
TYPE Original Research
PUBLISHED 13 March 2024
DOI 10.3389/frobt.2024.1214043

OPEN ACCESS

EDITED BY

Emanuel Sousa,
Centro de Computação Gráfica, Portugal

REVIEWED BY

Matthew David Luciw,
Neurala, United States
Eliana Oliveira Da Costa E. Silva,
Polytechnic Institute of Porto, Portugal

*CORRESPONDENCE

Andy Wong,
andy.wong@ualberta.ca

Mehran Taghian Jazi,
taghianj@ualberta.ca

RECEIVED 28 April 2023
ACCEPTED 12 February 2024
PUBLISHED 13 March 2024

CITATION

Wong A, Taghian Jazi M, Takeuchi T,
Günther J and Zaïane O (2024), General value
functions for fault detection in multivariate
time series data.
Front. Robot. AI 11:1214043.
doi: 10.3389/frobt.2024.1214043

COPYRIGHT

© 2024 Wong, Taghian Jazi, Takeuchi,
Günther and Zaïane. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

General value functions for fault
detection in multivariate time
series data

Andy Wong1*, Mehran Taghian Jazi1*, Tomoharu Takeuchi2,
Johannes Günther1 and Osmar Zaïane1

1Computing Science Department, Alberta Machine Intelligence Institute, University of Alberta,
Edmonton, AB, Canada, 2Information Technology R&D Center, Mitsubishi Electric Co., Kamakura,
Japan

One of the greatest challenges to the automated production of goods is
equipment malfunction. Ideally, machines should be able to automatically
predict and detect operational faults in order to minimize downtime and plan
for timely maintenance. While traditional condition-based maintenance (CBM)
involves costly sensor additions and engineering, machine learning approaches
offer the potential to learn from already existing sensors. Implementations
of data-driven CBM typically use supervised and semi-supervised learning to
classify faults. In addition to a large collection of operation data, records of
faulty operation are also necessary, which are often costly to obtain. Instead of
classifying faults, we use an approach to detect abnormal behaviour within the
machine’s operation. This approach is analogous to semi-supervised anomaly
detection in machine learning (ML), with important distinctions in experimental
design and evaluation specific to the problem of industrial fault detection.
We present a novel method of machine fault detection using temporal-
difference learning and General Value Functions (GVFs). Using GVFs, we form
a predictive model of sensor data to detect faulty behaviour. As sensor data
frommachines is not i.i.d. but closer toMarkovian sampling, temporal-difference
learning methods should be well suited for this data. We compare our GVF
outlier detection (GVFOD) algorithm to a broad selection of multivariate and
temporal outlier detection methods, using datasets collected from a tabletop
robot emulating the movement of an industrial actuator. We find that not
only does GVFOD achieve the same recall score as other multivariate OD
algorithms, it attains significantly higher precision. Furthermore, GVFOD has
intuitive hyperparameters which can be selected based upon expert knowledge
of the application. Together, these findings allow for a more reliable detection
of abnormal machine behaviour to allow ideal timing of maintenance; saving
resources, time and cost.

KEYWORDS

reinforcement learning, general value functions, outlier detection, fault detection,
temporal difference (TD) learning

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1214043
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1214043&domain=pdf&date_stamp=2024-03-11
mailto:andy.wong@ualberta.ca
mailto:andy.wong@ualberta.ca
mailto:taghianj@ualberta.ca
mailto:taghianj@ualberta.ca
https://doi.org/10.3389/frobt.2024.1214043
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1214043/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1214043/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1214043/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

1 Introduction

Automation and robotics allowmanufacturers to produce goods
far more cheaply and consistently than hand-made products. With
the advances in automated industrial production processes, the cost
of downtime has grown proportionally. While machines can be
designed for constant up-time, they will still degrade over time. As
degradation is dependent on many variables, it is nearly impossible
to accurately predict when the machine will break without actively
monitoring its status. It is therefore imperative to shut machines
down in a controlled way in order to maintain them before they
break uncontrolled.

Deciding when to shut down machines for maintenance is
still a field of ongoing research (Si et al., 2011; Lei et al., 2018).
Performing maintenance only when the machine is in actual
need is called condition-based maintenance (CBM) (Jardine et al.,
2006). CBM therefore prevents unnecessary downtime and the
replacement of parts that still have a long lifespan, ultimately saving
on maintenance costs. This maintenance approach includes the
tasks of fault detection and fault classification (called diagnostic
problems), along with predicting the remaining useful life and the
prediction of probability of failure (called prognostic problems).
With these four values, it is possible to make informed decisions
about when maintenance is necessary. In this paper, we focus on the
task of fault detection.

The advantages of CBM come at the cost of needing data to
access the state of the machine—the process of collecting data about
the machine while it runs is called Condition Monitoring (CM). As
the data are constantly collected while the machine is running, it is
time series data. Examples of CM data include, but are not limited
to: position, speed, force, vibration, and temperature. The need for
data is an Achilles heel for CBM; to collect data, appropriate sensors
are necessary.The performance of CBM is highly correlated with the
availability and quality of data.

One way to ensure sufficient data for CBM is the installation
of sensors. Sensors can be targeted towards a certain failure mode;
e.g., a thermocouple can be installed and monitored for a process
that is prone to overheat. While the installation of sensors ensures
high quality data that caters to the exact need of CBM, it is also a
costly solution. A solution that is more cost efficient is the use of
existing sensors to gather data. Most industrial processes are already
equipped with sensors that are necessary for their functioning; e.g.,
sensors for feedback control, machine calibration, or sensors that
are installed to access the product quality. If these sensors can be
used to infer machine degradation, they provide a cost efficient
solution to CBM.

