
TYPE Original Research
PUBLISHED 13 March 2024
DOI 10.3389/frobt.2024.1172105

OPEN ACCESS

EDITED BY

Panagiotis Tsiotras,
Georgia Institute of Technology, United States

REVIEWED BY

Andrea Testa,
University of Bologna, Italy
Jakob Foerster,
University of Oxford, United Kingdom
Matthew Jackson,
University of Oxford, United Kingdom in
collaboration with reviewer JF

*CORRESPONDENCE

Michael A. Sebok,
sebokm@udel.edu

†PRESENT ADDRESS

Michael A. Sebok, Manufacturing

Demonstration Facility, Oak Ridge National

Laboratory, Oak Ridge, TN, United States

RECEIVED 23 February 2023
ACCEPTED 14 February 2024
PUBLISHED 13 March 2024

CITATION

Sebok MA and Tanner HG (2024), Cooperative
planning for physically interacting
heterogeneous robots.
Front. Robot. AI 11:1172105.
doi: 10.3389/frobt.2024.1172105

COPYRIGHT

© 2024 Sebok and Tanner. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Cooperative planning for
physically interacting
heterogeneous robots

Michael A. Sebok*† and Herbert G. Tanner

Department of Mechanical Engineering, University of Delaware, Newark, DE, United States

Heterogeneous multi-agent systems can be deployed to complete a variety
of tasks, including some that are impossible using a single generic modality.
This paper introduces an approach to solving the problem of cooperative
behavior planning in small heterogeneous robot teams where members can
both function independently as well as physically interact with each other in
ways that give rise to additional functionality. This approach enables, for the first
time, the cooperative completion of tasks that are infeasible when using any
single modality from those agents comprising the team.

KEYWORDS

heterogeneousmulti-agent systems, robot planning and control, cooperative planning,
hybrid automata, physical interaction

1 Introduction

While cooperative robot behavior for spatial deployment and object manipulation has
been studied in length both for homogeneous and heterogeneous robot groups, the latter
case can leverage both plurality and diversity to complete tasks that would be nontrivial
or impossible with a homogeneous group of any single available robot modality. The
possibility of exploiting robot heterogeneity and diversity coupled with physical interaction
to carry out otherwise infeasible missions has not been adequately investigated, and as
a result part of a collaborative system’s potential remains untapped. In the function of
heterogeneous human teams, teammate diversity can be instrumental when leveraged
properly in a variety of application scenarios. There are instances in literature where robot
heterogeneity was essential in accomplishing the task at hand. Mellinger et al. (2013) use a
combination of a wheeled mobile robot and a quadrotor to extend the operational range
of the latter. Another example is the work of Kiener and von Stryk (2007) in which a
robotic wheelchair needs to transport a humanoid to a location where the humanoid
needs to kick a ball. Yet another example is the approach of Huntsberger et al. (2003)
who consider multiple planetary rovers which may not necessarily differ morphologically,
but they have different capabilities. In general, however, fully leveraging diversity and
heterogeneity in heterogeneous robot teams is nontrivial. The development of efficient
planning and control algorithms for heterogeneous groups presents unique challenges due
to the varied capabilities and operational constraints of individual agents. What is more, the
intricacies of nontrivial types of physical interaction necessitate the incorporation of some
of the agents’ underlying continuous dynamics, which significantly complicates analysis and
inhibits planning algorithm scalability.

Consider a scenario where a small heterogeneous robot team is tasked to complete a
mission that is beyond the inherent capabilities of any of its members. Assume that the
inherent capabilities of robot team members are enabled by appropriate underlying control

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1172105
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1172105&domain=pdf&date_stamp=2024-03-09
mailto:sebokm@udel.edu
mailto:sebokm@udel.edu
https://doi.org/10.3389/frobt.2024.1172105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1172105/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1172105/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1172105/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 1
Cooperation of robots utilizing physical interaction for overcoming otherwise insurmountable obstacles. (A) The quadrotor lands in front of the ground
vehicle; (B) The tip of the ground vehicle’s spool attaches to the quadrotor’s velcro apron; (C) The quadrotor takes off to fly over the fence, tethered on
the ground vehicle which lets the line reel out; (D) The quadrotor lands on the other side of the fence; (E) The ground robot uses its powered spool to
reel in the line and climb vertically against the fence; (F) The ground robot has made it over the fence and is on its way to the soft landing area on the
other side of the fence.

loops. Each control loop gives rise to one of a finite collection of
possible actions that the robot can carry out. The robots comprising
this team are capable of physically interacting (e.g., pushing, pulling,
lifting, etc.) with each other and possibly with portions of their
environment.

Physical interaction between a robot and its environment has
been demonstrated to be potentially advantageous for mission
completion (Karydis et al., 2014; Stager and Tanner, 2020; Stager
and Tanner, 2016; Stager and Tanner, 2019). In addition, some
types of physical interaction between robots can significantly change
the dynamics of the agents involved (e.g., when an aerial robot
lifts a wheeled robot, the aerial robot’s inertial characteristics
change and contact constraints for the ground robot are now lifted)
(Mellinger et al., 2011). Here we are focusing on the latter kind of
interaction, and are particularly interested in tasks that no single
modality of robots in this team, regardless its scale, can carry
out on their own (e.g., wheeled robots cannot jump to the other
side of a fence; see Figure 1); meanwhile, a deliberate interaction
and physical coupling between the heterogeneous teammates can
make this task possible. This paper describes a methodological
framework for identifying the type of physical interactions needed
for the desired cooperative task completion, and for planning the
sequence of actions that the robot teammates need to undertake
to execute the task. It should be noted that physical interaction
with the environment as well as non-physical interaction between
agents are also allowable within this framework. However, non-
physical interactions have been extensively studied within the
existing literature so this work primarily focuses on the planning
difficulties unique to physical interaction.

In the case of Figure 1, the sequence of cooperative actions
enabling the ground robot to climb over the fence utilizing
“togglable” physical interaction with an aerial vehicle through a

powered spool mechanism was manually scripted, and the robots
were remotely controlled. This paper offers a methodology for
automating such planning andmission execution processes through
an algorithmic framework focusing on a subclass of heterogeneous
robot groups where physical interaction between teammates can
transform the dynamics of the combined system. This application
of physical interaction enables planned actions that are not
within the action space of any agent acting individually. Existing
planning and control theoretical frameworks for heterogeneous
groups are poorly equipped to model system functionality that
exists due to physical interaction and fully leverage this type of
heterogeneity. This paper therefore (i) narrows the gap by providing
methodological innovations in modeling cooperative behavior
arising from nontrivial system coupling, and (ii) demonstrates that
they facilitate the discovery of cooperative robot plans that are
beyond the solution space of existing approaches.

To enable and regulate coupling between the cooperating
robotic agents, as well as accurately predict agent evolution in their
physical workspace, a suitable hybrid dynamical system modeling
formulation is adapted to capture the full closed-loop dynamics
of the robot team members. Then, a new formal operation for
composing system behavior in heterogeneous robot teams, inspired
by constructs found in the field of computational and mathematical
linguistics, is introduced and exploited to create a comprehensive
model of system dynamics and available behaviors. This (discrete)
behavior composition approach offers two distinct advantages:
it curbs the growth of computational complexity when robot
teams increase in size, and it exposes new behaviors that become
possible when individual team members couple with each other.
Subsequently, discrete abstractions of the closed-loop hybrid agent
dynamics are utilized to transfer the planning problem to a purely
discrete space. When formulated in this way, and with guidance

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

from appropriate objective functions that draw from the continuous
systemdynamics, discrete optimization algorithms can discover new
solutions to cooperative planning problems that until recently would
be considered infeasible.

This cooperative planning methodological framework is
validated in two heterogeneous system case studies. The first is
motivated by the scenario of Figure 1 and is also utilized in the
remainder of this paper as a running example which strongly
leverages physical interaction between individual robots. This
study utilizes a pairing between an unmanned aerial vehicle
(UAV) and an unmanned ground vehicle (UGV) through a novel
electromechanical design that allows optional and controlled
UAV–UGV tethering. The second case study leverages a different
type of physical interaction with a wheeled UGV and a walking
UGV that join together magnetically to give rise to a mobile
manipulator.

