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Socially adaptive cognitive
architecture for human-robot
collaboration in industrial
settings

Ismael T. Freire*† , Oscar Guerrero-Rosado*† , Adrián F. Amil and
Paul F. M. J. Verschure

Donders Institute for Brain, Cognition and Behaviour Radboud University, Nijmegen, Netherlands

This paper introduces DAC-HRC, a novel cognitive architecture designed to
optimize human-robot collaboration (HRC) in industrial settings, particularly
within the context of Industry 4.0. The architecture is grounded in the
Distributed Adaptive Control theory and the principles of joint intentionality and
interdependence, which are key to effective HRC. Joint intentionality refers to
the shared goals and mutual understanding between a human and a robot,
while interdependence emphasizes the reliance on each other’s capabilities
to complete tasks. DAC-HRC is applied to a hybrid recycling plant for the
disassembly and recycling of Waste Electrical and Electronic Equipment (WEEE)
devices. The architecture incorporates several cognitive modules operating
at different timescales and abstraction levels, fostering adaptive collaboration
that is personalized to each human user. The effectiveness of DAC-HRC is
demonstrated through several pilot studies, showcasing functionalities such
as turn-taking interaction, personalized error-handling mechanisms, adaptive
safety measures, and gesture-based communication. These features enhance
human-robot collaboration in the recycling plant by promoting real-time robot
adaptation to human needs and preferences. The DAC-HRC architecture aims
to contribute to the development of a new HRC paradigm by paving the way for
more seamless and efficient collaboration in Industry 4.0 by relying on socially
adept cognitive architectures.

KEYWORDS

cognitive architecture, social robotics, human-robot collaboration, industry 4.0,
distributed adaptive control

1 Introduction

The increasing automation in the industry over the past decades has been partially
driven by the adoption of robots, which have proven to be valuable tools for handling
heavy, risky, and repetitive tasks. By automating these tasks, robots have helped alleviate
the burden on human workers, contributing to improved safety, efficiency, and productivity
Mazachek (2020) and Cette et al. (2021). However, robotic solutions have their own
limitations; they tend to have restricted operational capacity in terms of degrees of
freedom and decision-making and therefore they do not perform well outside of highly
controlled and structured environments Vysocky and Novak (2016). As a result, complete
automation might be neither feasible nor desirable Charalambous et al. (2015), Weiss et al.
(2021), a discussion further amplified by recent advances in AI Verschure et al. (2020).
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Instead, the future of Industry 4.0 Lasi et al. (2014) lies in
the collaboration between humans and robots, capitalizing on
the strengths of both in a manner that is both beneficial for
the health and wellbeing of the workforce and productive for
companies. Human-Robot Collaboration (HRC) is poised to
become a key component of Industry 4.0 Baratta et al. (2023),
with the primary goal of creating a safe environment for
humans and robots to collaborate effectively. This transition
from traditional automation to Industry 4.0 will be marked by
a transformation involving the use of the latest advancements
in information and communication technologies (ICTs)
Robla-Gómez et al. (2017).

However, the transition to HRC in industrial settings faces
several technical and scientific challenges Inkulu et al. (2021).
Physically close collaboration between human workers and
industrial robots has been limited so far, primarily due to
safety concerns, such as potential collisions causing injury to
human operators Robla-Gómez et al. (2017), Vysocky and Novak
(2016). Recent advances in collaborative robotics, including
the emergence of cobots, now allow for safer and closer
interactions between humans and robots Weiss et al. (2021).
Other technological advances come from transformative ICTs
like artificial intelligence (AI) and the related field of machine
learning (ML). In Semeraro et al. (2023), the authors review the
impact of AI and ML in HRC, highlighting the shift towards
cobots (collaborative robots) designed for safe, close-proximity
work with humans. The authors emphasize the potential of ML
to improve HRC by enabling robots to better understand and
adapt to human behavior. Most approaches have relied on vision-
based ML to handle objects and perform collaborative assembly
in a safe manner. In addition, neural networks have been used
to recognize human actions for the robot to assist the human
when needed. Furthermore, reinforcement learning has shown
great promise in decision-making during collaborative tasks
that require outcome-dependent switching between the human
and the robot. An example of an AI-based HRC solution in
an industrial setting is outlined in Dimitropoulos et al. (2021),
where the authors introduce an AI system with three modules
to enable seamless human-robot collaboration by understanding
the environment and operator actions, providing customized
support, and adapting robot poses for better ergonomics,
demonstrated through an elevator manufacturing case study.
However, despite all these advances, Lemaignan et al. (2017)
point out that advanced HRC will actually require robots to
possess more advanced cognitive capabilities, such as common
sense reasoning for context-aware decision making, which is
not achievable yet. These advances in collaborative technologies
call for novel paradigms to design collaboration in hybrid
industrial settings that are in line with the ambitions of
Industry 4.0.

One prime example of such a setting has been the
implementation of a hybrid human-robot system in a recycling
plant for Waste Electrical and Electronic Equipment (WEEE)
products under the umbrella of the EU-funded HR-Recycler
project Axenopoulos et al. (2019). This type of environment poses
a unique set of challenges for human-robot interaction (HRI)
and collaboration (HRC) Robla-Gómez et al. (2017), Vysocky and
Novak (2016).

• Noise. Tasks carried out in a recycling plant involve actions
such as hammering, cutting, grinding, and transporting heavy
pallets, which makes the workplace a highly noisy environment
where verbal communication is hampered if not completely
disrupted.
• Task hazardousness. WEEE material disassembly involves

the manipulation of sharp and heavy materials that
during their processing may produce hazardous metal
shavings and sparks during processing. To ensure the
integrity of the workers, WEEE recycling requires safety
measures such as wearing Personal Protective Equipment
and maintaining a large distance between co-workers
that, at the same time, limits the collaboration between
counterparts.
• Dynamic environment. Plant configuration constantly

evolves. The continuous processing of WEEE material
involves piles of WEEE devices disappearing and new
piles arriving at different locations, workers leaving their
workbenches to attend to other assignments, surfaces getting
covered by metallic dust, light conditions changing along
the day, etc. This prevents cobots from following fixed
routines.

In parallel, the specific tasks involved in the recycling process
demand physically close collaboration and interaction between
workers and robots, requiring human-robot collaboration to be
socially adaptive.

To achieve social adaptability, HR-Recycler builds on
the new dimension that human-robot collaboration (HRC)
takes in Industry 4.0, becoming a complex sociotechnical
system where agency—the capacity to act—is not solely
attributed to humans. Instead, it is shared among humans and
non-human agents, such as machines, robots, sensors, and
software Weiss et al. (2021). This paradigm shift is crucial as
it acknowledges the increasing demand for more interactive
roles between humans and cobots within industrial settings
and, therefore, the need to develop new control systems that
accommodate this emergent reality. Additionally, this shift also
highlights the rise of novel configurations of shared control and
distributed agency, which are key aspects of this new industrial
paradigm.

To address the challenges posed by Industry 4.0, including the
integration of collaborative robots (cobots) in hybrid industrial
environments, this paper introduces a novel systems-level
control paradigm for designing and implementing cognitive
architectures tailored for Human-Robot Collaboration (HRC).
Accordingly, we present DAC-HRC, a novel cognitive architecture
that is specifically designed to facilitate socially adaptive
human-robot collaboration within industrial contexts. In the
next sections of the introduction, first, we outline the key
principles for human-robot collaboration upon which the
cognitive architecture is based, with and special emphasis on
the notions of joint intentionality and interdependence. We
then introduce the Distributed Adaptive Control perspective
for building HRC and highlight how each of the specialized
modules of the DAC-HRC cognitive architecture is related to
these principles and the state-of-the-art of each implemented
functionality.
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1.1 Principles for human-robot
collaboration in industrial settings

To develop an effective socially adaptive cognitive architecture
within the context of a hybrid recycling plant, we reviewed state-
of-the-art Human-Robot Collaboration principles for industrial
settings aiming to conciliate the perspective of different authors that
have explored this in the past. As a result, the following principles
were considered:

• Implicit Switch Modes: The system must fluidly alternate
between various interaction modes, adapting to the human
worker’s context without burdening them Bauer et al. (2008).
• Natural Cues: Intuitive interaction is facilitated by leveraging

humans’ inherent understanding of natural signals, enabling
humans to communicate with robots using familiar gestures
and symbols Goodrich and Olsen (2003).
• Direct World Manipulation: Interactions are designed to serve

the ultimate purpose of task completion in a tangible world,
allowing humans to directly influence robotic behavior to
navigate the unpredictable physical environment of industrial
settings Adams (2005).
• Information Manipulation: Information presented by the

robot must be actionable, supporting the human worker’s
decision-making processes and promoting goal-oriented
collaboration Goodrich and Olsen (2003).
• AttentionManagement:The design of HRC interactions should

cater to the cognitive limitations of human attention, ensuring
that critical information is highlighted and that potential
attentional lapses are mitigated Adams (2005).
• Situational Awareness: Maintaining an acute awareness of the

robot’s internal and external state is paramount, enabling
human workers to anticipate robotic actions and intervene
when necessary Goodrich and Olsen (2003).
• Safety: Paramount to any HRC system is the unwavering

commitment to human safety, ensuring that robots can navigate
the potential hazards of industrial tasks without endangering
human collaborators Goodrich and Olsen (2003).

