. The
dimensions and questions are fromWebb (2001). For each dimension, an
interpretation has been added.

Dimension Question and interpretation

Relevance

Is the biological target system clearly identified?

Relevance focuses on how well the model represents a
real biological system and whether it has the potential to
test or generate hypotheses relevant to biology

Level

What are the base units of the model?

This dimension specifies the organizational level at which
the model operates. It might, for instance, be a limb or
sense organ, neuronal, the whole organism, or a
complete ecosystem

Generality

How many systems does the model target?

Generality refers to the extent to which a model applies
to a wide range of real-world systems or biological
phenomena

Abstraction

What is the complexity of the model or amount of detail
included, relative to the target?

Abstraction assesses the number and complexity of
mechanisms included in the model; a more detailed
model is less abstract. Webb notes that “a simple target
might be represented by a simple, but not abstract,
model, and a complex model still be an abstraction of a
very complex target”

Structural accuracy

How well does the model represent actual mechanisms
underlying the behaviour?

Structural accuracy focuses on the fidelity of the model in
reflecting the real mechanisms and processes that drive
the observed behaviour in the target biological system.
We would assess structural accuracy by evaluating how
closely the mechanisms included in the model mirror the
mechanisms operating in the target system

Performance match

To what extent does the model behaviour match the
target behaviour?

This dimension describes how well the model replicates
the observed behaviours, responses, and outcomes of the
biological system under study. A high level of
performance match would indicate that the model
accurately captures the essential characteristics and
dynamics of the target system’s behaviour

Medium

What is the physical basis by which the model is
implemented?

Medium describes the physical basis by which the model
is implemented. This could be computer simulation or
physical robot(s) in some test environment or a hybrid of
the two

3.2 The evolution of cooperation and
altruism

Next, we consider the work of Waibel, Floreano, and Keller,
whichmade use of theminiatureALICE robots to evolve cooperative
and altruistic behaviours (Waibel et al., 2009; Waibel et al., 2011). In

TABLE 2 Description of Long et al. (2006) using Webb’s model
dimensions of Table 1.

Dimension Description

Biological relevance The target is clearly identified: the evolution of vertebrae
in ancient fish

Level Backbone with variable stiffness and tail

Generality The range of animals modelled is large: aquatic
vertebrata

Abstraction The model is not abstract, and its complexity is relatively
low

Structural accuracy High: sufficient accuracy to model effect of vertebrae
stiffness on swimming

Performance match Good: the classical hypothesis is supported, with
additional insights

Medium Physical robots swimming toward a beacon in a water
tank

these experiments, a group of robots forage by finding and collecting
physical tokens and moving them to a nest area. The experimental
arena contained two kinds of tokens: small tokens that can be pushed
by a single robot and larger tokens too heavy to be pushed by a single
robot. The fitness of each robot was based on its success in foraging
for tokens. In one experiment, the arena contained only large tokens,
and the robots successfully evolved the ability to cooperatively push
these tokens to the nest.

However, when the arena contained both large and small tokens,
the group ‘kin structure,’ i.e., the genetic relatedness of the individuals,
influenced the evolved behaviours. Groups of genetically unrelated
robots evolved toward pushing the small tokens because this was the
best way to maximize their own fitness. In contrast, related robots
evolved altruistic behaviours—cooperating to push the large tokens at
the expense of their own individual fitness. The result quantitatively
confirms Hamilton’s rule that altruistic behaviours will evolve when
the relatedness of individuals multiplied by the fitness benefit to the
receiver of the altruistic behaviour is greater than the fitness cost of
performing thebehaviour (Bourke, 2014). SeeTable 3 for adescription
of Waibel et al. (2009)’s model using Webb’s dimensions, in Table 1.

In contrast with Table 2, here, Waibel et al. (2009)’s model is
abstract, with a lower level of biological relevance as no specific
animals are modelled. Instead, in Table 3, the general class of
cooperative groups, or social animals, ismodelled.The level (or unit)
of the model is a simple model ecosystem, in which each individual
is modelled with a mobile robot. In common with Long et al.
(2006)’s model in Table 2, the generality, structural accuracy, and
performancematch are all high, demonstrating that lower biological
relevance and higher abstraction do not limit the value of themodel.