The use of existing sensors for anomaly detection is a field of
active research and a review of supervised, semi-supervised, and
unsupervised anomaly detection can be found in Hodge and Austin
(2004) and Pimentel et al. (2014). Furthermore, Gupta et al. (2014)
provided a review for (classical) outlier detection in time series data.
More recently, Riazi et al. (2019) published a comprehensive study
on data-driven outlier detection that compared different classical
machine learning algorithms.

Riazi et al. (2019) also collected operating data from a lab-
scale robotic arm, depicted in Figure 1. This data was labeled,
indicating whether the arm was operating normally or if there
was some fault in its operation. Within that study, machine

FIGURE 1
A diagram showing the construction of the robot arm testbench, from
which data arising from normal and faulty operation was collected.

fault detection was framed as a semi-supervised outlier detection
problem. In the training phase, a multivariate semi-supervised
outlier detection algorithm learns a boundary of normality from
a random sample of normal operating data. In the testing phase,
the algorithm evaluates whether new, unseen samples lie within
or beyond the boundary, and classifies it as an inlier or outlier
accordingly.

Previous work on using machine learning for outlier detection
were predominantly based on supervised andunsupervisedmachine
learning algorithms (Riazi et al., 2019). While these approaches
demonstrated good performance, they fail to take the temporal
structure of the data into account. Many approaches, especially
those based on deep learning, assume the data to be i.i.d.,
which is not the case in this application. New data are highly
correlated to previous data, resulting in a data distribution
that can be seen as the result of Markovian sampling (Arnold,
1970). For this reason, we suggest the use of temporal-difference
(Sutton, 1988) based methods, as predictions learned with these
methods have already shown their potential in industrial processes
(Günther et al., 2016) and they are a well-fitted approach to
this domain.

Our paper extends the work of Riazi et al. (2019) in two
major ways. First, we modify the random sampling and validation
techniques from machine-learning practice to better represent real-
world deployments of fault detection. Therefore, we ensure that
normal training data occurs strictly prior to normal testing data.
Second, we implement three state-spacemodels for time-series data,
including a new algorithm based on temporal-difference learning,
named General Value Function Outlier Detection (GVFOD).
GVFOD is a novel method of applying general value functions
for fault detection. We investigate whether these strictly temporal

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

FIGURE 2
Overview of state-space temporal outlier detection approaches. (left) a Markov chain with three observable states. (middle) A hidden Markov model,
with three hidden (greyed-out) states, and observable cumulants. (right) An MDP with three observable states, and a cumulant is provided with each
state-transition. Actions omitted for clarity.

methods can outperform general multivariate methods. To the best
of our knowledge, this is the first example of using predictions which
are learned by themethods of temporal-difference learning to detect
faulty behaviour in data streams from machine data. It is also one of
few studies that show how reinforcement learning methods can be
leveraged in industrial processes.

Leveraging machine learning to use data from existing sensors
promises to address one of the most important challenges for CBM.
By applying reinforcement learning techniques to take the temporal
structure of machine data into account, we extend the current state
of the art and demonstrate how this approach successfully detects
outliers in data. We therefore provide a cost-effective solution to
fault detection in order to enable automated CBM in real-world
applications.

2 Background and methods

This study considers outlier detection as a semi-supervised
problem. In a real-world situation, these algorithms would be
employed in situations where known-good (or known-mostly-
good) operational data is available, and where it is tolerable for fault
detection to be enabled only after a period of known-good operation.
It is also permissive of applications where faulty data is not available
(or mixed within the normal data).

In semi-supervised outlier detection, the training dataset
consists only of normal records, while the testing dataset has amix of
normal and abnormal records. An algorithm will first learn a model
of normality using the training data.The algorithmwill then assign a
numerical outlier score to each sample in the training dataset. Based
on the empirical distribution of training outlier scores, a threshold
of normality can be determined.When themodel is used to calculate
outlier scores on the testing data, the algorithmclassifies each sample
as either an inlier or an outlier. We use the convention where scores
larger than the threshold are outliers, and scores smaller than the
threshold are inliers.

The outlier threshold is dependent on a common
hyperparameter across all algorithms, the contamination
ratio, CR ∈ (0,0.5]. The contamination ratio defines the
probability that a future inlier will be incorrectly classified
as an outlier; and equivalently, the proportion of training
data that lies beyond the outlier threshold. In this study,
all algorithms had contamination ratios of 5%; and thus,

predicted outliers are those with outlier scores (OS) above the
95th percentile.

2.1 Multivariate outlier detection

We evaluate the best multivariate outlier detection
techniques from Riazi et al. (2019) and Gupta et al. (2014).
The methods in both papers have been applied successfully
to similar data sets, validating this decision. They span
multiple classes of anomaly detectors, including probabilistic,
distance/density, reconstruction, and domain-based methods. The
algorithms include.

• Isolation forest (IForest) (Liu et al., 2008)
• One-class support vector machine (OCSVM) (Schölkopf et al.,

1999)
• Local outlier factor (LOF) (Breunig et al., 2000)
• Angle-based outlier detection (ABOD) (Kriegel et al., 2008)
• kth-nearest neighbour (KNN) (Ramaswamy et al., 2000)
• Histogram-based outlier score (HBOS) (Goldstein and Dengel,

2012)
• Minimum covariance discriminant (MCD) (Rousseeuw, 1984)

TABLE 1 Robot arm datasets.

Case Samples Belt
tension (N)

Description

Normal 7193 160 Normal
operation.

Loose L2 180 120

Varying belt
tension levels.

Loose L1 182 140

Tight 194 180

Sandy 183 160 Sand on rolling
surface.

HighT 210 180 Tight belt and
heated with two
incandescent
floodlights.

Bolded values indicate the subset of data that was used in this experiment.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

FIGURE 3
A sample of normal robot arm data.