1.1.1 Joint intentionality and interdependence as
core principles for industrial HRC

Beyond the general HRI principles described above, the DAC-
HRC architecture incorporates two core principles coming from
our current understanding of the origins of human collaboration:
interdependence and joint intentionality.

Joint intentionality refers to the shared mental states and
cooperative activities that arise when individuals engage in
collaborative endeavors. Research on social cognition posits that
shared intentionality is a unique feature of human cognition, setting
us apart from other primates Tomasello et al. (2005). It manifests
in the form of shared goals, joint attention, and mutual knowledge
among individuals working together. For instance, when two people
collaborate to lift a heavy object, they share a common goal (i.e.,
moving the object) and are aware of each other’s intentions, roles,
and actions.

This concept is particularly relevant in the context of Human-
Robot Collaboration (HRC), as it emphasizes the importance of
mutual understanding, communication, and coordination between

human workers and their robotic partners. In industrial HRC,
developing systems capable of exhibiting joint intentionality is
essential for ensuring more efficient and safer interactions between
human workers and robots. In this context, developing shared
intentionality in artificial and hybrid collaborative systems would
imply the ability to (1) detect and predict human intentions,
actions, and goals, (2) communicate its intentions, actions, and
goals to human workers and (3) coordinate and adapt its behavior
based on the shared goals and the feedback from the ongoing
collaboration.

Interdependence is another foundational aspect of current
theories of the evolution of human cooperation Tomasello et al.
(2012). It refers to the reliance of individuals on one another to
achieve shared goals or complete tasks, and its key role in vital tasks
for early humans such as obligate collaborative foraging Tomasello
(2009), O’Madagain and Tomasello (2022). Applied to the context of
HRC, interdependence implies that both humanworkers and robots
depend on each other’s actions, skills, and knowledge to execute
tasks effectively. The Interdependence Hypothesis Tomasello et al.
(2012) suggests that interdependence fosters cooperation, as it
encourages individuals to align their goals, share information, and
coordinate their actions.

In HRC, task interdependence between humans and robots can
motivate the design of systems that (1) recognize the skills and
capabilities of human workers and adapt their behavior accordingly,
(2) share task-related information with human workers, facilitating
mutual understanding and efficient task execution (3) respond to
changes in the task or environment, adjusting their actions to
maintain effective collaboration.

To illustrate, consider a collaborative robot in an automotive
assembly line. The cobot could be designed to recognize the
specific skills of the human worker, such as their proficiency in
installing certain parts. Based on this recognition, the cobot could
adapt its behavior to complement the worker’s skills, perhaps
by preparing the necessary parts or tools for the worker’s next
task. Moreover, the cobot could share task-related information
with the worker, such as the sequence of assembly steps or
the status of the parts supply, facilitating mutual understanding
and efficient task execution. Finally, the cobot should be able to
respond to changes in the task or environment. For instance, if
a part is missing or defective, the cobot could adjust its actions,
perhaps by fetching a replacement part or alerting the worker
to the issue.

In understanding and implementing these core principles of
joint intentionality and interdependence, it becomes apparent that
a sophisticated cognitive architecture is required: one that not only
comprehends human social behaviors but also adapts and responds
to the dynamic nuances of industrial settings. This necessity brings
us to the Distributed Adaptive Control (DAC) approach, which
provides a validated and biologically-inspired framework. The
DAC approach, with its layered control system and emphasis on
adaptability, is ideally suited to embed these principles into the
fabric of human-robot collaboration. As we transition to exploring
the DAC-HRC architecture, we will see how each of its specialized
modules is designed to operationalize the principles of joint
intentionality and interdependence, thereby creating a harmonious
and effective collaborative environment between humans and robots
in industrial settings.
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1.2 The distributed adaptive control
approach to human-robot collaboration

A cognitive architecture is a modular control system that
governs a robot’s decision-making, information processing, and
environmental interaction Vernon (2022), Moulin-Frier et al.
(2017). It is from the interaction and interdependence of its
constituent modules that a cognitive architecture displays cognitive
capabilities such as perception, decision-making, memory, or
social learning. The Distributed Adaptive Control (DAC) theory
of mind and brain Verschure, (2012) offers a robust theoretical
foundation for such architectures, as it has been previously
shown in various HRI scenarios Lallée et al. (2015), Moulin-
Frier et al. (2017), Fischer et al. (2018). DAC views the brain as a
hierarchical system with multiple control layers, each crucial for
adaptive behavior in diverse physical and social contexts Verschure,
(2012), Verschure et al. (2014). This biologically grounded modular
modeling approach is especially suitable for addressing the HR-
Recycler environment’s challenges, which demand adaptive and
goal-oriented actions.

Informed by the DAC framework, the DAC-HRC architecture
we introduce in this paper integrates four specialized modules that
reflect key principles for effective HRC. Each module is tailored
to specific principles, forming a cohesive and operational control
system:

• Task Planner: Coordinates the proper disassembly steps for
each device, organizes the disassembly procedure and the
turn-taking between human and robot actions, centralizes
task-related information among the DAC-HRC modules, and
implements safe and robust error-handling protocols. The
Task Planner reflects the principles of shared intentionality
and interdependence, as it involves a mutual understanding
between the human and robot about the sequence of tasks and
reliance on each other’s capabilities to complete these tasks.
Moreover, by orchestrating robot control and human-robot
interaction, it also embodies the principles of ’implicit switch
modes’ and ’direct world manipulation’.
• Interaction Manager: Serves as a multimodal, non-verbal

communication interface, facilitating efficient communication
and interaction between humans and robots. To achieve this,
the module integrates multimodal channels of communication,
ranging from audiovisual interfaces such as tablets to embodied
gesture-based, communication. By handling natural embodied
human-robot interaction based on gestures and adapting to
the context of the information visualized on tablet devices, this
module implements the principles of ’natural cues’, ’attention
management’, ’information manipulation’, and ’situational
awareness’. By jointly visualizing in the tablet device the
progress and information about the status of the human worker
and the robot, this module also creates a sense of shared
intentionality.
• Socially Adaptive Safety Engine: Acts as a context-aware

adaptive safety mechanism, controlling the safety distances
between humans and robots as well as the speed of the
interactions, adapting them to the context and the preference
of the human co-worker. It deals with the integration of the
relevant environmental, social, and material information that

comes from other modules to adapt the safety mechanisms
of the human-robot collaboration, directly addressing the
principles of ’safety’ and ’situational awareness’. It dynamically
adjusts robot behavior to align the safety measures with human
preferences and the task context, also emphasizing the principle
of interdependence.
• Worker Model: Creates an internal model of human

workers, focusing on the principles of ’information
manipulation’, ’implicit switch modes’, ’situational awareness’,
and ’interdependence’. This module handles information about
the human worker, using it to adapt the robot’s behavior
in alignment with the worker’s preferences. This module is
instrumental in adaption the overall collaboration schemes to
the human worker, enabling the robot to adjust its actions and
fostering a collaborative relationship where both parties rely on
and benefit from each other’s strengths.

By integrating these modules within a single cognitive
architecture, DAC-HRC, we create a robust control system for
HRC in industrial settings. This system is inherently socially
adaptive, as it is capable of dynamically adjusting in real-time
to accommodate the varied preferences of human workers and
the nuances of different scenarios. Moreover, it facilitates mutual
understanding and fosters effective collaboration between human
workers and robots, a critical requirement for addressing the
complex tasks encountered in the HR-Recycler’s recycling plant
use case. Comprising various specialized modules, the DAC-
HRC cognitive architecture implements distinct functions, each
grounded in contemporary, state-of-the-art solutions derived from
the literature.