3.3 The evolution of modularity

Our third case study is concerned not with the evolution
of particular traits but instead the evolution of modularity. It is
well known that biological evolution is highly modular. Complex
organisms are assemblages of pre-evolved components; cells are
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TABLE 3 Description of Waibel et al. (2009) against
Webb’s model of Table 1.

Dimension Description

Biological relevance Medium: the collective behaviours of cooperative groups
of social animals

Level Simple model ecosystem

Generality Range of biological systems modelled is wide:
cooperating social animals

Abstraction This is an abstract model of a medium-complexity target
system

Structural accuracy Sufficient accuracy to model the emergence of both
cooperation and altruism

Performance match High, given the model’s quantitative confirmation of
Hamilton’s rule

Medium Ten physical robots foraging two sizes of food token in
an arena

ubiquitous building blocks for evolution; and organs such as eyes,
hearts, and livers or sub-systems such as vascular or digestive
systems are themselves modules that are re-used with often
surprisingly little change across species within a given taxonomic
class (e.g., Mammalia) (von Dassow and Munro, 1999).

With an elegant application of the evolutionary algorithm, Clune
et al. challenged the sole focus on selective forces as the origin of
biological modularity (Clune et al., 2013). Unlike the two previous
works outlined in this section, Clune et al. are not concerned with
physical robots. Instead, they evolve the controller, an artificial neural
network, of a conceptual creature in simulation. The ANN evolves to
recognizepatterns (objects) in a simple eight-pixel retina. Importantly,
the problem is modularly decomposable because whether an object
exists on the left or right sides can be separately determined before
combiningthat informationtodeterminewhetherobjectsexistonboth
sides. Evolving theANNwith selection forperformance alone resulted
in non-modular networks that are slow to adapt to new environments.
However, the simple addition of a second selection pressure to reduce
connectivity in theANNled to the evolutionofmodularnetworks that
show faster adaptation in new environments than the non-modular
networks, as illustrated in Figure 2.

The biological relevance of Clune et al. (2013)’s model in Table 4
using Webb’s classification is arguably low as no general class of
animals is modelled here. Yet, the model remains highly relevant as
even the simplest animals exhibit modularity, and the model has the
highest generality of all three: the evolution of evolvability, which is
“the ability of a biological system to produce phenotypic variation
that is both heritable and adaptive” (Payne and Wagner, 2019).
This model is highly abstract with a low structural accuracy, yet, in
common with all three models, it shows a good performance match.

3.4 Extending Webb’s model description
for evolutionary robotics

It is clear that the example model descriptions in Tables 2–4
are incomplete. There are several important dimensions present

in ER models that are not covered by Webb’s model description.
This is hardly surprising, given that Webb’s model description was
developed primarily with single-robot models in mind. ER also
has robot models, but as Figure 3 shows, it additionally evolves a
population of phenotypes, which involves genotype to phenotype
mapping, selection, and fitness evaluation.

Table 5 proposes several additional dimensions, which,
together with Webb’s model, would allow us to provide a more
complete description of ER models. The first three dimensions
in Table 5 simply provide the number of gene pools, population
sizes, and the number of generations in a run of the ER model.
In the study of Long et al. (2006) of Section 3.1, there is one
gene pool, with a population of three phenotypes, and the ER
model was run for 10 generations. In contrast, the study of
Waibel et al. (2009) of Section 3.2 has a population of 1,000
organised into teams of 10 robots each, and the model was run
for 300 generations. These details should be included in the model
description.

The mapping dimension in Table 5 concerns the mapping from
genotype to phenotype, which may be direct or indirect. If indirect,
then the description should provide the details. Doncieux et al.
(2015) provided a good description of genotype to phenotype
mapping. Brain/body very simply describes whether the ER model
evolves the controller alone, the body morphology alone, or both.
Our sixth proposed new dimension specifies the fitness function (or
functions if there ismore than one co-evolving species). For a survey
of fitness functions in ER, see Nelson et al. (2009). Selection strategy
specifies the method used to select the fittest individuals. For a
survey of selection strategies, see Fernández Pérez et al. (2014).