2 Related work

2.1 Physical interaction in multi-agent
systems

Physical interaction between robots is commonly used to extend
the functionality of multi-robot systems. Tethered connections
between robotic vehicles are only one example of how physical
interaction can be realized and leveraged. In this particular
direction, for instance, one can bring up the case of Miki et al.
(2019), who feature a tethered UAV/UGV system that can be
used to climb obstacles and which bears conceptual similarities
to the first case study treated in this paper. Others have used a
tether simply to deliver additional power in a UAV/UGV system
(Ogusu et al., 2020; Sutera et al., 2020). Tethers were also used in
a multi-UGV system to lower one of the vehicles over the edge of
a cliff (Pirjanian et al., 2002) and a reversible connection (Casarez
and Fearing, 2016) which allows two crawling vehicles to traverse
a vertical step. Outside the tethered robotics area, we find the
work of Mathews et al. (2010) who leverage a supervisory UAV in
coordinating a group of UGVs to connect together to form a bridge.
The aforementioned cases are merely a small sample of examples
in literature where physical interaction realized via mechanisms
subject to complementarity constraints has been utilized in the
context of cooperative multi-robot behavior. However, most of
these attempts tend to focus primarily on the system dynamics of
physical interaction without addressing the question of how such
interaction can be utilized as a modality within a versatile high-level
planning framework.

2.2 Optimal planning and control of hybrid
systems

The simultaneous and coupled evolution of discrete and
continuous dynamics featured in hybrid dynamical systems
present enormous challenges to optimal control and planning
(Cassandras et al., 2001; Egerstedt et al., 2006; Zhu and Antsaklis,
2015). In optimal control formulations like the ones mentioned,
the sequence of discrete modes through which the system goes

is typically a priori given; in this paper, this sequence is one of
the key variables to be solved for. In general, existing methods for
coordinating optimal behavior in heterogeneous (hybrid) multi-
agent dynamical systems can generally be placed on a spectrum
where on one end one finds purely discrete planners and on the
other continuous optimization methods. One early example of the
former for heterogeneous systems was proposed by Parker (2001)
and enabled groups of ground vehicles to complete tasks such
as cooperatively pushing and repositioning boxes. Fully discrete
methods focus on optimizing over the set of discrete states while
abstracting or approximating the dynamics of the agents on those
states. Planners that work in the continuous space, on the other
hand, can account for more complex dynamics but tend to struggle
with hybrid mode switching, especially when the underlying system
model changes drastically in terms of its continuous, discrete,
or hybrid behavior. One example of a continuous approach to
hybrid system planning is that of Posa et al. (2014) which efficiently
handles complementarity (contact) constraints without having to
distinguish between different discrete modes and engage in any sort
of combinatorial analysis. Another example of an optimal planning
and control method for hybrid systems that lies in between the
two ends of the spectrum and could be applicable in the context
of problems addressed in this paper is the hybrid optimal control
method of Zhao et al. (2020). It is capable of handling both discrete
and continuous dynamics, albeit of relatively small dimensions
and with the latter having to be expressed in polynomial form.
Still, because of its capacity to integrate nonlinear continuous
dynamics it maps closer to the continuous end of the spectrum of
available planning algorithms. On the reciprocal end, one may note
the GRSTAPS algorithm (Messing et al., 2022), which is primarily
discrete, employing a high-level abstraction of the agent dynamics
to derive optimal plans in multi-agent systems. Discrete planning
algorithms fare better for systems with numerous agents and
tasks, whereas continuous planners are more capable of handling
continuous dynamics and may have a better chance of producing
feasible motion plans.

2.3 Existing limitations and proposed
solution

Existing planners are challenged when called to plan for
heterogeneous multi-robot systems that require leveraging physical
interaction between their teammates to complete tasks. The
contact mechanics and its impact on the component system
dynamics place significant challenges to existing approaches, often
leading to paradoxical solutions or failing to identify feasible ones
(Johnson et al., 2016).

Continuous planners consistently fail to capture the emergent
behaviors enabled by physically interacting agents. And while
discrete planners are considerably more efficient and scale better
with the number of agents involved compared to continuous
ones, the often over-simplifying approximations of the continuous
dynamics of the agents can either lead to infeasible plans or
miss a whole range of solutions that are enabled explicitly by the
continuous dynamics that have been abstracted away. Planners
that combine discrete and continuous aspects of system behavior
are still severely limited in the classes of system dynamics

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

they can handle, the size of the overall system in terms of
number of states, and the lack of guarantees for finding feasible
solutions.

The novel planner described in this paper attempts to
retain some of the computational efficiency of discrete planners
while taking the continuous dynamics of each location in the
hybrid automaton into account—the caveat here, and the feature
that facilitates more dynamically consistent abstractions for
subsequent discrete planning, is the closure of control loops at the
continuous layer.

3 Hybrid automata for cooperative
behavior

One commonly employed modeling formalism for modeling an
individual member of a multi-agent system is the deterministic finite
automaton. However, such an automaton is a purely discrete model
of computation and as such has severe limitations with respect to
capturing the physical dynamics of a robot. On the other hand, its
simplicity allows for plans to be generated in an efficient manner. A
finite automaton can be defined as follows:

Definition 1: A finite automaton is a tuple A = ⟨L,A,L0,F,Δ⟩
comprised of

L a finite set of locations;(i)

A a finite set of labels;(ii)

L0 a finite set of initial (starting) locations

F a finite set of final (end) locations;(iii)

Δ the transition function.(iv)

(i) the discrete states of the automaton;
(ii) the alphabet of (input) symbols that trigger transitions between

discrete states and thus label the edges of the automaton graph
that represents the discrete behavior of the system;

(iii) a subset of L on which when the automaton is, it is said that it
has accepted a finite string made of labels in A;

(iv) a function Δ:L×A→ L which determines the new state of the
automaton based on the current state and input label.

There is a particular discrete operation on finite automata
that combines them in a way that yields an outcome system, the
behavior of which is neither the intersection nor the union of the
behaviors of its factors. In addition, the number of locations in the
resulting automaton increases linearly (rather than exponentially)
with respect to the number of locations of the components. The
motivation for such an operation is found in its utility for language
identification in the limit in the context of mathematical linguistics
(Heinz and Rogers, 2013). In this paper, the idea behind this
mechanism will find a new application in the domain of robotic
planning. Let us first introduce the original construction:

Definition 2: (cf. Heinz and Rogers, 2013). Given two finite
automataA1 = ⟨L1,A,L01,F1,Δ1⟩,A2 = ⟨L2,A,L02,F2,Δ2⟩, their join
is a finite automatonA1⊔A2=⟨L1∪ L2,A,L01∪ L02,F1∪ F2,Δ1∪Δ2⟩.

This join operation enables the composition of individual
automata representing each robotic agent in the multi-agent system
into a single joined automaton which represents a comprehensive
and efficient model of system capabilities. However, classical finite
automata are not sufficient to model the complex dynamics that
arise in some cooperative multi-agent systems and which must be
considered to generate feasible planning solutions. To this end, the
mathematical formulation in this paper leverages hybrid automata
(Figure 2) and features a unique hybrid automata-based planning
method. This method is computationally efficient and robust
enough to compute plans for systems where physical interaction
between agents is absolutely necessary for task completion. Hybrid
system modeling formulations are attractive in this context because
they allow one to capture salient features of the continuous
robot dynamics that are important for task completion. They
also offer appropriate mathematical handles to high-level discrete
planners and optimizers. One of the multiple challenges in
working with multi-agent systems in a hybrid framework is
analytical and computational complexity. While the latter may be
easy to see on the outset, part of the difficulty associated with
the former is the need for incorporating (generally nonlinear)
continuous dynamics as well as the possibility that the discrete
structure of the overall system can experience changes during the
course of the plan evolution. This paper builds on a particular
modeling formalism for hybrid automata (van der Schaft and
Schumacher, 2000):

Definition 3: A hybrid automaton consists of a tuple H =
⟨L,X,A,W,E, Init, Inv,Act⟩ with components as follows:

L a finite set of locations;(i)

X the continuous state space;(ii)

A a finite set of labels;(iii)

W the continuous communication space;(iv)

E a finite set of events;(v)

Init a set of initial states;(vi)

Inv the invariants of continuous dynamics;(vii)

Act activities, i.e., continuous vector fields;(viii)

(i) the nodes in the hybrid automaton graph;
(ii) a subset of ℝn where the system’s continuous variables

belong to;
(iii) the discrete input alphabet that trigger transitions in the

automaton’s graph and label its edges;
(iv) the domain of external variables that affect its behavior;
(v) the automaton’s transitions, as tuples of the form ⟨ initial

location, label, guard condition, resets on continuous variables,
new location ⟩;

(vi) a set of initial states (ℓ0,x0) ∈ L×X at which the hybrid
automaton can be initiated;

(vii) the subsets of X, one for every ℓ ∈ L which remain invariant
under the dynamics imposed by Act(ℓ).