1.2.1 Task planner as a hierarchical finite state
machine

Task planners play a pivotal role in robotics, especially in
enabling robots to adeptly navigate complex and unpredictable
environments. In domains like electronicwaste recycling operations,
the ability of robots to perform a range of tasks, from sorting
to processing diverse types of devices and components, hinges
on sophisticated task planning mechanisms Alami et al. (2005).
The cornerstone of contemporary task planning in robotics
is the use of finite-state machines (FSMs), revered for their
simplicity and intuitiveness in modeling robot behavior amidst
uncertainty Foukarakis et al. (2014).

Finite-state machines are essentially mathematical constructs
encompassing a finite set of states, transitions between these states,
and corresponding input/output events. This structure empowers
robots with the ability to efficiently adapt their behavior in
response to varying conditions, a feature crucial in the fluctuating
environment of a recycling plant. The inherent simplicity of FSMs,
however, can be a limitation when dealing with more complex
behaviors.

To address this complexity, hierarchical finite-state machines
(HFSMs) have emerged as a potent solution to orchestrate complex
robot behaviors.HFSMs represent behaviors in a layered structure of
FSMs, where each level corresponds to a specific subtask or behavior
component Johannsmeier and Haddadin (2016). This hierarchical
arrangement facilitates a modular and scalable approach to task
planTask Planner, the Socially Adaptive Safety Engine, the Worker
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Model and the Interaction Managerning. By breaking down overall
robot behavior into manageable subtasks, HFSMs offer a tailored
solution to the multifaceted tasks encountered in electronic waste
recycling.This approach not only enhances the robot’s efficiency and
adaptability but also allows for easier integration and updates to the
task planning system as recycling requirements evolve.

Moreover, the incorporation of human-in-the-loop
methodologies in task planning signifies a significant evolution in
robotic systems.This approach involves integrating human feedback
and inputs directly into the robot’s control mechanism, enabling
a more dynamic and adaptable interaction between humans and
robots Raessa et al. (2020). In the context of electronic waste
recycling, this means that robots can be more responsive to human
operator’s preferences and needs, thereby enhancing collaboration
efficiency and safety.

In implementing HFSMs, the Task Planner module within
the DAC-HRC cognitive architecture embodies these principles,
leveraging the hierarchical structure to manage complex tasks
while remaining adaptable to the diverse challenges presented in
electronic waste recycling. The module’s design allows for seamless
incorporation of human inputs, ensuring that the robotic system is
not only responsive but also attuned to the needs and preferences
of different human workers. This integration of advanced HFSMs
within the DAC-HRC architecture illustrates a commitment to
developing robotic systems that are both technically proficient and
collaboratively effective in complex industrial settings.

1.2.2 Interaction manager as a multimodal
non-verbal communication protocol

The DAC-HRC architecture’s Interaction Manager advances
the paradigm of multi-modal non-verbal communication, pivotal
for intuitive and effective human-robot collaboration in industrial
settings. In the human-centered HRI paradigm, an essential aspect
of implementing a successful and effective HRI is building a natural
and intuitive interaction Wang et al. (2022). In recognition of the
importance of non-verbal communication modalities, particularly
in noisy industrial settings, the Interaction Manager eschews
auditory channels in favor of gesture-based and tablet-based
interfaces.

Gestures serve as a fundamental form of human
communication, making them ideal for conveying rapid commands
in human-robot interaction (HRI) Vouloutsi et al. (2020),
Pezzulo et al. (2019). Gesture-based communication harnesses the
natural propensity for humans to use physical gestures, thereby
facilitating a more immediate and universal form of interaction
Liu and Wang (2018), Wang et al. (2022), Peral et al. (2022). The
Interaction Manager incorporates a repertoire of shape-constrained
gestures Alonso-Mora et al. (2015) tailored to the communication
needs specific to the HR-Recycler’s project, which facilitates natural
and intuitive interactions without extensive training Vouloutsi et al.
(2020) while also ensuring accurate recognition and interpretation
by the robotic agents Peral et al. (2022).

To complement gesture-based interactions and cater to
scenarios necessitating more detailed information exchange, the
architecture also integrates tablet-based communication. This
method leverages interactive applications, which, while commonly
used for teleoperation Yepes et al. (2013), Best and Moghadam
(2014), Luz et al. (2019), are repurposed in the DAC-HRC to

enhance the human-robot bond and situational awareness Goodrich
and Olsen (2003). The tablet application provides a direct interface
for the human worker to receive updates on the robot’s internal state
and environmental interpretations, aligning with keyHRI principles
Goodrich and Olsen (2003), Adams (2005).

The combined use of gesture and tablet-based interactions
by the Interaction Manager represents a state-of-the-art approach
to non-verbal HRI. It successfully navigates the challenges of
noisy industrial settings, where traditional verbal communication
is untenable, and establishes a robust, adaptive, and user-friendly
communication system conducive to the dynamic requirements of
the HR-Recycler’s operations.

1.2.3 Socially adaptive safety engine as an
allostatic control system

A robot must not endanger a human under any circumstances.
This premise, already formulated by Isaac Asimov in his famous
“Three Laws of Robotics,” is crucial for any robotic installation
but especially for those promoting interaction and collaboration
between humans and synthetic agents Asimov, (2004). Importantly,
in industrial settings interactions must be designed bearing in mind
that robots occasionally will represent a source of danger to humans
because of the tools they employ to perform hazardous tasks such as
cutting, hammering, or moving heavy objects. Safety measures need
to be implemented both according to the work to be performed and
the human demands Van Wynsberghe (2020).

In the context of theWEEE recycling factory, humans and robots
have to interact with a variety of different objects and tools and
realize many changing sequences of actions in order to successfully
complete their tasks Axenopoulos et al. (2019). Although each of
the robotic components has its own built-in safety mechanisms and
corresponding certified ISO safety measures, the interaction of all
these elements together will require an additional layer of control
that can adapt their behavior to the requirements of the hybrid
recycling plant while following human-centered design principles.
This layer of control is the Socially Adaptive Safety Engine (SASE).

The Socially Adaptive Safety Engine within the DAC-HRC
architecture goes beyond mere harm avoidance to actively promote
cooperation Freire et al. (2020a). The SASE not only adheres to
basic safety principles but also engages in more flexible adaptation
of the robot’s behavior to the preferences of the human worker,
thus fostering a more cooperative and harmonious human-robot
interaction. It also reflects the principles of shared intentionality
and interdependence, as it involves amutual understanding between
the human and robot about the safety measures and reliance on
each other’s capabilities to maintain safety during the disassembly
process.

The goal of the SASE is to promote human-robot cooperation
by building safer, more trustworthy, and personalized interactions
with human users Kok and Soh (2020), Christoforakos et al.
(2021). It does so by regulating and adapting the robot’s behavior
to the particular human preferences of every user Senft et al.
(2019), Edmonds et al. (2019). In this way, it also serves as an
extra layer of security for the system by integrating contextual
information from the environment and using it to prevent
potentially harmful situations Yang et al. (2018). At the heart of
this approach is the implementation of an allostatic control system
Sanchez-Fibla et al. (2010), Guerrero Rosado et al., 2022. This
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system aims to ensure harm avoidance and promote cooperative
behaviors, which are two fundamental aspects of ethical machine
behavior Freire et al. (2020a).

In essence, the Socially Adaptive Safety Engine encapsulates the
ethos of the DAC-HRC architecture—prioritizing human safety and
introducing dynamic adaptability, thereby exemplifying a model
of responsible and responsive artificial intelligence in industrial
settings.

1.2.4 Worker model based on human-centered
design principles

User modeling systems rely on data gathering to create user
models, either explicitly or implicitly Luna-Reyes and Andersen
(2003). The integration of novel machine learning techniques has
significantly enhanced the capabilities of these systems, steering
them towards more data-driven strategies Kontogianni et al. (2018).
One emerging technique being implemented in these data-driven
user modeling practices is the Digital Twin concept, which
generates or collects digital data representing a physical entity,
emphasizing the connection between the physical and virtual
counterpart through real-time information flow Bruynseels et al.
(2018), Negri et al. (2017).