The final dimension is concerned with evolutionary
developmental biology, known by the shorthand ‘evo-devo’
(Nuño de la Rosa and Müller, 2020). In recent years, evo-devo
has become important in ER, and some argue that “if it evolves,
it needs to learn” (Eiben and Hart, 2020). There have been a
number of very elegant experimental studies in artificial evo-
devo. Kriegman et al. (2018), for instance, evolved, in simulation, a
population of soft-bodied robots each consisting of a 4 x 4 x 3 grid of
voxels. The soft robots evolved the ability to move over a flat terrain
as quadrupeds, but, interestingly, sometimes, they learnt a new
rolling morphology during their lifetime. Although not modelling
biology, Kriegman et al. (2018) showed that “development, under
the right conditions, can increase evolvability.” Should such evo-
devo systems be developed to model evo-devo in biology, then the
final dimension in Table 5 evo-devo will be needed in the model
description.

As an example, Table 6 shows an extended model description
for the work of Long et al. (2006), as outlined in Section 3.1 above,
demonstrating the value of extending Webb’s model description for
ER in providing a much more complete picture.

3.5 Observations, strengths, and limitations

Consider the schematic description of a complete ER system
in Figure 3. All three of the case studies above follow the broad
approach of Figure 3. The work of Long et al. (2006) in Section 3.1
evolves the robot morphology, as in Figure 3, whereas the works of
Waibel et al. (2011) and Clune et al. (2013) evolve only the robots’
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FIGURE 2
Two evolutionary processes: upper, based on performance alone; lower, based on both performance and connectivity costs. Diagram from Clune et al.
(2013), with permission.

TABLE 4 Description of Clune et al. (2013) using Webb’s model
dimensions.

Dimension Description

Biological relevance Evolution of modularity.

Level Neural controller (ANN)

Generality Very high: the evolution of evolvability

Abstraction Highly abstract: a minimal model of the evolution of
modularity

Structural accuracy Low but sufficient; no real animals are modelled

Performance match Good: model demonstrates a selection mechanism that
evolves modular ANNs

Medium Computer simulation

controller ANNs, so the genomes specify connection weights rather
than physical properties.

Figure 3 prompts two important observations. The first is that
the model depicted here is a high-level macro model, with several
sub-models. The three Darwinian operators: selection, variation, and
heredity are modelled here. Stages (1) and (2) model selection,
stage (3) models variation, and stage (4) models heredity. All
evolution requires a population of conspecifics, and this population
is modelled in all four stages. Another sub-model present here is
the model genome, and the phenotype instantiated from a single
genome is—if we are modelling biology—a model of an animal.
Notably, in this illustration, the genotype (complete set of genetic
material) consists of just one genome (or more correctly, an allele)
as the phenotype is fixed, with the exception of only the eight upper
and lower leg segment lengths.

A second and key observation is that ER does not model natural
selection.As Eiben and Smith (2015) put it, “evolutionary algorithms
are not faithful models of natural evolution.” Rather, ER models
artificial selection. This is neither surprising, given that the whole
idea of ER is to discover novel robot designs, nor is it a bad thing.
The first four chapters of On the Origin of Species lay out Darwin’s
case that selection in nature, driven by the struggle for existence,

is analogous to the selection of variations under domestication
(Darwin, 1859). Human farmers and herders have been successfully
cultivating improved varieties of grains, vegetables, and animals
for at least 10,000 years; a process that was very well-understood
in Darwin’s time. Figure 3 is thus more accurately described as a
process of robot husbandry, and therefore, it is a putative model of
animal husbandry. The case studies above clearly demonstrate that
an artificial selection/animal husbandry model can be used to test
hypotheses in evolutionary biology.