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 2
A standard wall thermostat as a typical example of a hybrid automaton: There are only two locations which correspond to the heater being either on or
off. There is a single state variable, the indoor temperature x as well as two communication variables, the input heat u and the external temperature t.
The hybrid automaton is constructed from these variables as a set of equations that govern system behavior and license discrete transitions between
the two system locations.

(viii) a mapping of activities Act:L→ TX which associates a
continuous vector field in TX to each location in L.

In the way we utilize Definition 3 in this paper, we understand
the invariants of locations as the limit sets (post conditions) of
the activities labeled in the events leading to these locations,
and the domains (pre conditions) of the activities of events that
depart these locations. Note also that this hybrid model features no
explicit (continuous) control inputs. Instead, we utilize the set W
of communication variables to parameterize pre-defined feedback
control action at each location, and pass on to the hybrid system
relevant information about its environment and its teammates.
The guard condition is key to determining the currently enabled
transitions in the automata based on the current system state.
We allow the guard conditions to be parameterized both by the
continuous state space X as well as the communication variables
W, a fact that aids in the construction of prerequisite conditions
for collaborative action. We assume that the pre-defined continuous
controllers in each location faithfully implement the high-level
behavior prescribed by Act(ℓ), e.g., convergence to a desired region
of the state space. One example of a hybrid systemmodel is that of a
wall thermostat controlling the heat within a home (Figure 2).

As written, Definition 2 is not suited for use with hybrid
automata because it is constructed to operate on purely discrete
systems wihtout any continuous dynamics. To address this issue,
we have introduced Definition 3 to enable cooperative hybrid
behavior.Thus, when heterogeneous systems are designed to interact
with each other, their models reflect this capacity. One way of
incorporating collaborative behavior is to include in each system
(cooperative) events that can (only) be triggered by other systems.
These eventsmust be disabledwithin individual agentmodels so that
they cannot be triggered by one agent acting alone. These modified
events that result from collaborative actions are lacking a specified
initial location, since they are only enabled in cooperation with
another system which provides the initial location and matching
label. The system, thus, could never trigger those events on its own,
but the capacity is built into its model for the prospect of interaction
with other systems. Labels “borrowed” from the label sets of other
systems provide the framework for collaborative events that are only
enabled when the requisite individual systems are joined together.

With this in mind, we implement the former blocking
mechanism, which allows for events to incorporate labels external

to the system. This is facilitated by expanding its label set to include
the labels of the other components, i.e., setting A = A1 ∪A2 as a
common label set. This way, the component hybrid automata match
the modeling specifications of the finite automata in Definition 2
(which share a common label set). The underlying assumption here
is thatH1 andH2 may not be able to utilize every label inA to trigger
events; there could be some events that remain dormant when each
system operates in isolation. Additionally, there may be certain
locations within the individual hybrid automata that are essentially
unreachable when operating in isolation as they might only be
reachable under some sequence involving one of the aforementioned
dormant events.

With the understanding that execution evolves in a turn-based
manner, i.e., the component systems take turns executing actions
and do not evolve concurrently—just as in the case of the finite
automata join operation of Definition 2— we are now in position
to extend the latter definition to hybrid dynamical systems:

Definition4: Given twohybrid automataH1=⟨L1,L01,F1,X1,A,W1,
E1, Init1, Inv1,Act1⟩,H2=⟨L2,L02,F2,X2,A,W2,E2, Init2, Inv2,Act2⟩,
their join is a hybrid automatonH1 ⊔H2 = ⟨L1 ∪ L2,L01 ∪ L02,F1 ∪ F2,
X1 ×X2,A,W1 ×W2,E1 ∪E2, Init1 ∪ Init2, Inv1 × Inv2,Act1 ×Act2⟩.

Note that the outcome of the operation the above definition
does not strictly conform to the specifications of Definition 3 in the
sense that Init1 ∪ Init2 ⊈ (L1 ∪ L2) × (X1 ×X2) but this difference is
inconsequential given the turn-based evolution of the machine, and
does not interfere with recursive applications of the operation.What
is important is that with the union of locations and the union of
events, the join system can now enable those previously dormant
events. The mechanism of Definition 4 thus gives rise to a richer
cooperative hybrid system behavior, which—as the colloquial saying
goes—is “bigger than the sum of the parts.”

Now that we have a suitable operation for capturing unique
new cooperative behavior involving interacting hybrid dynamical
systems through another hybrid automaton, the formalism can be
leveraged to createmodels ofmulti-agent systemswhere cooperative
interaction is essential to task completion. The (discrete) event
dynamics of a hybrid automatonH can be visually represented in the
form of a directed graph, the nodes and edges of which are labeled
by L and A, respectively. In order to illustrate the functionality of
the operation introduced in Definition 4, consider the automata
in Figure 3. In Figure 3, events (transitions) that are not labeled

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 3
A minimal example of the application of the join operation to the graphs of two hybrid automata depicted in (A,B); the outcome of the join operation is
showcased in (C). Both of the two factor automata share some input symbols (labels) and allow for discrete state resets.

express a decision on the part of the system to terminate execution
at that point by transitioning to a final state. Notice in Figure 3
the mechanism for blocking cooperative behavior through event
withholding when systems operate in isolation: location 4 (and
consequently also 5) is unreachable in both systems; in system (A)
the event associated to the transition from location 3 to location 4
is not included, and similarly in system (B) the event from 1 to 3 is
missing. However, when the two systems join, their events combine
and now both 4 and 5 can be reached through some collaborative
action [first (A) moves to 3 with b, and then (B) moves to 4 with d].

This formulation, therefore, can capture both the behavior of
individual systems when they operate in isolation as well as the new
cooperative behaviors that become enabledwhen they are composed
using the join operation under the turn-based assumption. Notice
also that the outcome of the join operation [system (c) in Figure 3],
is not significantly bigger compared to H1 and H2. The size of
this outcome scales linearly with the size of the location sets of its
components.

While this paper only focuses on systems with two agents
for representation brevity and clarity, Definition 4 directly extends
recursively to any finite number of collaborative hybrid systems.

4 Cooperative plans with physical
interaction

The modeling formulation of Section 3 captures the mechanics
of deliberate physical interaction between heterogeneous robots

and exposes cooperative plans that classical transition system
composition operations ignore. Now, it is the job of an appropriately
guided search algorithm to shift through the finite space of possible
cooperative turn-based plans to single out the ones that allow the
multi-agent system to achieve its objective.

It needs to be emphasized here that a naive approach utilizing a
generic graph search is bound to fail: for example, the shortest path
from initial to final locations in the join automaton of Figure 3C
would be a or c, but that is not a valid solution to any task
specification requiring collaborative action e. The search needs to
be guided with information from the continuous dynamics of the
hybrid automata and cannot be conducted using solely the discrete
information contained in the automata graphs.This section outlines
the implementation of efficient search methodology to find effective
cooperative solution plans which can then be implemented by the
agents in a heterogeneous system.

4.1 Discretization of the workspace

The first step in the planning process is to discretize the
continuous shared robot workspace. This discretization is dictated
by the structure of the guards and the invariants of the hybrid join
automaton. Workspace cells produced by the discretization process
are associated to locations of the join system and the assignmentmay
not be one-to-one, i.e., cells may belong to multiple locations. This
mapping of cells to locations results in each location having a set of
cells assigned to its guard and another set assigned to its invariant.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 4
In this example drawn from the UAV–UGV case study, analyzed in more detail in Section 5, a transition from a rolling activity a to a reeling activity r for a
UGV is enabled at the intersection (C) of the guard of r (A) with the invariant of a (B).