Digital Twin technologies have been applied in various contexts,
such as healthcare Croatti et al. (2020) and human-robot interaction
Wilhelm et al. (2021), Malik and Brem (2021), Wang et al. (2020).
In industrial settings, Digital Twins have been utilized for
tasks like interactive welding, bridging human users and robots
through bidirectional information flow, and benefiting novice
welder training Wang et al. (2020), Jokinen and Wilcock (2015).
However, these data-driven approaches raise concerns regarding
big data management, privacy, and trustworthiness, especially
when applied to sensitive fields Kumar et al. (2020). The Human-
CenteredAI paradigmaims to address these concerns by prioritizing
methodologies that meet user needs while operating transparently,
delivering equitable outcomes, and respecting privacy Xu (2019),
Riedl (2019). This approach also aligns with legislation such as the
European General Data Protection Regulation (GDPR) Kloza et al.
(2019).

The Worker Model module of the DAC-HRC cognitive
architecture follows such human-centered design principles by
maximizing functionality while minimizing the amount of data
gathered from the user Xu (2019), Riedl (2019). This design strategy
ensures that the Worker Model respects user privacy while still
providing effective support for human-robot collaboration in the
disassembly of WEEE devices. The main goal of the Worker
Model is to collect, process, and store all the relevant information
regarding each user of the system and integrate it into one single,
coherent data structure. This information is used by the DAC-
HRC architecture to flexibly adapt the human-robot collaboration
paradigm to the human partner. In other words, the Worker
Model creates a virtualization of the human worker that allows the
collaborative architecture to dynamically adjust its parameters to
ensure a personalized interaction.

In essence, the Worker Model’s integration into the DAC-HRC
architecture not only enhances the adaptability of the human-robot
collaboration paradigm but also embodies a human-centric focus
into the design of these new technologies Xu (2019), Riedl (2019).

The rest of the chapter is organized as follows: In the following
section section, we first describe the aCell, a specific experimental
setup designed for the collaborative disassembly of WEEE devices.
We then continue describing in detail each of the components of
the DAC-HRC architecture along with its interactions. We proceed
with a report of the main results showcasing the functionalities of
the architecture across the different tested use cases, and conclude
with a discussion of the main outcomes of the study, its limitations,
implications, and future work.

2 Methods

2.1 The aCell experimental setup

The experimental setup consists of a specific spatial and
technical configuration of an adaptive Collaborative Cell (aCell)
designed for the collaborative disassembly of Waste Electrical and
Electronic Equipment (WEEE) devices. The concept of an aCell
represents an evolution in the way we approach task allocation
in HRC Axenopoulos et al. (2019). Traditional industrial HRI
methodologies often focus on individual tasks within a single work
cell, with the human and robot working in isolation on specific
tasks. However, the aCell concept promotes a more holistic view of
HRC that takes into account the interdependence between humans
and robots. It envisions a dynamic, integrated system where the
human and robot work together across multiple tasks, adapting to
changes in the work environment and each other’s capabilities. This
approach aims to enhance the overall efficiency and effectiveness
of the collaboration, rather than optimizing individual tasks in
isolation.

An aCell is a dynamic and adaptive component of a hybrid
factory, responsible for a specific task and for a given time period.
The responsibilities, resource allocation, and overall positioning of
its elements within the factory are dynamically assigned and adapted
in real time with respect to the overall factory workflow demands,
available skills, and available resources. In the context of our study,
the cell consists of a human worker collaborating with a cobot, with
each of them possessing specific, known skills. They operate as part
of a joint intentional team with shared goals: to disassemble a series
of Waste Electrical and Electronic Equipment (WEEE) devices.

The design of the aCell is grounded in the interdependence
and joint intentionality between the human worker and the cobot.
The components of the aCell are interdependent since effective task
completion requires the combination of both human and robot
capacities while sharing the same goals for disassembly. By taking
into account the complementary skills and shared goals of the
human-cobot dyad, the aCell can be seen as a single collaborative
unit whose control is distributed. The DAC-HRC architecture we
present in this chapter is designed as a control system to deal with
such hybrid collaborative entities, by orchestrating the disassembly
process while also taking into account human workers’ safety, and
promoting context and real-time adaptation in the dynamic and
complex environment of the WEEE recycling plant.

In this work, the aCell is composed of two primary regions
(Figure 1): the open space, where the human worker performs
tasks without hindrance, and the workbench, where the DAC-HRC
synthetic actuators are strategically located.
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FIGURE 1
Experimental Set-up. (A) Cenital view of the aCell. Green dashed lines illustrate the human working area, being limited by a safety threshold (red dashed
lines). (B) Complete configuration of the aCell including the human worker, the cobot, the WEEE device to be disassembled, the clamping tool, the
tablet device where the Interaction Manager app is displayed, the cobot tool rack, and the cameras monitoring the behavior of both the human worker
and robot.

WEEE materials are positioned on the workbench for
collaborative disassembly by the human worker and a COMAU
Racer-5 collaborative robot (cobot). To further augment the
functionality of the cobot, a tool rack is in place to house and
arrange Racer-5 tools that are not currently in use. These tools
include a screwdriver, a vacuum gripper, a finger gripper, and a
cutting device.

Two vision modules allowed DAC-HRC to be informed by the
aCell regarding the status of the disassembly task and the human
worker. These vision modules were designed following state-of-the-
art computer vision techniques Tran et al. (2018), Ghadiyaram et al.
(2019), Cao et al. (2017), Kalitsios et al. (2022), Gabler andWollherr
(2022) and provided by otherHR-Recycler partners. A vision system
oriented towards the open space captures and processes information
related to the human worker, such as their identity, position, and
behaviors like gestures. To enable the cobot to gather information
on the WEEE device, such as the status of its components, an
additional vision system is directed toward the disassembly area,
informing about the device’s state. A mechanical clamping tool is
also integrated with the workbench to stabilize the WEEE device
while either the human worker or cobot performs actions on it.

Lastly, the workbench, and by extension, the aCell, are
supplemented by a tablet display that enables a bilateral
communication channel between DAC-HRC and the human
worker, displaying relevant information (e.g., current task status),
and serving as a medium for human feedback.

2.2 The DAC-HRC cognitive architecture

The aim of the DAC-HRC architecture is to develop a robust
human-robot collaboration control system for industrial settings
that adapts to different workers through strategies learned from data
obtained during the interaction. This process reflects the principles

of shared intentionality, as it involves a mutual understanding
between the human and the robot about the worker’s skills and
preferences. It also illustrates the principle of interdependence, as
the architecture relies on both the human and robot’s capabilities to
ensure safe and efficient human-robot collaboration.

More concretely, DAC-HRC enables robotic components to
tailor their interactions to the needs of their collaborative human
partner, taking into account their unique skills, capabilities, and
preferences. In order to achieve such a level of personalized
adaptation to each human partner, each of its core four
functionalities, control, safety, adaptation, and interaction are
all distributed across the whole architecture, while having their
specialized cognitive modules: the Task Planner, the Socially
Adaptive Safety Engine, the Worker Model and the Interaction
Manager, respectively.

DAC-HRC follows the design principles of the Distributed
Adaptive Control theory, which states that the goal of cognition in
embodied agents is to control action, and as such, any cognitive
system can be described as a modular, hierarchical control system
operating at different spatiotemporal timescales Verschure et al.
(2012).TheDAC theory can be expressed as a robot-based cognitive
architecture organized in two complementary structures: layers
and columns. The columnar organization defines the processing
of states of the world, the self, and the generation of action. The
organizational layers define the different levels of control, starting
from the Soma Layer integrating all sensors and effectors of the
system, the real-time reactive sensorimotor control in the Reactive
Layer, the adaptive associative learning and allostatic control in
the Adaptive Layer, up to abstract and symbolic manipulation and
context-based control in the Contextual Layer.

DAC-HRC is organized following DAC’s layered structure,
where each of its specialized HRC cognitive modules is located
at different levels of the layered architecture based on their
spatiotemporal timescales of control and their informational and
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FIGURE 2
The DAC-HRC architecture for human-robot collaboration in industrial settings. DAC-HRC is structured in four layers of control (from left to right):
Soma, Reactive, Adaptive, and Contextual; and composed of four specialized cognitive modules: the Task Planner, the Interaction Manager, the Socially
Adaptive Safety Engine, and the Worker Model. The cognitive modules are distributed across various levels of the layered architecture, aligning with
their control timescales and levels of information and sensory abstraction. The Soma Layer represents the physical components of the aCell, including
the cameras, tablet, cobot, and human worker. The Reactive Layer houses the Interaction Manager and Task Planner modules, responsible for
orchestrating human-machine communication and managing task allocation, respectively. The Socially Adaptive Safety Engine and the API component
of the Worker Model, which adapts safety measures and processes real-time worker information, span both the Reactive and Adaptive Layers. The
Contextual Layer is hThe effectiveness of DAC-HRCome to the Worker Model Database, storing long-term memory of past interactions and user
preferences, and the Interaction Learner, which uses this information to adapt tablet display options based on past interactions.

sensory abstraction, as we can see in Figure 2. In other words,
the cognitive modules are strategically distributed throughout the
architecture based on the specific temporal and spatial requirements
for control, as well as the degree to which they process and abstract
sensory information and relevant data.