Open-ended evolution has been the subject of investigation of
several studies in ER. Bianco andNolfi (2004), for instance, proposed
a framework for an open-ended evolutionary process in hardware,
noting that, “In the case of natural evolution, there are no selection
criteria that determine whether individuals can or cannot reproduce
aside from the ability to reproduce itself.” Bredeche and Montanier
(2012) described an experimental work in simulation and with real
robots that demonstrates environmental-driven, distributed, and
open-ended evolution. Although of great interest, this work is not
offered as anERmodel of natural selection in biology, which remains
a very significant challenge.

We now consider the strengths and limitations of ER, as
specified in Figure 3, as a model of evolutionary biology.

3.5.1 Strengths

1. When modelling is the only option: as Trianni (2014) and
Doncieux et al. (2015) argue, ER models allow us to explore
questions in evolutionary biology that would not be possible
with living animals or ecosystems. Trianni (2014) stated that
“ER is especially fruitful when it is impossible or unpractical
to run experiments directly with the biological system, either
as laboratory or field work.”

2. Multiple ‘species’: ER allows us to co-evolve the behaviours
of different ‘species’ within a single ER model by providing
two (or potentially more) gene pools. It is important to stress
that these are separate species by design, when, in the model,
we do not allow interbreeding across the gene pools. One
example is given in Section 3.2 above, with the evolution
of cooperation and altruism. Another great example is the
work of Floreano and Nolfi (1997), which demonstrates the
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FIGURE 3
Four-stage process of evolutionary robotics, which depicts a quadrupedal robot where the length of the upper and lower leg segments of each leg is
evolved; from Winfield (2012).

TABLE 5 Proposed set of additional ER model dimensions.

Dimension Interpretation

Gene pools How many separate gene pools (i.e., ‘species’) are
modelled?

Population size What is the size of each gene pool?

Generations How many generations are evolved in a run of the ER
model?

Mapping Is the genotype to phenotype mapping direct or indirect?
If indirect, give detail

Brain/body Does the ER model evolve the brain, body, or both?
Which parameters?

Fitness function(s) What do fitness function(s) reward?

Selection strategy What selection strategy is used to select the fittest
individuals?

Evo or evo-devo Does the ER model incorporate developmental learning?

co-evolution of predator–prey behaviour. Note that two or
more species in a single ER model also requires two or more
corresponding fitness functions. Floreano and Nolfi (1997)
maintained a population of 100 predators and 100 prey, which
were subject to selection for successful predation and predator
evasion, respectively.

3. The richness of matter: when ER systems make use of real
physical robots for fitness testing, as in the first two case
studies above, the ER model benefits in two important ways.
(i) Real robots must contend with the physics of the real
world. This is especially relevant in Long et al. (2006)’s work,
as outlined in Section 3.1 above. The real robots have to
float and swim in water, the same medium as the fish
the robots are modelling. Any effort to simulate the same

swimming robots would invariably suffer a loss of fidelity,
given the difficulty of simulating the complex dynamics of
the interactions between the tail and water. With real robots
in a real medium, all of that complexity comes for free. (ii)
When several real robots interact during fitness testing, as in
the work of Waibel et al. (2009) outlined in Section 3.2 above,
the model benefits because each robot is slightly different.
The small heterogeneities of robots that have slightly different
motors, wheels thatmight not be precisely aligned, and sensors
that are not identical, etc., add a degree of stochasticity that,
although not identically, models the heterogeneities of animal
conspecifics. This adds valuable richness to these ER models.

4. Controllable conditions: a clear benefit of an ER model is
that the initial conditions of the model are fully specified,
which include the initial phenotype(s), selection, crossover and
mutation processes, fitness function(s), and the fitness testing
environment. This provides a high degree of repeatability.
Inevitably, if fitness testing makes use of real robots, then, as
outlined above, the stochasticity of the environment and the
physical robots will likely alter the course of evolution across
successive runs from identical starting conditions. Arguably,
this is a feature of an ER model rather than a bug, given
that biological evolution is both contingent and “surprisingly
repeatable among closely related lineages” (Blount et al., 2018).