Informally, the guard set represents locations where a particular
activity can be (forcibly) triggered (activities are linked to locations,
the latter pointed to by labeled edges in Figure 3C). Similarly, the
invariant represents the reachable space of the current activity (i.e.,
closed-loop dynamics). Cells associated with the same location that
are mutually reachable using (possibly different parameterizations
of) the low-level controller corresponding to a given activity can
be grouped together into collections of cells subsequently referred
to as supercells. Assume that the workspace is divided into n cells
with individual cells denoted qi with i:1→ n. For each location
ℓ ∈ L and associated label a ∈ A, supercells are constructed as a
set of adjacent cells with overlapping faces (i.e., {qi,qj,…}) that all
satisfy the continuous contraints of a particular invariant or guard.
Each supercell associated with Inv(ℓ) is denoted Irℓ = {qi,qj,…} and
each supercell associated with Guard(a) is denoted Gr

a = {qi,qj,…}
with ℓ ∈ L, a ∈ A and r:1→m where m is the number of supercells
associated with that invariant or guard. Constructed supercells are
labeled with their corresponding action and an index since there
can be several disjoint supercells within the guard or invariant of
a particular location. Let the superset of all invariant supercells
be denoted SI and the superset of all guard supercells be denoted
SG. Then, the individual invariant supercells collectively form set
SI = {I1a, I2a, I1b,…} and the individual guard supercells form set
SG = {G1

a,G2
a,G1

b,…}. In this paper, the relationship between the
set of supercells for the guards of and an action and the set
for the invariants is one-to-one so that each guard always has
an associated invariant. Individual cells are permitted to belong
to multiple supercells corresponding to different locations of the
hybrid automata, e.g., qi ∈ I

1
a,qi ∈ I

2
b. Exploiting this continuous state

abstraction significantly reduces computation time when searching
through the discretized workspace for an action sequence. For an
event to be enabled and the corresponding transition to occur, the
system must find itself at an intersection of the current invariant
with the guard of the event’s destination location. The planner then
optimizes over a sequence of labels (i.e., events) that take the system
between different supercells, focusing on regions where a guard
supercell for one location intersects with an invariant supercell of
another location (see Figure 4).

4.2 The search for the right action
sequence

A key input to our discrete planner is the set of cells where
a transition between hybrid automaton locations is licensed. This
happens when a supercell associated with the guard of one location
intersects with a supercell associated with the invariant of another
location. The set of transition cells for a pair of supercells Iia,G

j
b can

be written as

QIia→G
j
b
= {qi ∣ qi ∈ I

i
a ∩G

j
b & ⟨ℓi, ⋅, ⋅, ⋅,ℓj⟩ ∈ E}

where ℓi is the location associated with supercell Iia and ℓj is the
location associated with Gj

b. For every pairing of Iia ∈ SI and Gj
b ∈

SG such that Iia ∩G
j
b ≠ ∅, there exists one or more cells where a

transition is enabled between the location associated with action a
and the location associated with b. Only one of these transition cells
is considered by the planner when calculating the cost to transition
between the corresponding supercells. This “ideal” transition cell,
denoted q

ai→bj
m , is the cell qi ∈ QIia→G

j
b
which minimizes the future

cost hj evaluated at the cell centroids. If multiple cells fit this
specification, one can be selected without significant impact on the
nature of the final solution, since within the (landing) supercell
individual cells are mutually reachable. Note that, before a transition
between supercells occurs, the robot is located in cell qm ∈ I

i
a ∩

Gj
b and after transition is located in the same cell within the

invariant of the new supercell qm ∈ I
j
b until the next transition is

enabled. With slight abuse of notation, to simplify notation in
the description of our planner implementation, we represent the
supercell transition Iia→ Gj

b→ Ijb as ℓi→ ℓj. With this in mind,
we construct a matrix of transitions T consisting of tuples of the
form {ℓi,ℓj,qm}, containing every pair of supercells ℓi,ℓj licensed for
transition, and the minimum cost qm for that transition.

The planner developed for this problem (Algorithm 1) is
a modified version of a forward A∗ algorithm that optimizes
over the subset of cells where transitions between supercells can
occur—instead of considering all the cells in the workspace.
This algorithm is now informed of the (short-term) cost aij

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

 Inputs:

  T,M

 Initialize:

  upper←∞

  cm←∞∀ℓ ∈ M

  open← {ℓ1} ℓ1 is the initial location

 while open ≠ ∅ do

  Select sequence {ℓ1,ℓ2,ℓn,…} with minimum running

cost ci and remove from open

  for allℓi,ℓj,qm ∈ T ∣ ℓi = ℓn do

   cj = ci +aij(qm) +hj(qm)

   if cj < upper and ci +aij(qm) < cm(ℓj) then

    Add {ℓ1,ℓ2,ℓi,ℓj,…} to open

    cm(ℓj) = ci +aij(qm)

   end if

  end for

  if ℓj = ℓf then

   cf = cj
   upper = cj
  end if

 end while

Algorithm 1. A∗ Planner with Supercells.

of reaching the transition cell between (super) cells ℓi and ℓj
using a continuous function of the join hybrid system’s state. A
design choice adopted in our implementation for quantifying the
cost of such transitions is based on a particular type of scalar
potential functions of the continuous state of the join hybrid
automaton. These functions are known as navigation functions
(Rimon and Koditschek, 1992) and they can serve as surrogates
for a combined metric of “distance to goal” and “distance from
constraint boundaries.” Just as in a typicalA∗ algorithm, the planner
tracks the running total cost ci for each candidate sequence of
transitions between supercells in a priority queue typically referred
to as the open set. Additionally, there is a parameter termed upper,
which tracks the cost of the current best sequence that reaches
goal location ℓf .

The planner tracks the current minimum cost cm (initial cost set
to∞) to reach each location (supercell) ℓ in the workspace within
matrix M which contains tuples of form {ℓ,cm}. When extending
the candidate sequences, the planner first selects the sequence with
minimum running cost ci and removes it from the set open; it
then considers the actual cost of the next transition aij as well as a
monotone estimate of the future (long-term) cost hj for reaching
the goal state ℓf from ℓj, for each ℓj reachable from ℓi, with hj
computed in a similar way as aij—see Section 5.2 for a concrete
example of how aij and hj can be defined with the help of a
navigation function. (We note that there is considerable freedom
in defining the cost functions for aij and hj, and it would make
sense for those structures to be determined based on the desired
optimization criteria for a given task.) These candidate extensions
to the minimum cost sequence are evaluated using their running
cost calculated as cj = ci + aij(ℓj) + hj(ℓj). Candidate sequences which
satisfy two conditions: (i) that cj < upper, and that (ii) aij + hj < cm,

where cm is the currentminimum cost to reach location ℓj, are added
to open. When the planner finds a sequence that reaches the goal
state so that ℓj = ℓf , it compares the cost for that sequence, cf , to
upper. If c f < upper, then that sequence of transitions becomes the
current minimum cost sequence to reach the goal and cf is set as the
new upper.This process continues until there are nomore sequences
in open and the best transition sequence with minimum cost cf has
been determined.

One note of caution is that the planner is not expected to
monotonically decrease this “distance to goal surrogate” since
a myopic and dynamics-agnostic gradient descent (despite any
navigation function properties) offers no guarantee of task
completion. A sufficiently forward-looking search algorithm,
involving a combination of a running cost aij and a future cost
hj for each sequenced location ℓj is able to overcome a local cost
increase along a path to the goal. An important by-product of the
search for this path is the sequence of cells that mark the transitions
between the activities in the solution sequence. This information
is subsequently used to parameterize the underlying control laws
associated with each activity, and thus implement the derived plan
within the complete hybrid system.

5 Case study 1: a tethered UAV–UGV
system

This section illustrates a slightly more complex instantiation
of the planning problem shown in Figure 1. Again, we have a
UGV and a UAV with the capability of attaching an actuated tether
between them. The goal for the system is to move the UGV from
a location on one side of a vertical wall, to one on the other side.
The new instantiation here includes an additional obstacle over
the vertical wall (as if the wall has a window that the robots can
go through). In addition, the UAV has now an overhead perching
location, which serves as a secure anchoring point for the tethered
UGV, to lower itself down to the ground by unwinding its tether. In
this problem setup, there are several interesting challenges: among
them, the nonlinear continuous dynamics of the two vehicles, which
approximately capture the behavior exhibited when the UGV swings
in a pendulum fashion suspended by its tether and when it moves
up or down from an elevated position; the obstacles that need to be
avoided; the need tomanage and account for the shape of the flexible
tether within the cluttered workspace; and methods to identify the
workspace-tether relative configurations that enable tension forces
to be applied to the UGV in the desired directions.

The UGV hybrid automaton has a label set that includes the
subset Ag = {a,d,a′, r′, f ′} where a (respectively, a′) expresses a
(respectively, tethered) rolling behavior and d denotes latching of
the tether end on the UAV, while r′ refers to controlled vertical
ascent/descent using the tether with its other end suspended at
an elevated position and f ′ corresponds to a transient swinging
motion while tethered until momentum is absorbed by impact with
a workspace boundary. The UAV has the a label set that includes
the subset Aa = {δ,β,γ′} where δ enbales the UAV to fly to an aerial
waypoint and hover there, β is the landing action where the UAV

comes to rest on one of the workspace boundaries and γ′ express the
tethered UAV perching at its goal location to provide an anchoring
point for the free end of the UGV tether. In this implementation,

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

we allow for the UGV to swing (possibly impacting workspace
boundaries) as it reels up or down with its tether and model this
behavior in the UGV continuous dynamics.