Its Soma Layer is defined by the hybrid combination of synthetic
and biological sensors and actuators that comprise the aCell, that
is, the cameras, the tablet, the cobot, and the human worker. In its
reactive layer, DAC-HRC incorporates the Interaction Manager and
the Task Planner modules. The Interaction Manager is devoted to
the human-machine interaction protocols necessary to orchestrate
communication between the human and the cobot. The Task
Planner is in charge of the adequate task allocation among the
members of the collaborative entity. It sequentially organizes the
disassembly tasks and controls the correct turn-taking behavior
between the human and the cobot. The Socially Adaptive Safety
Engine, which is in charge of providing an additional layer of safety
that adapts the security distances and robot speed to the particular
preferences of the human partner and the current task context,
spans both the reactive and adaptive layers. The same applies to
the API component of the Worker Model, which deals with the
real-time information related to the worker, as well as with the
update of the Database. In the contextual layer, the Worker Model
Database provides the system with an internal model of the human

workers, storing in its long-term memory the past interactions
between each user and the system, as well as relevant information for
adapting the overall collaboration to the preferences of the human
partner. The Interaction Learner, spanning both the contextual and
adaptive layers, uses the contextual information to learn from past
interactions with the system to adapt the options displayed by the
Interaction Manager through the tablet device. In the following
sections, we describe in detail the technical implementation of the
cognitive modules of the DAC-HRC architecture.

2.2.1 Task planner
The DAC-HRC’s Task Planner module is conceived as a human-

in-the-loop hierarchical finite state machine that encompasses all
disassembly steps of all devices, as well as the error-handling
protocols. The Task Planner (TP) has been developed to ensure
robust orchestration of various components contributing to the
disassembly of WEEE devices within the aCell system. The
objectives of the TP are to coordinate the proper disassembly steps
for each device, organize the disassembly procedure and robot-
worker interleaving, centralize task-related information among the
DAC-HRC modules, and implement safe and robust error-handling
protocols. The TP reflects the principles of shared intentionality and
interdependence, as it involves a mutual understanding between the
human and robot about the sequence of tasks and reliance on each
other’s capabilities to complete these tasks. The TP integrates and
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coordinates low-level sensorimotor information (coming from the
computer vision and robotic components of the aCell) with high-
level information about the task and the interaction (coming from
the upper control layers of the architecture). Therefore, within the
TP’s HFSM, we find states with different levels of abstraction and
description. The Task Planner operates at five levels:

• Task Planner. This level corresponds to the highest level of
abstraction, which contains the state machines (SM) of all
4 Devices. It also contains the functionalities that deal with
continuous status reports, as well as direct human interactions
(through the Interaction Manager, or IM) that allow the TP to
be suddenly interrupted by the worker.
• Device. This level contains the state machine (SM) that links

the steps (i.e., Tasks) needed for the proper disassembly of a
particular device, in a sequential manner (i.e., without internal
loops). Thus, it comprises a straightforward sequential SM with
all the necessary steps or Tasks to be executed in the right
order, steps which have been pre-defined based on domain-
specific knowledge of the proper disassembly of the devices
(see Figure 3A).
• Task. In this level, a particular Task–involving one or more

Actions (see below)— is executed, with the end result of
removing a particular component of the device (e.g., “top lid
removal of the e-light”). Here, errors during the execution
of an Action are handled in a dedicated SM so that the
worker is engaged whenever needed (see Figure 3B). Feedback
and responses from the worker redirect the state of the TP
accordingly (e.g., if an error with the robot occurs and the
worker decides to complete that Task themselves).
• Action. This is the atomic level of description, where specific

modules are uniquely engaged via ROS communication (e.g.,
ROS-actions or ROS services). During an Action, either a ROS
action is sent to a robot to perform a specific action (e.g.,
“change tool to vacuum gripper,” or “dispose lid”), or a ROS
service is issued to the vision module to acquire the necessary
information that the robot will need to perform a subsequent
action (e.g., “identify the grasping pose of the lid”).
• Sub-action. In some cases where Actions need to be repeated

several times and imply feedback loops with vision and the
robot, an additional level is introduced so that the SM design
becomes more modular and robust (e.g., “Unscrew the six
screws of the microwave’s cover” is designed so that a dedicated
SM to unscrew coordinating the robot and vision feedback can
be called in loop until all screws have been removed).

The Task Planner is implemented with the Smach-ROS python
library, which allows seamless integration of HFSMs with ROS-
based communication protocols Bohren and Cousins (2010),
Pradalier, (2017). Crucially, internal data structures allow the
conveying of information received from vision (response of a ROS
service) to the robot (goal of a ROS action). In an SM, the transitions
between states depend on the outcome of each State after having
been executed. An example of a Task can be seen in Figure 3. In
general, an outcome “succeeded” will make the SM transition to the
next Task orAction (depending on the level).The outcome “aborted”
will engage the error-handling loop (see section Error Handling
below), which asks the worker for feedback, and transitions to

different states according to the worker’s decision (e.g., the robot
tries again, or the worker finishes the Task and then the TP moves to
the next Task).Thehierarchical structure of the FMS can be achieved
because all SMs are treated as States too, inheriting their properties.

2.2.2 Interaction manager and interaction learner
The Interaction Manager module plays a vital role in facilitating

efficient communication and interaction between humans and
robots. To achieve this, the module integrates multimodal channels
of communication, ranging from audiovisual interfaces to embodied
non-verbal communication. To account for high levels of noise
and equipment worn by workers, verbal communication was
excluded from the communication repertoire. The two main modes
of interaction, gesture-based communication, and tablet-based
communication, have been chosen to address the noisy industrial
environment and safety concerns during collaboration between
human workers and robots.

Gesture-based communication provides a fast and direct means
for the human worker to convey simple and fast control commands
and responses to the robotic companion, making it a useful and
naturalistic way of communicating in the collaborative environment
of the aCell. The Interaction Manager integrates eight different
communication signals, providing a rich set of gestures for effective
communication between the worker and the robotic system.

aCell-to-human communication is enabled through a tablet-
based application, representing the main communication channel
through which the system can provide detailed information about
the current task’s state. Additionally, through this Interaction
Manager application (IM app), the system can request human
intervention during the disassembly or request human input for
problem-solving or decision-making when unforeseen problematic
situations are faced.

These two main modes of interaction have been chosen to
cover the speed-accuracy trade-off, with gestures for simpler but
time-sensitive interactions, and tablets for slower but more fine-
grained information exchange. This dual communication paradigm
accommodates individual human preferences and ensures efficient
collaboration in various human-robot collaboration scenarios, as we
will see in the Results section.

The Interaction Learner adds a level of personalization on top
of the Interaction Manager functionalities by providing it with
an adaptive mechanism to support human-robot decision-making
based on the prior history of interactions between the human
and the cobot. Its main function is to keep track of human-robot
interactions and human feedback during error-handling scenarios.
It computes useful statistics based on the history of human-robot
interactions, and when a similar situation is encountered, it adapts
the options displayed in the tablet by the Interaction Manager in
a way that enhances collaborative decision-making by highlighting
on the menu the most frequently selected options by that worker
in a given situation. This level of adaptation takes into account
the human-robot interactions at each specific step during the
disassembly and for each worker in particular.