3.5.2 Limitations

1. Sparse environment: Most animals evolve in a complex
and dynamic environment that goes through cyclic changes:
day–night and seasonal changes plus occasional traumatic
variations. Yet, in ER fitness evaluation, step (1) in Figure 3
typically takes place in a static test arena, with simple
features designed to test the robots’ fitness. Only when co-
evolving cooperative or antagonistic behaviours is there a
semi-dynamic environment, in that one ‘species’ of moving
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TABLE 6 Description of Long et al. (2006) using the extended model
description proposed here.

Dimension Description

Biological relevance The target is clearly identified: the evolution of vertebrae
in ancient fish

Level Backbone with variable stiffness and tail

Generality The range of animals modelled is large: aquatic
vertebrata

Abstraction The model is not abstract, and its complexity is relatively
low

Structural accuracy High: sufficient accuracy to model effect of vertebrae
stiffness on swimming

Performance match Good: the classical hypothesis is supported, with
additional insights

Medium Physical robots swimming toward a beacon in a water
tank

Gene pools 1

Population size 3

Generations 10

Mapping Direct

Brain/body Body: tail, two parameters: bending modulus and length

Fitness function Min time to target, min orbital radius, max swim speed,
and min robot wobble

Selection strategy Selection based on fitness and random combination to
produce a new generation

Evo or evo-devo Evo. There is no developmental learning

robot(s) provides an environment for the other(s), but this
falls far below the level of richness of real-world ecological
niches. We know that the environment strongly influences
natural selection, but we know little about how it does so
(Payne and Wagner, 2019). There have, however, been ER
studies that focus on the way the environment influences robot
morphology. Miras et al. (2020), for instance, evolved multi-
segmented modular robots for locomotion on both flat and
tilted surfaces, and Corucci et al. (2018) evolved soft robots in
simulation for both terrestrial and aquatic environments and
the transition between them while also varying the material
properties of the soft robots. Although not offered as a model
of evolutionary biology, the latter work does offer potentially
valuable insights. Corucci et al. (2018) reported an asymmetry
in the effects ofmoving between land andwater: “whilemoving
from land to water resulted to be detrimental for the evolution
of swimming, the opposite transition (land to water) pointed
out some benefits for the evolution of walking.”

2. Small evolutionary distance: If, as suggested above, ER is a
process of robot husbandry, then it is axiomatic that there
needs to be an initial population of robots from which
better (or different) robots can be bred. We, therefore, need

to hand design the phenotype(s) of the first generation
with properties, including sensing, actuation, and a control
system, that appropriately model the kinds of animals that
are the subject of our inquiry. This means that there is
typically a very small evolutionary distance, as a result of the
small population size and number of generations (relative to
biological evolution), between the initial designed population
and the final population at the point we choose to halt
the ER model. One important corollary is that evolutionary
branching, the “spontaneous transition from a unimodal
trait distribution into a bimodal one,” is almost impossible
when the “effective population size or mutational effect is
sufficiently small” (Wakano and Iwasa, 2012). As the example
from Long et al. (2006) outlined in Section 3.1 above shows,
ER cannot model the evolution of a backbone but only the
evolution of a better backbone.

3. Weak genotype to phenotype mapping: In evolutionary
biology, it is now well known that the ‘genes as blueprint’
metaphor is not only inadequate but also misleading
(Pigliucci, 2010). In an excellent survey of open issues in ER,
Silva et al. (2016) reported that the majority of ER studies
use direct encoding; they also make the important point that
indirect encodings “enable representational efficiency … by
incorporating concepts from evolutionary developmental
biology.” In recent years, compositional pattern-producing
networks (CPPNs) have become popular (Cheney et al., 2013).
For an analysis of the strengths and weaknesses of CPPNs, see
Silva et al. (2016). CPPNs, althoughmore biologically plausible
than direct mapping, do not constitute a model of genotype
to phenotype mapping in evolutionary biology. For a recent
account of genetic representations for co-evolving behaviour
and morphology in ER, see De Carlo et al. (2024).