The continuous dynamics of the combined UAV-UGV system,
imagined to evolve on a vertical plane for simplicity, are defined
on a 10-dimensional state space X comprised of tuples of the
form {x,y,ϕ, l,θ} and their first derivatives. The variable tuple
(x,y,ϕ) parameterizes the SE(2) pose of the UAV on the vertical
plane of motion, and the pair (l,θ) (length/angle) provide a polar
parameterization of the Cartesian position of the UGV on the same
plane, relative to a hinge point (see Section 5.1) where the other end
of the tether is attached to—during untethered horizontal motion,
a virtual hinge point can be introduced on the semiaxis of UGV

motion direction.
The hybrid system modeling formalism adopted (Definition 3)

includes a setW of continuous communication variables, which for
this particular case study can be realized as the set {qh,u,u1,u2}
comprised of UAV control inputs u1 and u2, UGV wheel/winch
acceleration u (depending on the hybrid mode), and the (piecewise
constant) location qh of the hinge point relative to which the UGV

position parameterization is derived.
The set of events E represents the edges within the join

automaton graph as well as the conditions on the state variables
which license each transition. In addition to the set of events
themselves, it is necessary to construct functions for the state reset
(jump) and guard conditions for each transition within the hybrid
automaton. The event set E for the UAV/UGV system is written as:

E1 = ⟨1,δ,Gδ, J(1,9),9⟩ E2 = ⟨9,β,Gβ, J(9,3),3⟩

E3 = ⟨3,δ,Gδ, J(3,9),9⟩ E4 = ⟨4,γ′,Gγ′ , J(4,5),5⟩

E5 = ⟨1,a,Ga, J(1,2),2⟩ E6 = ⟨3,a,Ga, J(3,2),2⟩

E7 = ⟨3,d,Gd, J(3,4),4⟩ E8 = ⟨5, r′,Gr′ , J(5,6),6⟩

E9 = ⟨5, f′,G f′ , J(5,7),7⟩ E10 = ⟨5,a′,Ga′ , J(5,10),10⟩

E11 = ⟨6,a′,Ga′ , J(6,10),10⟩ E12 = ⟨6, f′,G f′ , J(6,7),7⟩

E13 = ⟨7,a′,Ga′ , J(7,10),10⟩ E14 = ⟨7, r′,Gr′ , J(7,6),6⟩

E15 = ⟨7, f′,G f′ , J(7,7),7⟩ E16 = ⟨10, f′,G f′ , J(10,7),7⟩

E17 = ⟨10, r′,Gr′ , J(10,6),6⟩ E18 = ⟨3,⋉,G⋉, J(3,8),8⟩

E19 = ⟨5,⋉,G⋉, J(5,8),8⟩ E20 = ⟨2,⋉,G⋉, J(2,8),8⟩

E21 = ⟨6,⋉,G⋉, J(6,8),8⟩ E22 = ⟨7,⋉,G⋉, J(7,8),8⟩

E23 = ⟨10,⋉,G⋉, J(10,8),8⟩

The set of guards within the join automaton is constructed as
constraints on the set of state variables and also the communication
variables, especially in regards to collaborative activities. All
velocities must be equal to zero before any transition can be initiated
in the automaton. This is a condition that arises from the turn-
based nature imposed on the join hybrid automaton. Guards for
both vehicles are parameterized by values of their corresponding
navigation function at their current Cartesian position as compared
to boundary constants with τ→ 1 and ϵ→ 0. Additionally, the UGV

guards are parameterized by functionU(x,y)which acts as ameasure
of actuator authority for the vehicle. This function contains UGV

massm, the gravitational vector ⃗g and the gradient of the navigation
function ∇φ:

‖m ⃗g×
∇φ
‖∇φ‖
‖ ≜ U (x,y) < umax

Depending on the value of U(x,y) at a particular location, the
UGV will either be able to move along the workspace boundary
using its primary locomotion or it must use the tether winch to pull
itself upwards. In the guards for all movement actions excluding
f ′, the action can only be initiated when when the UGV is in
contact with the workspace boundary so that φa(x,y) < τ. For all
actions which require the tether, the UAV must be perched at
the anchoring point so that qa = q

f
a. For landing action β to be

enabled, the UAV must be away for the workspace boundary so that
φa(x,y) < τ. The opposite is true for latching action γ′ where the
UAV always starts on the boundary with φa(x,y) ≥ τ. Additionally,
for landing action β to occur, the UAV should be aligned with
the x-position of the UGV xg with this position calculated from
the communication variables as xg = q

x
h + l cos θ. Finally, the value

of the UAV and UGV navigation function must be less than ϵ in
order to reach the terminal location via ⋉. Thus the set of guards is
written as:

Gδ = {(x,y,ϕ) ∈ Xa ∣ ̇x = ̇y = ϕ̇ = 0}

Gβ = {(x,y,ϕ) ∈ Xa ∣ ̇x = ̇y = ϕ̇ = 0, φa (x,y) < τ,‖x− xg‖ < ϵ}

Gγ′ = {(x,y,ϕ) ∈ Xa ∣ ̇x = ̇y = ϕ̇ = 0, φa (x,y) ≥ τ}

Ga = {(l,θ) ∈ Xg ∣ ̇l = ̇θ = 0, φg (xg,yg) ≥ τ, |u| < U(xg,yg)}

Ga′ = {(l,θ) ∈ Xg ∣ ̇l = ̇θ = 0, φg (xg,yg) ≥ τ, |u|

< U(xg,yg) , qa = q
f
a}

Gd = {(l,θ) ∈ Xg ∣ ̇l = ̇θ = 0, φg (xg,yg) ≥ τ, |u| < U(xg,yg) ,

‖x− l cos θ‖ < ϵ, ‖y− l sin θ‖ < ϵ}

Gr′ = {(l,θ) ∈ Xg ∣ ̇l = ̇θ = 0, φg (xg,yg)

≥ τ, |u| ≥ U(xg,yg) , qa = q
f
a}

G f′ = {(l,θ) ∈ Xg ∣ ̇l = ̇θ = 0, |u| ≥ U(xg,yg) , qa = q
f
a}

G⋉ = {(x,y,ϕ) ∈ Xa, (l,θ) ∈ Xg ∣ ̇x

= ̇y = ϕ̇ = ̇l = ̇θ = 0,x = x f ,y = y f ,

φa (x,y) < (1− τ) ,φg (xg,yg) < ϵ}

For the tethered case study, the reset conditions which form the
set of jumps takes on two forms. All UAV transitions and terminating
transitions admit the trivial reset where none of the state variables
change in value. However, for most of the UGV transitions, the resets
are utilized to reparameterize the UGV state varables according to
the currently active hinge point. More details of these hinge points
are covered in Section 5.1. Assume that the currently active hinge
point is qch and the current state of the UGV is denoted by the tuple
(lc,θc). Any transition which invokes a change in the active hinge
point will also result in a jump in the value of the state variables. For
actions involving the tether, the hinge points denote the points in
the workspace from which the tether will appear to be suspended.
Actions such as a′ admit a virtual hinge point where the transition
to the next action occurs and according to which the dynamics are
parameterized. Similarly, for action d, the hinge points will become
the location of the UAV which has landed in preparation for latching
where the UGV must attach the tether. If the next point in the
ordered sequence of hinge points is denoted qc+1h = (x

c+1
h ,y

c+1
h) and

the current UGV location is denoted qc = (lcsinθc,−lccosθc), then
the length l jumps to the Euclidean distance d(qc+1h ,qc) between the
UGV and the new hinge point. These same variables are also utilized

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

to reset the angle θ relative to the new hinge point location. The
aforementioned jump conditions for each of the location pairs can
then be written as:

J(1,9):
{{{{
{{{{
{

x↦ {xc}

y↦ {yc}

ϕ↦ {ϕc}

J(1,2):

{{{{{{
{{{{{{
{

qh↦ qc+1h

l↦ {d(qc+1h ,qc)}

θ↦{arctan(
lc sinθc − y

c+1
h

lc cosθc − x
c+1
h

)}

J(2,8):
{{{{
{{{{
{

qh↦ {q
c
h}

l↦ {lc}

θ↦ {θc} ,

J(1,9) = J(9,3) = J(3,9) = J(4,5) = J(3,8) = J(5,8)
J(1,2) = J(3,2) = J(3,4) = J(5,6) = J(5,7) = J(5,10) = J(6,10)
= J(6,7) = J(7,10) = J(7,6) = J(7,7) = J(10,7) = J(10,6)