2.2.3 Socially adaptive safety engine
The design of the Socially Adaptive Safety Engine (SASE)

incorporates a set of reactive control systems inspired by Pavlovian
appetitive and aversive drives Freire et al. (2020a). This approach
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FIGURE 3
Task Planner. Visualization of the Device (A) and Task (B) levels of the Task Planner’s hierarchical finite-state-machine (HFSM) for the flat-panel display
use case. (A) Device level of the Task Planner’s HFSM. This level showcases the finite-state machines responsible for sequentially connecting the
disassembly steps (i.e., Tasks) required for the correct disassembly of the flat-panel display. (B) Task level of the Task Planner’s HFSM. At this level,
dedicated error-handling mechanisms within the Task Planner engage the worker when errors occur during the execution of an action (in this case,
‘remove screws’). This ensures that the worker is actively involved in resolving any issues that may arise. Feedback and responses from the worker serve
to redirect the state of the Task Planner, enabling effective error resolution and maintaining the overall flow of the task execution.

shapes the SASE’s functionality, guiding its interactions in the
DAC-HRC architecture to align with principles of both harm
avoidance and proactive cooperation. This incorporation allows the
Socially Adaptive Safety Engine to adapt its behavior dynamically,
not only avoiding harm but also optimizing operation parameters
such as speed, distance, and task allocation based on the unique
context of each human worker. The Worker Model, integral to the
contextual layer of theDAC-HRC architecture, helps personalize the
interaction, treating eachworker as a distinct individualwith specific
preferences and needs.

The Socially Adaptive Safety Engine module, in charge of
providing a context-aware and personalized safety control system,
spans across three layers of the DAC-HRC architecture. The
SASE’s reactive layer integrates several homeostatic modules whose
purpose is to monitor key aspects of the human-robot interaction.
The goal of each homeostatic module is twofold: to keep its
desired variable within the optimal range of operation, and to exert
control when that variable trespasses the safe range. The current
implementation comprises the homeostatic control of key proxemics
variables in HRI, such as the human-robot interaction security
distance, the robot movement speed, and the robot action execution
speed.When any of those variables reach or trespass their threshold,
the control response can be either a direct modification of the
exceeded value -in the case of speed modulation-, or a command
directed to stop the robot’s current action -in case the HRI distances
are trespassed. For instance, if the actual detected distance between
the human and the robot is below the desired safety value, the
homeostatic control system will generate a stop signal and the robot
will notmove until the actual distance goes back to the desired range.

The Socially Adaptive Safety Engine’s adaptive layer is composed
of the allostatic control module.This is the keymechanism by which

the SASE can adapt the interaction of the robot to its changing
environment. This module is in charge of the transformation of the
environmental information provided by the contextual layer and
modifying the desired parameters of the subsequent homeostatic
regulatory mechanisms of the reactive layer. For instance, when the
robot is handling a dangerous tool, the allostatic controlmodule gets
this information and adapts the desired safety HRI distance, as well
as the speed at which the robot will operate when being close to a
human.

The Socially Adaptive Safety Engine’s contextual layer deals
with the integration of the relevant environmental, social,
and material information that comes from other modules of
the DAC-HRC architecture. It endows the SASE with context
awareness. The constant integration of these different sources
of information defines the specific context at every point in
time, thus allowing the SASE to monitor and adapt the behavior
of the robot to the changing conditions of its surroundings.
For instance, the contextual layer can obtain information in
real-time about the HRI preferences of the currently detected
human worker, the risk level of the current robot action, and the
information about the current tool being used by the robot (if
any).

The incorporation of the reactive control systems inspired by the
Pavlovian appetitive and aversive drives allows the Socially Adaptive
Safety Engine to adapt its behavior dynamically, not only avoiding
harm but also optimizing operation parameters such as speed,
distance, and task allocation based on the unique context of each
human worker. The worker model, integral to the contextual layer
of the DAC-HRC architecture, helps personalize the interaction,
treating eachworker as a distinct individual with specific preferences
and needs.
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2.2.4 Worker model
The Worker Model is composed of short-term and long-term

memory buffers alongwith its reactive and adaptive input processing
layers. The Worker Model’s reactive layer serves as a first data
integration step, gathering information from several input sources,
whereas its adaptive layer processes the raw data in order to produce
new parameters that will be used by other modules of the Worker
Model and the DAC-HRC architecture. The online information
gathered by the Worker Model’s reactive layer is transiently stored
in the short-term memory buffer before it is further processed by
the adaptive Layer to generate new relevant information about the
worker and their interactionwith the system. For instance, the short-
term memory can store the timings of past interactions during
a disassembly step, while the adaptive layer generates estimates
of current task duration based on this input. The type of input
information gathered by the Worker Model can be divided into
offline and online variables:

• Offline variables - This type of data is mostly static, as
it will not vary throughout the session (e.g., age, gender,
language, and interaction preferences). This information is
acquired through preliminary questionnaires before engaging
with the system and defines the profile of each user based
on demographic information and her opinion towards robots.
• Online variables - Comprises all the relevant user data that

is dynamically updated in real-time over the course of the
interaction with the system. Integrates information about the
position of the worker and their performance (e.g., current
disassembly task, or estimated duration), as well as about
the context in which the worker is embedded (e.g., current
disassembly process, a Cell number, or location).

The technical implementation of the Worker Model is based on
two main components: the Worker Model’s API and the Worker
Model Database. The database implements the long-term memory
component of the Worker Model. Its function is to store all the
information related to each worker and to keep it up to date. It is
deployed as a document-oriented database usingMongoDB1, where
each worker profile is stored as a unique document. Each worker
model entry is initialized with the offline variables acquired from
the worker profile and questionnaires. Additionally, it also stores
the main statistics of each interaction between the worker and the
DAC-HRC collaborative architecture that has been extracted by the
WorkerModel API, such as the expected task duration or the history
of interactions with the tablet.

All the communications with the database are centrally
controlled by the Worker Model’s API, which integrates the reactive
and adaptive input processing layers along with the short-term
memory component of the Worker Model. The API’s function is
twofold: it performs the basic CRUD (create, read, update, and
delete) operations that keep the database up to date, and it is in
charge of filtering the online and state variables to produce the task-
and interaction-relevant outputs of the Worker Model. The API is
written in Python and communicates with the database using BSON
as the data interchange format.

1 https://www.mongodb.com

3 Results

In this section, we showcase the application of the DAC-
HRC within the industrial context of the HR-Recycler hybrid
recycling plant, highlighting the various functionalities of DAC-
HRC that enhance human-robot collaboration in the recycling
plant, specifically: (1) turn-taking human-robot collaborative
interaction during the disassembly of a WEEE device, (2)
error handling mechanisms personalized by past collaborative
interactions, (3) adaptive and personalized safety measures for
human-robot collaboration, and (4) gesture-based communication
for goal-oriented collaboration. Each scenario was assessed
during the disassembly of different WEEE devices, specifically:
emergency lamps, computer towers, microwaves, and LCD displays.
Importantly, trials to assess the robot’s autonomous disassembly
capabilities were conducted prior to these tests; in all cases, the
robot failed to successfully disassemble any device without human
intervention or the application of the DAC-HRC. This failure
serves as the reference process against which we benchmark
our architecture’s performance. Furthermore, the experiments
included various human participants to evaluate the architecture’s
adaptability to different human actors and preferences. Given the
nature of the experiments and the robot’s inability to complete tasks
autonomously, we chose not to report these autonomous trials in
the results section, focusing instead on the functionalities enabled
by the DAC-HRC architecture.

3.1 Turn-taking human-robot collaborative
interaction in the disassembly of a WEEE
device

This use case describes the involvement of the DAC-HRC
architecture during the collaborative disassembly of WEEE devices
between a cobot and a human worker. Such a collaborative process
begins when a human worker approaches the aCell. Once the
worker enters the working area, they are recognized by the vision
module that perceives their identity by decoding the unique fiducial
code allocated in the workers’ helmets (Figure 4A). Then, using the
identity of the worker, the Worker Model anonymously accesses
their corresponding personal information and makes it available
to the entire DAC-HRC architecture, so other cognitive modules
can socially adapt to the current worker. This process reflects
the principle of shared intentionality, as it involves a mutual
understanding between the human and the cobot about the identity
and role of the current worker. It also illustrates the principle of
interdependence, as the overall disassembly performance depends
on both the cobot and worker (Figure 4B).

The Interaction Manager receives and processes the worker’s
personal information and provides them with immediate feedback
about their detection by displaying such information through the
IM app (Figure 4C). It is noteworthy that this information, and
further notifications, are displayed meeting the worker language’s
preferences. Importantly, the rapid communication between the
vision modules and the Worker Model ensures that the social
information considered by the cognitive architecture has real-time
correspondence with the current human worker at the aCell.
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FIGURE 4
Human-Robot Collaborative Disassembly of a WEEE Device. (A) Vision module identifies a worker using their unique code. (B) DAC-HRC architecture
adjusts to worker preferences, modulating robot behavior. (C) The IM app shows worker details and disassembly status and sends notifications if
human input is required. (D) Task Planner updates after full disassembly of the WEEE device.