4. The reality gap: Given the time and resource cost of physically
building robot phenotypes for fitness testing, a popular
approach in ER has been to simulate multiple generations
of evolution in software until robots judged fit enough have
evolved, and then to build and test those. This strategy,
known as ‘simulate and transfer to real,’ is efficient but suffers
from the well-known reality gap (Jakobi et al., 1995). For a
very good overview of the many subsequent approaches to
crossing the reality gap, see Silva et al. (2016). When ER
is modelled entirely in hardware, as in Long et al. (2006),
there is no gap. However, a hardware-only ER model is
not only very costly in time and resources but also reduces
the evolutionary distance (limitation 2) still further. Thus,
hybrid software ER models into which hardware phenotype
instantiation and fitness testing are periodically intercalated
are preferred (Eiben et al., 2021). Evolution is an extremely
energy and resource-intensive process (Winfield, 2014), and
thus, it should come as no surprise that ER models are also
costly in time and resources.

4 Concluding discussion

Clearly, we can use ER to ask interesting but straightforward
questions relative to the complexity of many questions in
evolutionary biology, as shown in the case studies in Section 3 above.
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However, what questions in evolutionary biology are too difficult to
address with an ER model?

Consider Maynard Smith and Szathmáry’s seminal work, The
Major Transitions in Evolution (Maynard Smith and Szathmáry,
1995). Might ER be able to model any of the eight transitions
set out in that work? The first three transitions: (1) from
replicating molecules to populations of molecules in proto-cells,
(2) from independent replicators to chromosomes, and (3) from
RNA to DNA, are clearly out of scope of ER, in which we
hand-design the replicator. Transition (4) from prokaryotes to
eukaryotes is also out of scope, given that this transition is
concerned with the evolution of the structure of single-celled
organisms. Transition (5) is the evolution of sex, from asexual
clones to sexual organisms (most single-celled eukaryotes reproduce
sexually). Modelling this transition is problematic because sexual
reproduction remains a mystery in evolutionary biology, described
as both a paradox and the “queen of problems” (Bell, 1982;
MacPherson et al., 2023). However, a recent work describing a real-
robot ER system with mutable diploid genes, which models death,
rebirth, and breeding in a stochastically varying landscape, hints
at the potential of ER for modelling the emergence of sexual
reproduction (Wang et al., 2022)2.

Transition (6), the evolution of multicellularity, could, in
principle, be modelled by combining modular robotics (in which
robot modules model cells) and ER. The Symbrion project, for
instance, did combine collective,modular, and evolutionary robotics
within a single framework (Schlachter et al., 2008). In Symbrion,
individual modules, when acting as a swarm, represented stem
cells. When triggered by one robot encountering an environmental
cue (such as an obstacle too high to climb), that robot initiates
the formation of a ‘multi-cellular’ organism, in which each “cell”
differentiates in order to behave in a specific way, according
to its physical location in the organism (Liu and Winfield,
2010). However, this process of autonomous morphogenesis was
programmed, and the technical complexity meant that modelling
the evolutionary emergence of multicellularity was impossible.
The first two limitations outlined in section 3.5 above, the sparse
environment and short evolutionary distance, will almost certainly
thwart any efforts to model the evolution of multicellularity.
Evolutionary developmental soft robots may, however, provide a
pathway to modelling transition (6) (Corucci et al., 2017).

The same two limitations may also prevent ER from
feasibly modelling transition (7), the evolution of eusociality
(colonies with non-reproductive castes). However, one
evolutionary swarm robotics study has notably demonstrated
the emergence of one aspect of eusociality: task specialisation in
social insects. Ferrante et al. (2015) reported a surprising result that
division of labour “could be achieved merely by selecting on overall
group performance and without pre-specifying how the global task
of retrieving items would best be divided into smaller subtasks.”
In addition to advancing the field of evolutionary swarm robotics,
the work of the paper offers a possible explanation for the origin of
division of labour in social insects.

2 The authors propose that “diploid gene robots can act as avatars of diploid

mammalian cells to explore novel programs of administration of drugs.”