J(2,8) = J(6,8) = J(7,8) = J(10,8)

The set of invariant spaces for each location Inv is constructed
in a similar fashion to the set of guards. In the initial state Location
1, the system is at rest and all state variables are given an initial
value which parameterizes the initial positions of the two vehicles.
Similarly, the system will remain at rest in the goal state marked by
Location 8, the UGV will be at its goal coordinates and the value
of the navigation function for both agents will be close to zero so
that φ(x,y) < ϵ. The UGV axis is locked in Locations 4, 6, and 10, and
it will not undergo angular motion so that ̇θ = 0. For Location 7,
there is navigation function constraint φg(xg ,yg) < τ which ensures
that the UGV only remains in this location until contact is made
with a workspace boundary. In all locations where the UGV is in
motion, a transition and associated reset on the continuous state
must occur if l ≤ 0. The UAV will only undergo vertical motion in
Location 3 so the value of x remains constant and ϕwill always equal
zero. Additionally, Location 3 and Location 9 share the condition
that the UAV only remains in that location while it is away from the
boundary of the workspace so that φa(x,y) < τ. The same stipulation
holds for Location 5 with the added condition that the UAV has
not reached the goal location so that φa(x,y) ≥ ϵ. Writing these
conditions into a set of mathematical constraints, the invariant set is
written as:

Inv(1) = {(x,y,ϕ) ∈ Xa, (l,θ) ∈ Xg ∣ ̇x = ̇y = ϕ̇ = ̇l = ̇θ = 0,

x = xi,y = yi, l = li,ϕ = 0,θ = 0}

Inv(2) = {(l,θ) ∈ Xg ∣ φg (xg,yg) ≥ ϵ, |u
g| < U(xg,yg) , l > 0}

Inv(3) = {(x,y,ϕ) ∈ Xa ∣ ̇x = ϕ = 0, φa (x,y) < τ}

Inv(4) = {(l,θ) ∈ Xg ∣ ̇θ = 0, φg (xg,yg) ≥ τ, l > 0}

Inv(5) = {(x,y,ϕ) ∈ Xa ∣ ϵ ≤ φa (x,y) < τ}

Inv(6) = {(l,θ) ∈ Xg ∣ ̇θ = 0, |u
g| > U(xg,yg) , l > 0}

Inv(7) = {(l,θ) ∈ Xg ∣ φg (xg,yg) < τ, |u
g| ≥ U(xg,yg) , l > 0}

Inv(8) = {(x,y,ϕ) ∈ Xa, (l,θ) ∈ Xg ∣ ̇x = ̇y = ϕ̇ = ̇l = ̇θ = 0,

φa (x,y) < ϵ,φg (xg,yg) < ϵ,xg = x
f
g,yg = y

f
g}

Inv(9) = {(x,y,ϕ) ∈ Xa ∣ φa (x,y) < τ}

Inv(10) = {(l,θ) ∈ Xg ∣ ̇θ = 0, φg (xg,yg)

≥ τ, |ug| < U(xg,yg) , l > 0}

The continuous dynamics (vector fields), and their assignment
to corresponding locations (with reference to Figure 5) can be
succinctly described as follows:

Act (2) =
{{
{{
{

̈l = l ̇θ2 − g cos (θ) + u
m

̈θ = −2
̇l ̇θ
l
+
g sin θ

l
+N

Act (5,9) =

{{{{{
{{{{{
{

̈x = −
u1
m

sin ϕ

̈y =
u1
m

cos ϕ− g

ϕ̈ = u2

Act (3) =
{
{
{

̈x = ϕ̈ = 0

̈y =
u1
m

cos ϕ− g

Act (6) =
{{
{{
{

̈l = −g cos θ+T− ̇lδ (t) + u
m

̈θ = −
g
l
sin θ− 2

̇l ̇θ
l
− l ̇θδ (t)

Act (4) =
{
{
{

̈x = ̈y = ϕ̈ = ̈θ = 0
̈l = u

m
Act (10) =

{
{
{

̈l = u
m
̈θ = 0

Act (1,8) = { ̈x = ̈y = ϕ̈ = ̈l = ̈θ = 0.

In these equations N denotes the ground reaction force to the
UGV, T is the tether tension, m is the UGV mass and g is the
constant of gravitational acceleration. Location 2 corresponds to the
UGV moving horizontally under traction force u and also allows
for the robot to free-fall after driving off the edge of a surface
until it impacts another workspace boundary. Similarly, Location 10
corresponds to the UGV moving horizontally under traction force u
while tethered—the UGV is unable to free-fall assuming there is no
excessive slack in the tether. Location 4 has the same dynamics for
the UGV but in addition has the UAV stationary which is necessary
during the process of UGV latching its tether to the UAV. Location
6 involves vertical displacement with horizontal swinging and also
includes the possibility of collisions with workspace boundaries.
Location 3 corresponds to UAV vertical motion (take-off/landing),
while Locations 5 and 9 describe general UAV flight between
waypoints and the perching of the UAV on a surface. The latter
two locations have identical underlying dynamics and are only
differentiated based on the action’s end objective. Finally, Locations
1 and 8 mark the initial and final state of the system where both
vehicles are stationary. Note that when the UGV swings suspended
by the tether, its motion can be modeled as that of a pendulum with
varying length and damping terms that capture the effect of possible
inelastic collisions with workspace boundary, the latter activated
through the action of a Dirac function δ(t).

The concrete dynamics control loops are closed as follows.
For the movement of the UGV toward a selected location (hinge
point), driving the input force u via a simple PD on the error on
state l typically suffices. The control of the UAV is realized via a
differential flatness trajectory tracking control law, on UAV inputs
u1 and u2. For this trajectory tracking law, the collision-free (x,y)
reference trajectory in the differentially flat space is constructed
via the diffeomorphic transformation referenced in the following
subsection.

5.1 Determining hinge points

The UGV dynamics are parameterized by tether hinge points, the
location of which is critical for determining what type of motion

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 5
A minimal example of the application of the join operation to the directed graphs associated to the two hybrid automata modeling the UAV (A) and
UGV (B) systems depicted in Figure 1, as well as the outcome of their join operation (C).

the UGV undergoes. Hinge points denote locations on the edges
of obstacles from which the ground vehicle can swing in a quasi-
pendulummotion. Where these hinge points are placed depends on
how the tether has been threaded through the workspace and how
it deforms under the tension applied by the mass of the suspended
UGV. Whether the tether can provide the necessary tension to
support the weight of the vehicle, in turn, depends on its shape
and relative configurationwith respect to the workspace boundaries.
While determining the precise configuration of a highly deformable,
distributed parameter system such as a cable, chain, or tether
unnecessarily complicates the planning problem and falls beyond
the scope of this paper, an approximate yet realistic representation
of possible tether configurations as a function of the motion history
of the tethered vehicles is still necessary. One method of tether
deformation approximation has been described in more detail by
Sebok and Tanner (2019).

There are, in fact, infinitely many conceivable configurations
for a flexible tether to weave among an arrangement of static
obstacles. Yet, this multitude of configurations falls into a finite set

of relevant homotopy classes (Bhattacharya et al., 2010; Kim et al.,
2014), depending on the workspace geometry. Paths in each
homotopy class can be diffeomorphically mapped onto each
other. Our planning algorithm for this case study systematically
enumerates those homotopy classes, and utilizes an iterative
algorithm to select a valid tether path primitive (class representative)
while eliminating, for instance, extensively long paths and those that
tangle or wrap the tether around obstacles.

The collection of hinge point locations forms a set Qh. In
order to determine the location of these hinge points, the tether
primitive identified for each homotopy class is deformed so that
it tightly conforms to the edges of the obstacles in the workspace.
A Bezier spline curve is then constructed using the points of
the tether primitive (Figure 6). This 2D B-spline curve can be
expressed in terms of its two Cartesian components xc(t) and yc(t),
parameterized by t ∈ [0,1]. Here we assume that the (UAV) end
of the tether has been anchored at point (xa,ya). This location is
contained in the set of hinge points Qh for every possible tether
configuration. The remaining hinge points are situated where the

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 6
(A) Two representatives (red and blue) of homotopy tether curves realized as Bezier curves used as primitives; (B) The (color coded) hinge points
associated with each of the tether primitives and the white cell marking the anchor point common to both.

tether is suspended as determined by the geometry of an obstacle,
and these locations can be identified as the points of maximum
curvature along the deformed tether curve. Hinge points are thus
those pairs (xh(t),yh(t)) corresponding to values of t ∈ [0,1] that
locally satisfy.

max
t∈[0,1]

d2xc (t)
dt2
⋅
d2yc (t)
dt2

subject to
{{{
{{{
{

d2xc (t)
dt2
< 0 >

d2yc (t)
dt2
, xh > xa

d2xc (t)
dt2
> 0 >

d2yc (t)
dt2
, xh < xa.