In parallel, the cobot continues operating primarily guided by
the goals imposed by the Task Planner. The succession of steps,
as well as their status and the progress during the disassembling
process, is also communicated to the human worker through the
IM app (Figure 4C). However, as mentioned in the description of
the Task Planner, the scheduling of disassembly steps is determined
as a succession of states that ensures the task allocation (human or
cobot)matches the worker’s skills and preferences.Thus, the optimal
distribution of disassembly tasks leads to stable collaborative

turn-taking dynamics, fostering predictability and facilitating the
rapid acquisition of social conventions Hawkins and Goldstone
(2016), Freire et al. (2020b).

Once the Task Planner has successfully overcome the
robot’s assignments and reached an action that requires human
intervention, this module interplays with the Interaction Manager
to proactively interact with the human worker. As a result, the
IM app sends a notification to the human worker describing the
action to be performed (Figure 4C). Moreover, this notification
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FIGURE 5
Personalized error-handling mechanisms during Human-Robot collaborative disassembly. (A) The complex coupling of both the aCel and the
DAC-HRC architecture becomes a potential source of failure that needs to be addressed at the systems level. (B) Either when the cobot cannot
complete a given disassembly action, or when is the worker’s turn to execute a step of the disassembly, the human worker can intervene safely. (C) IM
app notification of an error during the disassembly providing the three different actions to overcome the error. (D) The IM app in liaison with the
Interaction Learner provides an attentional bias towards the preferred error-handling options by modulating their visual saliency.

enables the worker to control the clamping tool (see Figure 1)
through the IM app when the device’s translation or reorientation
is needed. Once the human intervention has been completed,
a completion button must be pressed to allow the DAC-HRC
architecture to carry on with the next step. Additionally, an
abort option is available in cases where the human worker
needs to stop the collaborative disassembly and finish on
their own.

Finally, when both the robot and human’s disassembling
actions have been completed, the Interaction Manager, in liaison
with the Task Planner, informs the human worker about the
completion of the disassembling process through the IM app
(Figure 4D).

3.2 Error handling mechanisms
personalized by past collaborative
interactions

Beyond the complex interaction that DAC-HRC cognitive
architecture maintains within its components, it is also in
contact communication with other HR-Recycler sensory and
control modules. This architecture’s complexity aims to both
cope with the challenge of autonomously disassembling WEEE

devices, but also ask for collaboration when unexpected
issues prevent the optimal performance of the cobot’s
assignments (Figure 5A).

To overcome these errors, the Task Planner, through the IM app,
informs the humanworker of any problematic action (i.e., any action
that leads to errors) and provides three possible solutions. These
options give the worker the possibility to (1) force the cobot to retry
the problematic action, (2) inform the cobot that the worker will
take care of the action (Figure 5B), or (3) to inform the cobot that
the worker will take care of the remaining steps of the disassembly
(Figure 5C).

Importantly, due to the involvement of the Interaction
Learner module, this error-handling functionality becomes
adaptive to the worker’s preferences by learning from previous
interactions. Thus, if a worker exhibits consistent biases
toward one of the options when handling Task Planner
errors, the module memorizes these preferences and facilitates
future decision-making by increasing the visual saliency of
the previously preferred options (Figure 5D). This reflects
the principles of shared intentionality and interdependence,
as it involves a mutual understanding between the human
and robot about handling errors and reliance on each
other’s capabilities to resolve these errors and complete the
disassembly process.
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FIGURE 6
Adaptation of safety distance to human workers with different trust measures. (A) A worker with high trust in their robotic counterpart engages in the
collaborative process of disassembling the WEEE device. Their high trust is considered by the Socially Adaptive Safety Engine which, accordingly, sets a
short safety distance. Nonetheless, once this personalized safety distance is surpassed the robot comes back to its initial position and stops. (B) Surpass
of the safety distance triggers an IM app alert notification. According to the worker’s high measure of trust, the personalized safety distance is set at
0.70 m (C) When a different worker reporting a lower measure of trust in their robotic counterpart enters the aCell, the Socially Adaptive Safety Engine
recalculates the safety distance. As a result, the safety distance is enlarged and the human worker is not allowed to get so close to the cobot without
triggering the safety alert. (D) IM app alert notification when the worker with lower trust surpasses the safety distance. Notice that it was enlarged to
1.70 m.

3.3 Adaptive and personalized safety
measures for human-robot collaboration

In parallel to the Human-Robot collaborative disassembling of
WEEE devices, safety-related information is constantly monitored
and processed to provide adaptive and personalized robot behavior.
With this aim, once the computer vision module has detected and
recognized a human worker at the aCell, the Socially Adaptive
Safety Engine (SASE) draws its measure of trust from the Worker
Model. In addition, the SASE updates the safety distance and
robot’s speed according to the worker’s preferences (Figure 6).
This process reflects the principles of shared intentionality
and interdependence, as it involves a mutual understanding
between the human and robot about the worker’s trust level and
reliance on each other’s capabilities to maintain safety during the
disassembly process.

Since the adaptation of the robot’s speed to the worker’s trust
does not interfere with the worker’s performance, it has been
designed to occur covertly and automatically.Thus, the robot’s speed

is set at high levels when the current worker has reported high levels
of trust in their robotic counterpart and decreases when a more
distrusting worker enters the aCell.

However, aiming to ensure the integrity of the human workers,
the normal turn-taking collaborative Human-Robot interaction can
be interruptedwhen they surpass the safety distance (Figures 6A, B).
This safety distance, as well as the robot’s speed, is initially
personalized by the Socially Adaptive Safety Engine based on the
trust information provided by the Worker Model. Thus, human
workers with higher trust are allowed to get closer to the workbench
while the cobot is carrying out its tasks. Nonetheless, when a more
distrusting worker enters the aCell, this safety distance is extended
ensuring both their physical integrity and physiological wellbeing
(Figures 6C, D and Supplementary Videos S1 and S2). Importantly,
even when workers report a maximum level of trust in robots, a
minimum safety distance is set, following the international safety
requirements for industrial robots ISO (2011, 2016). The real-time
monitoring of the workers’ position relative to their personalized
safety distance is accomplished by the DAC-HRC architecture due
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to the continuous communication between the SASE and the vision
module, which provides the current worker’s location.

In cases where the worker has surpassed their personalized
safety distance, the Socially Adaptive Safety Engine ensures their
integrity by immediately stopping the cobot’s action.The trespassing
of the safety distance is also reported to the Interaction Manager,
which in turn notifies the human worker about their current
location and the minimum distance they should keep to the cobot
(Figures 6B, C). This alert remains displayed on the IM app until the
worker gets back to respect their safety distance. Once the safety
distance is reached again, the SASE’s alert disappears from the IM
app and the cobot resumes its previous task.

3.4 Gesture-based communication for
goal-oriented collaboration

Besides the direct input that human workers could provide
to the DAC-HRC architecture through the IM app, vision
modules recognize a set of gestures that enables multimodal
communication and enhance human-robot interaction during
collaborative disassembly.

Unlike direct input through the IM app, which is dependent on
specific events such as the requirement of human intervention or
error-handling situations, gesture-based communication is available
at any time during disassembly. That is, the workers can exert
control over the collaborative process by performing predefined
gestures that inform the DAC-HRC architecture to stop or
resume the disassembling process, as well as informing that the
disposal tray is full (Figure 7 and Supplementary Videos S3 and S4).
Consequently, the worker also gets feedback about the detection of
the recognized gesture through the IM app (Figures 7B, D, E). This
reflects the principles of shared intentionality and interdependence,
as it involves a mutual understanding between the human and
robot about the meaning of different gestures, and a reliance on
each other’s capabilities to interpret these gestures and respond
appropriately (Figures 7F, G).

4 Discussion

This paper introduces the Distributed Adaptive Control-
based Human-Robot Collaboration (DAC-HRC) architecture, a
novel cognitive framework tailored for enhancing human-robot
interactions within the dynamic and evolving landscape of Industry
4.0. Unlike traditional paradigms that promoted more static and
rigid interactions, DAC-HRC represents a significant leap forward,
integrating socially adaptive, flexible, and intuitive interaction
schemes that cater specifically to the nuanced demands of industrial
contexts. By leveraging novel Human-Robot Collaboration (HRC)
strategies, such as gesture-based communication and user-
context adaptation, DAC-HRC facilitates a more natural and
efficient partnership between humans and non-humanoid robots,
particularly within the challenging environment of electronic waste
recycling.