TABLE 2 GVFOD hyperparameters.

Name Symbol Value (search) Value (expert)

divs_per_dim (7,7,2) (10,10,10)

n_tilings m 2 10

discount_rate γ 0.96 0.90

step_size α 0.052 0.001

lambda λ 0.209 0.1

beta β 888 250

• Principal components analysis (PCA) (Shyu et al., 2003) and all
are implemented in the PyOD (Zhao et al., 2019) package.

2.2 State-space models for temporal
outlier detection

Furthermore, we include temporal algorithms to make our
comparisons more meaningful. Two existing state-space models are
used for outlier detection:

• Markov chain (MarkovChain) (Ye et al., 2000)
• Hidden Markov model (HMM) (Smyth, 1994; Schreiber, 2017)

Examples of these are shown in Figure 2.

In a Markov chain (Figure 2, left), the world is described
sequentially, where at each time step t, transitions are made from
state to state, with xt,xt+1 ∈X . These transitions are completed
stochastically, following some transition probability P:X ×X ↦
ℝ+, which is trivial to estimate from data.

In a hiddenMarkovmodel (HMM) (Figure 2, middle), the same
transitions are made, except the underlying states xt cannot be
observed. Instead, a finite number of the hidden states are inferred
from the sensor observations. The Baum-Welch algorithm is used
to estimate the states, state-transition probabilities P, and emission
probabilities C. In general, HMM estimation is a computationally
slow process (Gupta et al., 2014).

In a Markov decision process (MDP) (Figure 2, right), an agent
takes an action At ∈A , which causes a similar transition from
the observed xt to xt+1. The transition probabilities in an MDP
are action-dependent, with P′:X ×A ×X ↦ℝ+. The agent also
receives a reward as feedback for its choice of action. The agent’s
choice of action, At , is determined by a probability function π:X ×
A ↦ℝ+, known as a policy.

2.3 Prediction learning methods and
general value functions

This paper uses a prediction learning method called General
Value Functions (GVF) (White, 2015). GVFs learn to make
predictions solely by interacting with the environment—they are
based on observations.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

TABLE 3 Algorithms and hyperparameters used.

Algorithm Hyperparameter Value
(default)

Value
(search)

IForest

n_estimators 100 14

max_features 1.0 0.88

bootstrap False True

OCSVM

kernel rbf sigmoid

nu 0.5 0.996

gamma 0.05 4.280e-05

coef0 N/A 0.103

LOF
n_neighbors 20 500

metric Euclidean Chebyshev

ABOD n_neighbors 5 92

kNN
n_neighbors 5 500

metric Euclidean Chebyshev

HBOS

n_bins 10 10

alpha 0.1 0.827

tol 0.5 0.754

MCD support_fraction 0.5 0.714

PCA

n_components All 3

weighted True False

whiten False True

Markov Chain divisions N/A 8

HMM n_states N/A 8

GVFOD

divs_per_dim

N/A

[7, 7, 2]

numtilings 2

discount_rate 0.96

step_size 0.052

lambda 0.209

beta 888

We learn predictions by forming predictive questions
(Sutton et al., 2011) about our sensor signals, which we phrase
as GVFs—predictions about a signal of interest, or cumulant, C,
from the environment over some time-scale or horizon defined by
γ ∈ [0,1), and a behaviour policy π.The discounted future sumof the
cumulant is known as the return, Gt = ∑

∞
k=0γ

kCt+k+1. A GVF is the

expected return of this cumulant:V(x;π,γ,C) = 𝔼[Gt|Xt = x], which
can be estimated using incremental online learning methods, such
as TD learning (Sutton and Barto, 2018). The learning algorithm,
TD(λ), and the TD-error, δ, are shown in Algorithm 1, lines 3–8.
TD(λ)uses a step-sizeα and a trace-decay parameter λ.The step-size,
along with the TD-error, determine the magnitude of GVF updates.
The trace-decay parameter, λ, determines how much the current
TD-error will update GVF estimates in previously visited states.

Like in Markov chains, GVFs use sensory observations as
state. Features are constructed from observations using tile
coding. Tile coding ϕ:ℝk↦ {0,1}d, maps observations from a
bounded continuous space into a sparse binary feature vector,
and is a common technique from Sutton and Barto (2018)
Tile coding has two hyperparameters. divs_per_dim ∈ ℕk defines
how many divisions are made in each dimension—resulting in
a grid of tiles. The size of a tile limits the extent to which
learning on one state can generalize to neighboring states. n_
tilings ∈ ℕ determines the number of offset tilings to use.
It also determines the number of ones in the feature vector.
Combined, divs_per_dim and n_tilings determine the specificity of
the features.

In this paper, we leverage a signal, called Unexpected
Demon Error (UDE) (White, 2015). This signal is a measure
for unexpected changes in the TD-error due to changes in
the environment. The UDE can be thought of as surprise
(Günther et al., 2018) and is potentially a useful measure for
outlier detection. Mathematically, the UDE for a sensor is
calculated as

UDE (t,δ) = ||

|

1
β
∑t−1

i=t−β
δi

σδ,[t] + ϵ
||

|

(1)

where β is a slidingwindowwidth that defines the timescale of recent
TD-errors; σδ,[t] is the standard deviation of TD-errors prior to t; and
ϵ is a small constant to prevent division by zero. Intuitively, the UDE
learns the recent distribution of TD-errors and will therefore only
spike if the environment provides the learning agent with signals
that are new.

We use linear function approximation in conjunction with tile
coding to approximate the true value function. The form of the GVF
estimate is v̂(xt) = w⊺ ⋅ϕ(xt), where w are the weights to be learned,
x are the sensor values, and ϕ is the tile coder which creates the
linear basis functions of v̂. When combined with linear function
approximation, temporal-difference learning scales linearly with the
number of features, making it an excellent candidate for real-world
tasks (Sutton and Barto, 2018).