The collection of all the pairs (xh(t),yh(t)) for the locally
maximizing values of t ∈ [0,1] forms a finite set Qt ⊂ Qh. Including
the anchor point, the complete set of hinge points for a given
homotopy class is written as Qh = Qt ∪ {(xa,ya)}.

5.2 Application: search for an action plan

The planner that searches for an (appropriately parameterized)
turn-based sequence of labels thatmark an action plan for the robots
to take to complete the assigned task. This sequence consists of
licensed transitions between supercells of the discretized workspace
of the join hybrid system. An analysis of the guards and invariants
of the join hybrid automaton for this system leads to the definition
of 13 different supercells (out of 400 individual cells—see Figure 6),
with each supercell associated to a unique system activity, and 19
possible transitions between those supercells, as licensed by the join
hybrid automaton.

The planner weighs the different options for possible transitions
out of a given supercell based on cost functions evaluated on
continuous state space variables of the join hybrid system. To
facilitate computation, this continuous domain is quantized using
the centroids of the discretized workspace cells. Several possibilities
exist for cost functions to guide the planner’s search; a good trade-
off between greedy and longer-range planning is offered by a
combination of a short-term with a long-term cost function. To see

how the planner’s assessment is carried out in this particular case
study, assume that the system is currently at cell ℓi and considers
transitioning to some cell ℓj which belongs to a different supercell
than the one it is currently in. Now assume that navigation function
φ is available on the continuous state space of the join hybrid
automaton, assuming its minimum at the region where the system
task specification is satisfied, and being uniformly maximum at
the system’s workspace boundary. With some abuse of notation,
we will write φ(ℓi) to express the value of the navigation function
at the centroid of the transition cell ℓi that the system currently
occupies, and similarly denote φ(ℓj) as the corresponding value at
the cell currently being assessed. (Note that φ(ℓf) ≡ 0) With D(ℓi,ℓj)
denoting the Euclidean distance between the centroids of cell i and
j, the local and future cost functions that quantify the cost-benefit
ratio of a transition between 2 cells are given as

aij =
D(ℓi,ℓj)

|φ(ℓi) −φ(ℓj) |
hj =

D(ℓj,ℓ f)

φ(ℓj)
,

respectively. In this particular implementation, the action-specific
cost of initiating UAV motion is set at a value higher than the
maximum cost of a UGV action, to reflect the fact that UAVmotion is
energetically way more “expensive” compared to UGV motion. This
setting practically ensures that the UAV will be deployed only if the
UGV cannot move where it needs to go on its own.

After comparing label sequences, the planner settles on δ β d
γ′ f ′ f ′. This plan involves the activity where the UAV reaches a
waypoint (via δ) and subsequently lands (via β) at a designated
rendezvous location for tether latching; the UGV subsequentlymoves
in to latch its tether on the UAV (via d); the UAV then lifts off
and goes to perch at a designated elevated spot (via γ′); the UGV

ascends to the first hinge point by reeling in the tether and swinging
until it impacts the wall (via f′); and finally, the UGV ascends to the
anchoring location and reels out the tether to descend towards the
goal location (via f′). The reason why f′ appears repeated is because
the associated activity is parameterized differently each time: in the

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 7
Simulated paths of the UAV (red) and UGV (blue) motion through the
constrained workspace as they implement the cooperative action plan.
The motion path of the UAV from an initial hovering position at (0.55,
0) to its perching configuration (−0.55,0.75) consists of three distinct
segments: reaching waypoint (0.95,−0.65) directly above designated
landing spot; landing; and tracking a reference trajectory to the
perching location avoiding the overhead obstacle. The motion path of
the UGV consists of the following segments: swinging motion to the
left from initial location (0.95,−0.95) until initial impact at the foot of
the vertical wall after the UAV has perched; tethered-assisted ascent on
the side of the wall; a swinging ascending motion from the top of wall
to the UAV’s perching point; and finally, a swinging descent to the
desired position with periodic collisions on the left side of the wall.

former case, the hinge point is at the upper rightmost corner of the
vertical wall obstacle while the UGV ascends, whereas in the latter
case the hinge point switches to the perched position of the UAV

and the UGV performs controlled ascent/descent while suspended
from the UAV’s perched position. This is an specific example of
why a naive, purely discrete search over the join hybrid automaton
graph representation is very likely to miss the desired solutions. A
numerical implementation of this plan is showcased in Figure 7.The
motion paths of the two vehicles are color coded.

5.3 Extension to a heterogeneous system
with three agents

In principle, and absent computational considerations, the
proposed methodology is subject to no limitation on the number
of collaborative agents. In fact, it is modular in the sense that
new agents can be added subsequently. The planning methodology
can leverage the added capability as long as the existing agents
are modeled to interact with the new modalities. To illustrate
this, and without explicit analytical description for the sake of
brevity, consider the above UAV/UGV system with an additional
agent consisting of a common robotic manipulator. This robotic
manipulator is located near the goal position for the UGV and can

grasp some object located to the goal location and deposit it into a
container on the UGV.

The robotic manipulator label set Ar would consist of two
actions: ζ represents picking up an object and η represents placing
an object in a new location. In this new system, the UAV automaton
from Figure 5A remains unchanged. The UGV is updated as shown
in Figure 8A to reflect that action ζ can occur after UGV action
a′. Taking the join of the hybrid automaton graph for the robotic
manipulator (Figure 8B) with the automata for the UAV and UGV,
the join hybrid automaton is producedwith the discrete components
shown in Figure 8C. This join hybrid automaton for the extended
three agent system contains both the individual functionality of the
three agents as well as their collaborative possibilities.

5.4 Comparison to possible alternative
methodologies

A couple of alternative methodologies were also employed to
solve the cooperative planning problem of this section, neither
of which produced a valid solution to the planning problem.
The first one is based on a hybrid system optimal control design
framework, available for systems with dynamics in polynomial
form (Zhao et al., 2020). The second was a more general multi-
robotmotion and task planner called GRSTAPS (Messing et al., 2022).
These two solvers represent approaches at the two ends of the
methodological spectrum, with the optimal control formulation
putting more emphasis on the continuous dynamics, and GRSTAPS

primarily leveraging abstraction and discretization to scale up.
It was found that both approaches had difficulty addressing

this problem, with challenges seeming to stem from dynamics
nonlinearities. The major limitation of the hybrid optimal control
approach is that it can only generate solutions for hybrid systems
containing polynomial dynamics.This becomes a critical issue when
attempting to generate meaningful planning comparisons for the
UAV/UGV system as the nonlinear dynamics of this system are not
adequately represented in polynomial form approximations. This
resulted in this planning approach only being able to generate plans
for a simplified system utilizing only the UGV. The hybrid optimal
control approachwas incapable of producing an action sequence and
control outputs when the specified goal required use of the swinging
action f′.

On the other hand, GRSTAPS required a particularly fine
workspace discretization to be able to reasonably keep track of
the nontrivial nonlinear system dynamics. The potential upside
of this planner is its ability to efficiently perform task planning,
scheduling, and motion planning. However, the primarily discrete
nature of this algorithm limits the planner’s ability to account for the
dynamic restrictions which are essential to constructing a feasible
action sequence.

In conclusion, none of the aforementioned alternative
methodologies were capable of leveraging the unique new behaviors
that are made possible through physical interaction amongst the
component systems when only presented with the individual robot
dynamics (as in Figure 3). In fact, even when the outcome of the
join operation was fed directly as input to these planners, they
still struggled: the optimal control algorithm could not produce
meaningful sequences of inputs for the UAV and UGVwhile GRSTAPS

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 8
An example of the extension of the join operation to the directed graphs associated with the three hybrid automata for an updated model of the UAV
(A), a model of a robotic manipulator (B), and UGV model (Figure 5A), as well as the outcome of their join operation (C).

only produced valid cooperative plans when, in addition to the join
automaton, it was also explicitly presented with the same workspace
partition and discretization utilized above. The poor performance
of these two planners on the UAV/UGV system meant that it was
impossible to create a meaningful comparison between the existing
planners and the methodology outlined within this work.