At the heart of DAC-HRC are four main cognitive modules:
the Task Planner, Socially Adaptive Safety Engine, Interaction
Manager, and Worker Model. Each module is meticulously

designed to operate across various timescales and abstraction
levels, ensuring that the architecture can provide personalized
adaptive collaboration that is sensitive to the unique needs of
each human user. This modular design not only underscores the
architecture’s flexibility but also its potential to enable seamless
and organic human-robot interaction in complex and dynamic
industrial scenarios.

Applied within the HR-Recycler environment, a hybrid
recycling plant focused on the disassembly and recycling of Waste
Electrical and Electronic Equipment (WEEE) devices, DAC-HRC’s
capabilities were demonstrated through several pilot studies. These
studies showcased the architecture’s ability to enhance human-
robot collaboration through (1) adaptive turn-taking interactions,
(2) personalized error-handling mechanisms, (3) dynamic safety
measures, and (4) intuitive gesture-based communication. By
addressing key collaboration aspects such as adaptation, safety,
personalization, transparency, and real-time interaction, DAC-
HRC proposes a new paradigm for human-robot collaboration
in industrial settings.

In each of the outlined use cases, the DAC-HRC architecture
demonstrates its capacity for real-time adaptive decision-
making, informed directly by data gathered during human-
robot interactions. For instance, in the collaborative disassembly
of WEEE devices, the cobot’s operational speed and safety
distances are dynamically adjusted based on the trust levels
reported by the human workers. This socially adaptive mechanism
ensures that interactions are tailored to individual comfort levels,
thereby enhancing the safety and efficiency of the collaborative
process. Similarly, the system’s ability to adapt to the language
preferences of each worker, as identified through their unique
fiducial codes, exemplifies how DAC-HRC leverages personal
information to customize the interaction experience, ensuring
clear and effective communication through the Interaction
Manager. These adaptations, underpinned by principles of shared
intentionality and interdependence, enable DAC-HRC to foster
a cooperative environment that is responsive to the nuanced
needs and preferences of human workers, significantly impacting
the collaborative dynamics within the industrial setting of the
HR-Recycler plant.

Despite the promising potential of DAC-HRC, current
limitations such as the need for further validation and refinement,
as well as the integration of additional cognitive modules for
predictive task allocation and human behavior understanding, must
be addressed.

The primary aim of this paper was to explore and demonstrate
the feasibility and adaptability of the DAC-HRC cognitive
architecture as a novel systems-level control paradigm for HRC,
particularly within industrial settings. The focus of our pilot studies
was to validate the cognitive architecture’s conceptual and functional
capabilities, such as facilitating adaptive collaboration, enhancing
safety measures, and implementing intuitive communication
protocols.

Given the innovative and exploratory nature of this work, the
emphasis was placed on qualitative assessments of the architecture’s
integration and interaction dynamics within the HR-Recycler
environment, rather than on quantitative performance metrics. This
approach aligns with the initial stages of deploying such complex
systems, where understanding the system’s behavior, adaptability,
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FIGURE 7
Human-Robot interaction based on gesture recognition. (A) Human worker performing the ‘stop’ gesture. (B) IM app notification for the recognition of
the ‘stop’ gesture and showing information about the corresponding robot action: adopting its initial, default pose. (C) Human worker performing the
‘resuming’ gesture. (D) IM app notification for recognition of the ‘resuming’ gesture and showing information about the corresponding robot action,
resuming the interrupted action. (E) Human worker performing the ‘wave’ gesture and IM app notifying about the recognition and meaning of the
gesture: disposal tray is full. (F) Automated guided vehicle (AVG) robot picking up the full disposal tray from the aCell. (G) AVG robot leaving the full
disposal tray in the removal area.

and potential for enhancing human-robot collaboration takes
precedence. Therefore, while the inclusion of performance
metrics is undoubtedly valuable for evaluating HRC systems,
the current phase of this research was focused on establishing a
foundational understanding and proof of concept of the DAC-
HRC architecture. Future work should focus on incorporating
quantitative performance metrics to rigorously evaluate the
architecture’s effectiveness and efficiency in enhancing human-robot
collaboration.

Recognizing the importance of these human-centric factors,
future research should also incorporate more formal evaluations
of the human aspects of collaboration. This includes assessing
the user experience, perceived usefulness, and mental load using
standardized tools like the NASA-TLX, alongside additional metrics
that can provide a more comprehensive understanding of the
human-robot interaction dynamics. These future studies aim to
balance the focus between technical innovation and human factors,
ensuring that advancements in HRC systems like DAC-HRC not
only meet technical and safety requirements but also align with
human workers’ needs and preferences for a truly collaborative and
supportive work environment.

The interdisciplinary nature of DAC-HRC’s development,
drawing from cognitive science, robotics, and human-robot
interaction research, is a testament to its innovative approach
to solving complex HRC challenges. This cross-disciplinary
collaboration has enabled the creation of an architecture that not
only meets the technical requirements of industrial applications but
also aligns with the cognitive and social dynamics of human-robot
interaction.

The collaborative entity of DAC-HRC termed the aCell,
symbolizes a distributed cognitive organism akin to an ant
colony, where cognitive processes are shared among agents to
achieve collective goals. This analogy is rooted in the notions
of extended cognition Clark and Chalmers (1998) and liquid
brains Solé et al. (2019), which describe how cognitive processes
can be distributed across multiple agents in a system, rather
than being confined to a single individual. It highlights the
importance of designing distributed hybrid collaborative systems
that leverage the complementary strengths of humans and
robots. By fostering shared control and distributed agency,
DAC-HRC paves the way for innovative approaches to human-
robot collaboration that can significantly impact Industry 4.0
and beyond.

In an ant colony, for example, no single ant possesses the entire
knowledge of the colony’s activities. Instead, each ant contributes to
the collective intelligence of the colony through its individual actions
and interactions with other ants. Similarly, in an aCell, the human
and cobot work together as a cohesive unit, with each contributing
their unique skills and capabilities to the collective performance of
the task at hand.

This perspective offers valuable insights for designing
distributed hybrid collaborative systems. For instance, it suggests
that we should focus not only on the individual capabilities of
humans and robots but also on how they can best interact and
coordinate their actions to achieve shared goals. This could involve
developing natural language understanding methods that enable
humans and robots to share informationmore effectively Dong et al.
(2019), Thomason et al. (2019), or designing control algorithms
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that allow robots to adapt their behavior based on the expected
actions and intentions of their human partners Shum et al. (2019),
Lake et al. (2017), Freire et al. (2023).

Moreover, by integrating principles of shared intentionality and
interdependence, the DAC-HRC architecture provides a robust
foundation for future endeavors in human-robot collaboration
across industrial settings and beyond, aiming to enhance the
cognitive and communicative dynamics of collaborative tasks.
This principled framework encourages the creation of more
socially-aware, adaptable hybrid systems capable of supporting
nuanced human-robot interactions in diverse environments.
For example, in manufacturing, such insights could guide the
development of cobots engineered to proactively respond to
human workers’ needs, facilitating real-time adjustments to
workflow tasks or machine pacing to alleviate worker fatigue
or optimize productivity. Similarly, in healthcare, DAC-HRC’s
approach could lead to assistive robots that offer tailored support to
patients or healthcare providers, learning from each interaction to
improve responsiveness and adapt behavior based on individual
preferences or emotional cues. Looking ahead, DAC-HRC’s
expansion into other sectors such as logistics and warehouse
management promises to leverage these insights further, driving the
creation of more efficient, empathetic, and adaptable collaborative
systems that elevate the efficacy of human-robot partnerships in
any context. By capitalizing on the complementary strengths of
humans and robots in this way, we can create hybrid collaborative
systems that enable them to work together more effectively and
efficiently.

In sum, DAC-HRC’s commitment to enhancing the
collaborative bond between humans and robots through adaptation,
safety, personalization, and transparency sets a new blueprint for
future hybrid industrial collaborative efforts. The architecture’s
modular and flexible framework aims to advance the efficiency
and efficacy of human-robot partnerships, providing valuable
insights for both industrial applications and the broader human-
robot interaction research community. As we continue to explore
and expand the capabilities of DAC-HRC, it stands as a testament
to the potential of cognitive architectures to revolutionize the
way humans and robots work together, paving the way for
more responsive, understanding, and cooperative collaborative
systems.
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