3 General value function outlier
detection (GVFOD)

Given a training dataset {X i ∣ X i ∈ ℝT×k; i ∈ [n]}, GVFOD
requires that the time series are ordered chronologically, so they
can be unrolled into a single time series X ∈ ℝ(nT)×k. For each of
the k sensors, a GVF is learned, which combined serve as a model
of normality. The learning phase then proceeds as in Algorithm 1.
Evaluation of test data can be seen in Algorithm 2.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

1:Using training data X ∈ ℝ(nT)×k

2:Initialize weights w = 0d×k, traces z = 0d×k,

TD-errors δ = 0(nT)×k, scalar step size α, surprise

UDE ∈ ℝ(nT)×k, outlier scores OS ∈ ℝn, and scalar

outlier threshold OS∗

3:Repeat for each sensor j ∈ [k]:

4:  Observe xt = x0: = X0,:
5:  For each subsequent observation xt+1 in X

6:   δ← xt+1,j +γw⊤j ⋅ϕ(xt+1) −w
⊤
j
⋅ϕ(xt)

7:   zj← γλzj +ϕ(xt)

8:   wj← wj +αδzj
9:Repeat for each sensor j ∈ [k]:

10:  Observe xt = x0: = X0,:
11:  For each subsequent observation xt+1 in X

12:   δtj← xt+1,j +γw⊤j ⋅ϕ(xt+1) −w
⊤
j
⋅ϕ(xt)

13:   UDEtj← UDE(t,δ[t],j) # See Eq. 1

14:Repeat for each period i ∈ [n]:

15: OSi← OSGVFOD(i,UDE) # See Eq. 2

16:OS∗ ← quantile(OS, (1−α))

17:return w,OS∗

Algorithm 1. General Value Function Outlier Detection (Training).

Compared to a typical application of TD(λ) and UDE, GVFOD
is now an offline learning algorithm, requiring two passes through
the training data. The first pass (lines 3–8) learn the weights in
order to make accurate predictions about the data. In the second
pass through the data (lines 9–13), the weights are fixed, and no
model updates occur. The computational complexity, like TD(λ),
scales linearly with the number of features (d), the experience (nT)
and the number of sensors (k).

The outlier scores for a single period are calculated as the
average surprise (UDE) over the k sensors and T time steps. For a
multivariate time series X i, the scalar outlier score is

OSGV FOD (X i) =
1
Tk

(i+1)T−1

∑
t=iT
∑
j∈[k]

UDEj (t) (2)

when the model encounters surprising data, the outlier score will
increase, indicating anomalous behaviour. Because weights are fixed
during inference—no learning is occurring, and the UDE and
corresponding OSGVFOD remain elevated during the entire duration
of abnormal behavior. This contrasts with the original online
implemention ofUDE (Günther et al., 2018), whereUDE eventually
dies down as the learners adapt to new operating conditions.

There are many hyperparameters for GVFOD. divs_per_dim
and n_tilings were previously discussed for tile coding. The
discount rate γ ∈ [0,1), step-size α ∈ (0,n_tilings−1], and trace-decay
parameter, λ ∈ [0,1), are part of the original TD(λ) algorithm. β ∈ ℕ
determines the sliding window width for UDE calculation. Notice
also that λ and α are used only in the training phase, and all
other hyperparameters are used in both training and testing. Albeit
numerous, selection of these hyperparameters is straightforward
and demonstrated in Section 5.

A Python implementation of GVFOD is provided on GitHub.

1:Using weights w, an outlier threshold OS∗, and

testing data X ∈ ℝ(nT)×k

2:Initialize TD-errors δ ∈ 0(nT)×k, surprise

UDE ∈ ℝ(nT)×k, outlier scores OS ∈ ℝn, and outlier

classifications y ∈ {0,1}n

3:Repeat for each sensor j ∈ [k]:

4:  Observe xt = x0: = X0,:
5:  For each subsequent observation xt+1 in X

6:   δtj← xt+1,j +γw⊤j ⋅ϕ(xt+1) −w
⊤
j
⋅ϕ(xt)

7:   UDEtj← UDE(t,δ[t],j) # See Eq. 1

8:Repeat for each period i ∈ [n]:

9:  OSi← OSGVFOD(i,UDE) # See Eq. 2

10:  yi← [OSi > OS∗]

11:return OS, yi

Algorithm 2. General Value Function Outlier Detection (Inference).

4 Experimental setup

A full description of the robotic arm testbench in Figure 1 can be
found in Lipsett et al. (2019). The robot arm is mounted on a stable
platform, with the arm assembly rolling horizontally on a steel plate.
The assembly moves between two angular positions with a period of
10s.There are a total of three sensors: for armposition,motor torque,
and belt tension; sampling data at 200Hz.

A summary of the available data are presented in Table 1, and a
sample of normal data can be seen in Figure 3. Each sample, X i ∈
ℝ2000×3, is a multivariate time series containing the observations
from each sensor for the entire period. Three sensors are installed
- an encoder for arm position, a strain gauge on the motor output
shaft to measure torque, and a strain gauge on the rubber belt to
measure tension. To collect normal operating data, the arm was
allowed to operate undisturbed for roughly 22 h, creating a total
of 7193 samples. The machine was then stopped, and modified, to
create a faulty operating condition. Five of these abnormal datasets
were collected: three contain data from varying the belt tension level;
one contains data from a sandy rolling surface; and one contains
data from both high belt tension and high operating temperature1.
The data was cleaned by removing the startup and shutdown data,
including the first and last periods if they were incomplete. In all
subsequent experiments, we use Loose L1 data as the sole source of
abnormal data, since its operation is most similar to normal data,
and demonstrates the worst-case performance on this collection of
data (Riazi et al., 2019).