Transition (8) is the evolution of culture from primate
societies to human societies with language and culture. Since this
transition concerns behavioural or memetic evolution, it does
not require an ER model as the phenotype does not need to
evolve. A relatively simple model in which a group of real robots
demonstrate the evolution of new behavioural traditions has been
developed (Winfield and Blackmore, 2022). In this model, the
three Darwinian operators of selection, mutation, and heredity are
present, but rather than genes, it is behaviours (memes) that are
selected and mutated across successive generations of meme.

Consider also niche construction. Biological complexity
apparently arises from an evolutionary arms-race, in which
organisms both adapt to and exploit niches in their ecosystem and,
in doing so, co-create that ecosystem. As Levins and Lewontin
(1985) pointed out, the organism is both the subject and the
object of evolution. Niche construction is the process by which
organisms continuously modify their own and others’ niches;
from a niche construction perspective, “evolution consists of
mutual and simultaneous processes of natural selection and
niche construction” (Laland et al., 2000). The sparse environment
limitation almost certainly rules out ER as a model of niche
construction.

The discussion above appears to rule out ER as a method for
modelling the deepest questions in evolutionary biology. However,
provided that we fully understand their limitations, ER models can,
and have already, addressed interesting questions in evolutionary
biology. Within the scope are questions on how particular traits
evolve in particular kinds of animals. It also includes questions on
how interaction between different ‘species’ might evolve. In addition
to the predator–prey behaviour of Floreano and Nolfi (1997) and
cooperative behaviours of Waibel et al. (2011), we might be able
to model symbiosis, mutualism, or even parasitism. More abstract
questions that might also be within scope include the dynamics of
brain–body evolution or the trade-offs between morphological and
computational intelligence (Zahedi andAy, 2013). As Trianni (2014)
writes, “In the ER context, considerable caution is needed, given that
artificial evolution is a very simplified model of natural evolution:”
he also suggests that it is “…wrong to a priori proscribe ER as a
modelling tool, but it is necessary to evaluate case by case whether
the proposed ER model can be of some value.”

To that end, several recommendations follow. Roboticists
proposing to use ER to study aspects of evolutionary biology
should ideally:

1. Have a reasonable understanding of evolutionary biology3.
2. Given that framing research questions in evolutionary biology

is itself not straightforward, roboticists should work with
evolutionary biologists, either as member(s) of the research
team or as advisor(s). In particular, the biologist(s) would
guide the framing of the research question and its context
within evolutionary biology.

3. Following Trianni (2014), adopt a hypothesis-driven rather
than exploratory approach, in which the whole experimental

3 For recommended reading on evolution, see https://www.sciencefocus.

com/books/best-evolution-books/
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design is conceived for the purpose of testing or generating
hypotheses4.

4. Take great care to fully understand the properties and
limitations of the model they are building using, for instance,
the case studies of Section 3 and Webb’s extended model
description in Section 3.5 above.

5. Employ the principle of ceteris paribus by fixing all but one of
the subsystems of an ER system and their parameters.The only
parameters that should be allowed to vary are coded in the
genome, the very parameters that are evolving.

6. Resist the temptation to use the same ER system to evolve real-
world-useful robots while also seeking answers to questions in
evolutionary robotics. ER systems cannot be used as scientific
instruments and discoverers of novel robots for the real world
at the same time.

In conclusion, it is clear that ER is a weak model of evolutionary
biology. Its primary weakness is that essentially, ER models artificial
selection not natural selection. This combined with sparse model
environments, typically small population sizes and number of
generations leading to a small evolutionary distance and weak
genotype to phenotype mapping, mean that the level of abstraction
of ER models is often high. These weaknesses impose serious
limitations on the bigger questions in evolutionary biology that can
be feasibly explored in a way that has value. Despite these manifest
weaknesses, ER’s bottom–up approach of modelling populations of
evolving phenotypes and their embodied interactions with each
other and their environment does have considerable value for
biologists for both testing and generating hypotheses.

Using evolutionary robotics to rigorously address research
questions in evolutionary biology is without doubt the most
challenging application of robots as scientific instruments to date.
Rising to this challenge is certainly a worthy goal.
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