Furthermore, we have split each normal and abnormal dataset
into two parts. The first part—the tuning dataset(s)—contains
roughly the first half of available data: 4197 samples of normal data,
and the first half of each of the abnormal classes. The tuning dataset

1 The complete dataset and results of hyperparameter search can be

found at https://figshare.com/s/4db1bbe92998aaf34323. The code to

use GVFOD (including software requirements) to reproduce these

experiments is on GitHub.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://github.com/andywong36/GVFOD
https://figshare.com/s/4db1bbe92998aaf34323
https://github.com/andywong36/GVFOD
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

FIGURE 4
The presented figure depicts the performance of models on tuning data, as evaluated by three distinct metrics. The three rows of the figure illustrate
the average and variance of the precision score, recall score, and f1-score, respectively, across different sizes of the training data. A heat-map is used to
represent the average performance, while a violin plot is employed to visualize the variance. In the violin plot, a significant deviation from the horizontal
line for each algorithm indicates a high level of variance.

is used for hyperparameter selection2 using the Tree of Parzen
Estimators (TPE) algorithm (Bergstra et al., 2011). The second
part—the evaluation dataset(s)—consists roughly of the latter half
of data: 4196 samples of normal data, and the last half of each of the
abnormal classes. It is used solely for evaluation. In this way, there is
minimal overlap in normal data between the tuning and evaluation
datasets, and no overlap for the abnormal data. We reiterate that
this does not follow the typical train-validate-test splitting of typical
machine learning problems, due to restriction that training data
consists only of normal data, and must precede the normal data
in the test set. We instead choose train-validate-test datasets that
minimize the amount of data overlap between folds, while ensuring
data is contiguous within folds (Wong, 2021).

The values that were found by TPE for GVFOD are shown in
Table 2. The default and TPE search values for all other algorithms
are shown in Table 3. The TPE algorithm evaluated 400 candidate
parameter combinations and picked the best, using the tuning
dataset.With the exception of theHMMmodel, this heuristic search
was completed in a similar manner for all other outlier detection
algorithms, and all were limited to the same number of trials.

2 Due to its complex tree structure, the search space is described in the

code on GitHub.

Expert selection of the only HMM hyperparameter—the number
of hidden states—was used in all experiments due to computational
constraints.

In order to realistically evaluate the performance of the
multivariate and temporal outlier detection methods for machine
fault detection, we design our experimental training and testing data
to emulate a real CBM implementation. Samples in a single dataset
are always ordered consecutively. Data in the training set consists
only of normal samples, collected immediately prior to normal
samples in the testing set.The size of the training set is variable to see
how algorithms react to varying training data availability.The testing
set contains both normal samples and ones from a single fault class.
In the testing set, the abnormal data are appended to the end of the
normal data, as a machine would typically enter a faulty condition
after it has been operating normally. Lastly, the quantity of normal
and abnormal samples in the testing set are fixed, unlike the sample
size in the training set.

For all multivariate techniques, the 6000 features were scaled
to have zero mean and unit variance. Certain multivariate outlier
detection techniques perform poorly with high-dimensional data.
For OCSVN, LOF, ABOD, kNN, and MCD, principal components
analysis was used to decompose the input space into the 20
covariates, which cumulatively represent 96.2% of the total variance
in the original data.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://github.com/andywong36/GVFOD
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

FIGURE 5
The presented figure depicts the performance of models on evaluation data, as evaluated by three distinct metrics. For more information about each
figure, please refer to the caption of Figure 4.

5 Results and discussion

For every experiment, 20 runs were completed; the runs are not
fully independent, but we minimized the amount of overlapping
data between runs. The measures of performance include precision,
recall, and F1-score. All results reported include 95% confidence
intervals of the mean response. To ensure statistical relevance of
our results, we also performed paired-sample t-tests. In all cases,
GVFOD had statistically significantly better F1 score as compared
to each competing algorithm, at the 5% significance level, when
presented with 2000 training data samples.

The performance of GVFOD relative to other outlier detection
methods on the tuning data is shown in Figure 4. Since this data was
also used for hyperparameter tuning, the results are not indicative
of true model performance. However, there are several notable
peculiarities in the results.

In a machine fault detection context, precision is poor when
normal operation is improperly classified as faulty, whereas recall is
poor when faulty operation is improperly classified as normal.

From the recall heat-map in the second row of Figure 4, we
can interpret that the vast majority of algorithms will successfully
detect true machine faults. However, the precision heat-map in the
first row of Figure 4 shows that it was difficult to achieve accurate
classification of normal behavior. In production, a CBM system
constantly reporting faults erroneously will result in excessive

maintenance activity, and reduce user trust in the fault detection
system (Kay et al., 2015).

Furthermore, with limited training data, model performance
is degraded as expected. However, the precision heat-map
in Figure 4 shows that increasing the available training data
beyond 1300 periods results in reduced precision for multivariate
techniques. There are two plausible explanations for this. Firstly, the
hyperparameters were optimized for F1-score at a training data size
of 1000. The hyperparameters could be overfit for this training size.
Secondly, the normal training data could be non-stationary. Non-
stationarity is defined as a shift in the sampling distribution of the
robot arm data—as more training data accumulates, the subsequent
normal testing data is sampled from a distributionmore distant than
the distribution of the initial training data.

To determine which of the two proposed factors more likely
caused the observed drop in performance at larger training sizes, the
model is evaluated on the evaluation half of the dataset in Figure 5.
Again, we see that most algorithms exhibit similar recall (heat-map
on the second row of Figure 5) and are better differentiated by their
precision (heat-map on the first row of Figure 5). For multivariate
outlier techniques, there is a reduction in precision as training data
increases from 500 periods to 1500 periods. By visual inspection, it
is clear that the performance of all algorithms changes significantly
between Figures 4, 5. The first suspicion when observing this
discrepancy is hyperparameter overfitting. However, because of

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

unusual variation in performance as training data quantity changes
(within both tuning and evaluation datasets), we suspect that there
is significant non-stationary behavior in the normal operation of the
robot arm.

To further investigate this claim, we completed experiments
using default hyperparameters for the multivariate outlier
detection algorithms. These default values are provided by PyOD
(Zhao et al., 2019), and represent a real-world deployment of
machine fault detectionwhere no fault data is available. ForGVFOD,
no default parameters are provided in this paper. However, we
propose some guidelines to select these parameters based upon
knowledge of the machine and of reinforcement learning. To the
best of our ability, we selected the hyperparameters based on these
guidelines, with no manual tuning based on model performance.

• divs_per_dim: the number of tiles (or bins) to have for
each dimension (sensor). The chosen value is (10,10,10),
which corresponds to the number of tiles for position, torque,
and tension respectively. This determines the amount of
generalization: learning on one state can at most affect value
function estimates of states 1

10
= 10% of the sensor range in

either direction.
• n_tilings (m): the number of offset tilings to use. It also

determines the number of ones in the feature vector.The chosen
value is 10. Combined with the previous choice of divs_per_
dim, there is 1

10×10
= 1% resolution in each dimension.

• discount_rate (γ): The chosen value is 0.9. This yields a pseudo-
horizon of theGVF predictions of 1

1−0.9
= 10 time-steps, and the

discounted sum (and the value function) will be roughly ten
times the scale of the sensor value (cumulant).
• step_size (α): the amount of correction with each visit to a state.

The chosen value is 0.001. If there is no noise, and the true
value function is fully representable with the feature mapping,
the ideal value is always m−1. With a step_size of 1

m
× 1

100
, the

error would decay to zero in 100 visits to that state if the initial
magnitude of value estimate updates are maintained.
• lambda (λ): the trace-decay parameter. The chosen value was

0.1. This value is typically fairly arbitrary - larger values pass
more information backwards in time to update previously
visited states, but have higher variance.
• beta (β): the “window width” for UDE. The chosen value was

250. This should be set to a value representative of how many
time steps it would take to recognize an outlier. Since the period
of the robot arm is 2000 steps, a choice of 250 is reasonable.

The Markov chain and HMM models also do not have default
hyperparameters. For Markov Chain, divs_per_dim, was kept the
same as its optimized value of (8,8,8). This results in 83 = 512
states. By our judgment, this is a reasonable expert-selected value
for our robot-arm application. Likewise, the hyperparameter for
HMM was kept the same (8 internal states), due to computational
constraints. This is supported by the algorithm runtimes in Table 4.
The computations were performed using a system with an AMD
Ryzen 74800H CPU with a 2.90 GHz clock rate, 8 MB of shared L3
cache and 16 GB DDR4-3200 RAM.

The same comparisons between algorithms on the two datasets
are shown in Figures 6, 7. Again, we see that there is a significant
difference in performance between the two datasets. Since no

TABLE 4 Algorithm runtime. The median time is reported, using tuned
hyperparameters.

Algorithm Training data (samples) Testing
data

(samples)
700

700 1400

Time (s)

IForest 2.26 5.44 0.89

OCSVM 0.03 0.13 0.01

LOF 0.05 0.12 0.04

ABOD 38.51 76.93 38.15

KNN 0.04 0.11 0.11

HBOS 1.45 1.82 0.11

MCD 0.69 0.84 0.00

PCA 0.35 0.75 0.04

MarkovChain 5.98 11.84 4.08

HMM 980.09 1959.79 7.99

GVFOD 2.14 4.35 0.95

parameter fitting was done, we can confidently conclude that there
is a significant shift in the sampling distribution of normal data
over time.

In general, multivariate outlier detection algorithms behaved
as expected when comparing optimized and default parameters.
LOF, kNN, OCSVM, and MCD exceed mean F1 of 80%
at a training data size of 1000 periods using optimized
parameters, but do not exceed 80% at any training size using
default parameters.

Interestingly, the expert-selected parameters for GVFOD were
better than the optimized values. Due to computational constraints,
GVFOD hyperparameter tuning was only allocated 400 evaluations
of the objective function. The objective is the mean F1-score
with a training data size of 1000 periods, on the tuning dataset.
The optimized parameters reached mean F1 of 96.8%, while the
expert selected parameters yielded a mean F1 of 98.8%3. Because
of the intuitive nature of GVFOD hyperparameters, they can be
well-matched to a machine given machine knowledge (such as
sampling frequency, number of sensors, period, etc.), outperforming
optimization algorithms, even though the optimization algorithm is
given access to fault data.

In the precision heat-maps of Figures 5, 7, we see that the
mean precision of GVFOD increases when the availability of
training data increases. Other algorithms do not always exhibit
this behavior. One hypothesis to explain this behavior lies within

3 Reported on the tuning data, due to the confounding nature of non-

stationarity on the evaluation data.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

FIGURE 6
The presented figure depicts the performance of models with default hyperparameters on tuning data, as evaluated by three distinct metrics. For more
information about each figure, please refer to the caption of Figure 4.

the design of the TD(λ) learning algorithm. TD(λ) has a constant
step-size parameter. Because of this, it will tend to overwrite
previously learned state-value estimates as it learns, effectively
assigning larger weights to data later in the training process.
This tracking behavior allows it to better adapt to non-stationary
operating data. It also results in an algorithm that better classifies
normal data in the testing phase, since the normal testing data is
collected immediately after the training data. Moreover, because
the distribution of GVFOD outlier scores are calculated using
the biased model, GVFOD learns not only normal behavior -
but the range of non-stationarity that is acceptable in normal
behavior. This conclusively explains why GVFOD achieves better
precision (with no penalty to recall) compared tomultivariate outlier
detection methods on this dataset, when allocated large amounts of
training data.

We see that GVFOD has higher variance in precision compared
to most other algorithms through Figures 5, 7. This is especially
apparent comparing the performance of Markov Chain outlier
detection to GVFOD—both are state-space time series models,
while Markov Chain is significantly more consistent, both in
variation within a training data quantity, and between training data
quantities.This can be a significant problem for GVFOD in practice,
since high variance can manifest as inconsistent fault detection
performance. However, given sufficient training data for our robot-
arm (e.g. beyond 1500 training samples), we observe consistently
better precision than other algorithms, which we believe to be

an acceptable compromise for less consistent behavior with less
training data.

6 Future work

GVFOD is presented here as a batch algorithm, as it requires
two passes over the training data in order to learn the GVFs.
A preliminary online and incremental version of GVFOD has
been derived, but it is currently inapplicable to all but the
smallest datasets due to computational constraints. As presented
in this paper, GVFOD can only be applied used in situations
where a machine starts operating in known-good conditions.
An online implementation of GVFOD could be applied more
broadly to situations where fault detection is required from
system startup - but this would not alleviate concerns of large
data requirements before reaching acceptable levels of precision
and recall.

GVFOD is a general algorithm and not specifically tailored to
the data in this paper. As it learns shifts in the data distribution,
we expect it to generalize well to other applications and data
sets, including aperiodic time series data. This intuition needs to
be validated in future work by using data from other domains.
Furthermore, we are applying GVFOD to simulated environments
where failure can be controlled precisely, in order to evaluate how
the algorithm performs in gradual-failure scenarios.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

FIGURE 7
The presented figure depicts the performance of models with default hyperparameters on evaluation data, as evaluated by three distinct metrics. For
more information about each figure, please refer to the caption of Figure 4.

7 Conclusion

In this paper we used General Value Functions (GVFs) as
a means to detect outliers in robotic data. The data is collected
from a robot that emulates an industrial actuator—a machine
that is widespread over various applications in daily life as
well as in industry. We compared our new algorithm, called
General Value Function Outlier Detection (GVFOD), to existing
methods for outlier detection in multivariate data. As GVFOD
uses reinforcement learning methods, we expect it to be better
suited for time-series data than traditional methods. GVFOD
exhibits higher precision paired with a comparable recall as existing
methods, making it a more suited approach. While GVFOD
has a high variance when only trained on a small data set,
its performance significantly improves with more data. Overall,
GVFOD outperforms the traditional outlier detection algorithms.
As the hyperparameters are intuitive to select based on knowledge
about the application, this algorithm is a viable solution to
allow for condition-based maintenance in industrial applications.
The results in this paper demonstrate how predictions, learned
via reinforcement learning methods, can be used in real-world
applications. To the best of our knowledge, this paper is the first
demonstration of General Value Functions to be used for outlier
detection in an industrial setting. With its improved performance
when compared to traditional outlier detection methods GVFOD

allows for better predictive maintenance, saving resources and cost
in the process.

Data availability statement

The complete dataset and results of hyperparameter search can
be found at https://figshare.com/s/4db1bbe92998aaf34323.The code
to use GVFOD and to reproduce these experiments is at https://
github.com/andywong36/GVFOD.

Author contributions

AW implemented the algorithms and wrote the draft of the
paper. MT analyzed the experimental results and turn them
into understandable formats, and revised the paper. JG and
OZ were supervisors of the project and TT was the industrial
supervisor. All authors contributed to the article and approved the
submitted version.

Funding

The funding for this project was provided by Mitsubishi Electric
Co. and Alberta Machine Intelligence Institute.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://figshare.com/s/4db1bbe92998aaf34323
https://github.com/andywong36/GVFOD
https://github.com/andywong36/GVFOD
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wong et al. 10.3389/frobt.2024.1214043

Conflict of interest

Author TT was employed by Mitsubishi Electric Co.
The remaining authors declare that the research was

conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
anddonotnecessarilyrepresent thoseof theiraffiliatedorganizations,
or those of the publisher, the editors and the reviewers. Any product
thatmay be evaluated in this article, or claim thatmay bemade by its
manufacturer, is not guaranteedor endorsedby thepublisher.

References

Arnold, J. (1970). A Markovian sampling policy applied to water quality monitoring
of streams. Biometrics 26, 739–747. doi:10.2307/2528720

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). “Algorithms for hyper-
parameter optimization,” in Advances in neural information processing systems 24
Editors J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.Weinberger (Red
Hook, NY, United States: Curran Associates, Inc.), 2546–2554.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). “LOF: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA: Association for Computing
Machinery), SIGMOD ’00, New York; NY; United States, May 15 - 18, 2000, 93–104.
doi:10.1145/342009.335388

Goldstein, M., and Dengel, A. (2012). Histogram-based outlier score (hbos): a fast
unsupervised anomaly detection algorithm. KI-2012 poster demo track 1, 59–63.

Günther, J., Kearney, A., Dawson, M. R., Sherstan, C., and Pilarski, P. M.
(2018). “Predictions, surprise, and predictions of surprise in general value function
architectures,” in Proceedings of the AAAI Fall Symposium on Reasoning and Learning
inReal-World Systems for Long-TermAutonomy. 22–29,Arlington,VA, 18–19October
2018.

Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., and Diepold, K. (2016). Intelligent
laser welding through representation, prediction, and control learning: an architecture
with deep neural networks and reinforcement learning. Mechatronics 34, 1–11.
doi:10.1016/j.mechatronics.2015.09.004

Gupta, M., Gao, J., Aggarwal, C. C., and Han, J. (2014). Outlier detection
for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26, 2250–2267.
doi:10.1109/TKDE.2013.184

Hodge, V., and Austin, J. (2004). A survey of outlier detection methodologies. Artif.
Intell. Rev. 22, 85–126. doi:10.1023/B:AIRE.0000045502.10941.a9

Jardine, A. K., Lin, D., and Banjevic, D. (2006). A review on machinery diagnostics
and prognostics implementing condition-basedmaintenance.Mech. Syst. signal Process.
20, 1483–1510. doi:10.1016/j.ymssp.2005.09.012

Kay, M., Patel, S. N., and Kientz, J. A. (2015). “How good is 85%? a survey tool to
connect classifier evaluation to acceptability of accuracy,” in Proceedings of the 33rd
annual ACM conference on human factors in computing systems, Seoul, Republic of
Korea, April 18-23, 2015, 347–356.

Kriegel, H.-P., Schubert, M., and Zimek, A. (2008). “Angle-based outlier detection
in high-dimensional data,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, Las Vegas, Nevada, USA, August
24-27, 2008, 444–452.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., and Lin, J. (2018).Machinery health prognostics:
a systematic review from data acquisition to rul prediction. Mech. Syst. signal Process.
104, 799–834. doi:10.1016/j.ymssp.2017.11.016

Lipsett, M., Maltais, A., Riazi, M., Olmedo, N., and Zaiane, O. (2019). “Robot
manipulator drive fault diagnostics using data-driven and analytical modelling,” in Proc
machinery failure prevention tech (MFPT) (king of prussia, PA), 12.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). “Isolation forest,” in 2008 eighth
ieee international conference on data mining (IEEE), Pisa, Italy, 15-19 December 2008,
413–422.

Pimentel, M. A., Clifton, D. A., Clifton, L., and Tarassenko, L. (2014). A
review of novelty detection. Signal Process. 99, 215–249. doi:10.1016/j.sigpro.
2013.12.026

Ramaswamy, S., Rastogi, R., and Shim, K. (2000). “Efficient algorithms for mining
outliers from large data sets,” in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, Dallas, Texas, May 16-18, 2000, 427–438.

Riazi, M., Zaiane, O., Takeuchi, T., Maltais, A., Günther, J., and Lipsett, M.
(2019). “Detecting the onset of machine failure using anomaly detection methods,” in
International Conference on Big Data Analytics and Knowledge Discovery (Springer),
Linz, Austria, 26-29 August 2019, 3–12.

Rousseeuw, P. J. (1984). Least median of squares regression. J. Am. Stat. Assoc. 79,
871–880. doi:10.1080/01621459.1984.10477105

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt, J. (1999).
“Support vector method for novelty detection,” in Proceedings of the 12th International
Conference on Neural Information Processing Systems (Cambridge, MA, USA: MIT
Press), NIPS’99, Denver, Colorado, USA, November 29 - December 4, 1999, 582–588.

Schreiber, J. (2017). Pomegranate: fast and flexible probabilistic modeling in python.
J. Mach. Learn. Res. 18, 5992–5997. doi:10.48550/arXiv.1711.00137

Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., and Chang, L. (2003). A novel anomaly
detection scheme based on principal component classifier. Philadelphia, PA,United States:
Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering. Tech. rep.

Si, X.-S., Wang, W., Hu, C.-H., and Zhou, D.-H. (2011). Remaining useful life
estimation–a review on the statistical data driven approaches. Eur. J. operational Res.
213, 1–14. doi:10.1016/j.ejor.2010.11.018

Smyth, P. (1994). Hidden markov models for fault detection in
dynamic systems. Pattern Recognit. 27, 149–164. doi:10.1016/0031-
3203(94)90024-8

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Mach. Learn. 3, 9–44. doi:10.1007/
bf00115009

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction.
Massachusetts, United States: MIT press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A.,
et al. (2011). “Horde: a scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction,” in Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems-Volume 2 (AAMAS),
Taipei, Taiwan, May 2-6, 2011, 761–768.

White, A. (2015). Developing a predictive approach to knowledge. Edmonton, AB,
Canada: University of Alberta. Ph.D. thesis.

Wong, A. (2021). Intelligent machine reliability with general value functions.
Edmonton, AB, Canada: University of Alberta. Master’s thesis.

Ye, N. (2000). “A Markov chain model of temporal behavior for anomaly detection,”
in Proceedings of the 2000 IEEE Systems,Man, andCybernetics InformationAssurance
and Security Workshop (Citeseer), vol. 166, West Point, NY, June 2006, 169.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). PyOD: a python toolbox for scalable outlier
detection. J. Mach. Learn. Res. 20, 1–7. doi:10.48550/arXiv.1901.01588

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1214043
https://doi.org/10.2307/2528720
https://doi.org/10.1145/342009.335388
https://doi.org/10.1016/j.mechatronics.2015.09.004
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1080/01621459.1984.10477105
https://doi.org/10.48550/arXiv.1711.00137
https://doi.org/10.1016/j.ejor.2010.11.018
https://doi.org/10.1016/0031-3203(94)90024-8
https://doi.org/10.1016/0031-3203(94)90024-8
https://doi.org/10.1007/bf00115009
https://doi.org/10.1007/bf00115009
https://doi.org/10.48550/arXiv.1901.01588
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Background and methods
	2.1 Multivariate outlier detection
	2.2 State-space models for temporal outlier detection
	2.3 Prediction learning methods and general value functions

	3 General value function outlier detection (GVFOD)
	4 Experimental setup
	5 Results and discussion
	6 Future work
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