6 Case study 2: the dual UGV system

Theprevious section illustrated in some detail how the proposed
planningmethodology can be applied to coordinate a heterogeneous
robot team comprised of a UAV that can tether itself to a UGV. This

section aims to reinforce the point that the presented methods are
not tailored to a particular multi-robot system or a mechanism of
physical interaction between agents. While it is true that it may not
always be possible to formulate any arbitrary multi-robot planning
problem into one that fits the proposed framework, in principle the
methodology is applicable to a reasonably wide class of small-scale
heterogeneous multi-robot systems.

To this end, this section considers a different heterogeneous
multi-robot configuration consisting of two UGVs. Here the UGVs
are heterogeneous due their different locomotion modalities and
motion degrees of freedom. The first robot (Figure 9A; Figure 10)
is a (nonholonomic) wheeled robot with a differential drive. The
second robot (Figure 9B) is a walking mechanism that utilizes a

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 9
Another heterogeneous system consisting of (A) a wheeled robot and (B) a walking robot. Using magnets embedded in the robot frames, the vehicles
can join together to interact with objects such as a light switch (C). A video demonstrating a sequence involving the two UGVs joining and then moving
together can be found at: http://research.me.udel.edu/ btanner/videos.html.

Klann linkage mechanism to locomote, pulling two unactuated
wheels in the back for balance. This second robot has only one
degree of freedom (it cannot turn); it does, however, have a
second actuator capable of tilting its legs along a vertical plane
when somehow supported on its other side. This external support
can be realized by magnets located on the front of the rolling
robot and the rear of the walking robot. Note that neither of the
agents individually can manipulate the environment, but when
connected by means of the magnets (Figure 9C), the raised legs
become end effectors and the contraption takes the form of a
basic two degree of freedom (DOF) manipulator. This allows the
joined robot to perform other tasks such as flipping a switch or
pressing a button.

The planning approach of the previous sections (without
the tether analysis) can be applied to this system too. For this
case, assume that the task at hand is to have the robots flip
a switch like the one shown in Figure 9. Here, the planning
algorithm coordinates the two robots to join and form the mobile
manipulator, and then steers it toward its final objective. The
details of the computational implementation are omitted since the
smaller number of degrees of freedom in this problem and the
simplicity of the individual robot kinematics render the problem
relatively straightforward compared to the case study of Section 5;
the hybrid automata models and synthesis are however described
at a similar level of detail as in the UAV–UGV case in the
following section.

6.1 Hybrid automata models

Thewalking UGV has a label set Aw = {a,c, i, j} where a expresses
the basic one-dimensional walking motion, c is the connection
action where the walking UGV joins itself to the wheeled UGV

using the magnetic connection, i represents the interaction of
the joined vehicle with the environment and j expresses the two-
dimensional motion of the joined vehicle in the horizontal plane.
Similarly, the wheeled UGV has label set Ar = {r,p, i, j} with r being
the basic two-dimensional motion action in the horizontal plane,
p being an action which positions the wheeled UGV behind the
walking UGV in prepartion for connection and i, j being the same
as in the walking UGV. Note that i and j are labels for both
component hybrid systems; however, the associated activities can
only be triggered after the individual robots have joined into a
single vehicle.

The continuous dynamics of this dual UGV system are defined
within a 5th dimensional state space X composed of tuples
of the form {ϕw,θw,xr,yr,θr}. The Cartesian coordinate system
is established so that that that the origin is positioned at the
initial position of the walking UGV and the x-axis is aligned
with its orientation. Thus, the wheeled UGV’s initial position is
parameterized relative to the initial position of the walking UGV. In
this case, (xr ,yr ,θr) parameterize the SE(2) pose of the wheeled UGV

on the plane of motion while the pair (ϕw,θw) parameterize both
the Cartesian position of the walking UGV along the x-axis as well
as the rotational position and inclination of the 2 DOF manipulator
when the agents are joined together. Specifically, ϕw tracks the net
rotations of the Klann linkage while θw provides its inclination
angle relative to the ground. When the robots are detached
and the walking motion is enabled, θw will remain constant so
that θw = 0.

For the dual UGV system, the set W of continuous
communication variables {qi,u

w
1 ,u

w
2 ,u

r
1,u

r
2}. comprised of walking

UGV control inputs uw1 and uw2 , wheeled UGV control inputs ur1
and ur2, and the (piecewise constant) location qi of the current
position within the plane where the joined robot must interact
with its environment.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
http://research.me.udel.edu/%20btanner/videos.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

FIGURE 10
A minimal example of the application of the join operation to the directed graphs representing two hybrid automata with the walking UGV (A), wheeled
UGV (B) of Figure 9 as well as the outcome of their join operation (C).

The event set E representing all transitions in the graph of the
join automaton can be written as:

E1 = 〈1,a,Ga, J(1,3),3〉 E2 = 〈2,a,Ga, J(2,3),3〉

E3 = 〈4,c,Gc, J(4,5),5〉 E4 = 〈5, j,Gj, J(5,6),6〉

E5 = 〈5, i,Gi, J(5,7),7〉 E6 = 〈7, j,Gj, J(7,6),6〉

E7 = 〈6, i,Gi, J(6,7),7〉 E8 = 〈1, r,Gr, J(1,2),2〉

E9 = 〈3, r,Gr, J(3,2),2〉 E10 = 〈2,p,Gp, J(2,4),4〉

E11 = 〈3,⋉,G⋉, J(3,8),8〉 E12 = 〈6,⋉,G⋉, J(6,8),8〉

E13 = 〈7,⋉,G⋉, J(7,8),8〉 E14 = 〈2,⋉,G⋉, J(2,8),8〉

Again, the key constructionswithin the set of events are the set of
guards and resets (jumps) for each transition. Under the assumption
that the system will reach a steady state before the next action, the
Klannmechanismmust be at rest for an action to be triggered which
is written ϕ̇w = 0 for the guard of each action. This assumption also
implies that all velocitiesmust equal zero for thewheeled UGV before

any transition can occur. For actions that require the Klann linkage
for locomotion, the mechanism must be in contact with the ground
so that θw = 0. The position of the walking UGV along the x-axis
can be determined by the conversion xw = s

ϕw
π
where s is the stride

length of the Klann linkage.This conversion allows for comparisons
to determine where the walking UGV is positioned to the wheeled
UGV. For movement action a, the walking UGV must not be in the
same location as the wheeled UGV. For the positioning action p to
occur, yr = 0 to ensure that the robot is along the horizontal x-axis
where the walking UGV is positioned. For connection action c to
occur, the wheeled UGV must be properly positioned on the x-axis
and aligned with the walking UGVmagnets. For joint actions i and j,
the Klann linkage must be raised to not interfere with movement so
that θw > 0. Also, for the joined vehicle to interact with an object with
i, the vehicle position (measured using the wheeled UGV coordinates
qr) must be sufficiently close to the interaction location qi. Finally,
the systemmust be at its goal position and at rest for the terminating
transition⋉ to be enabled.With these conditions inmind, the guards

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

of the join automaton are written as follows:

Ga = {(ϕw,θw) ∈ Xw ∣ ϕ̇w = θw = 0,xr ≠ s
ϕw
π
‖ yr ≠ 0}

Gc = {(ϕw,θw) ∈ Xw ∣ ϕ̇w = θw = 0,θr = 0,yr = 0,xr ≠ s
ϕw
π
}

Gr = {(xr,yr,θr) ∈ Xr ∣ ̇xr = ̇yr = ̇θr = 0}

Gp = {(xr,yr,θr) ∈ Xr ∣ ̇xr = ̇yr = ̇θr = 0,yr = 0}

Gi = {(xr,yr,θr) ∈ Xr ∣ ϕ̇w = θw = ̇xr = ̇yr = ̇θr
= 0, θw > 0, ‖qr − qi‖ < ϵ}

Gj = {(xr,yr,θr) ∈ Xr ∣ ϕ̇w = θw = ̇xr = ̇yr = ̇θr = 0, θw > 0}

G⋉ = {(ϕw,θw) ∈ Xw, (xr,yr,θr) ∈ Xr ∣ ϕ̇w
= ̇θw = ̇xr = ̇yr = ̇θr = 0,

xr = x
f
r ,yr = y

f
r ,θr = θ

f
r}

For the dual UGV case study, there are no resets on the state
variables which allows every transition to admit the trivial jump
condition:

J(ℓi,ℓj):

{{{{{{{{{{
{{{{{{{{{{
{

ϕw↦ {ϕwc}

θw↦ {θwc}

xr↦ {xrc}

yr↦ {yrc}

θr↦ {θrc}

∀ℓi,ℓj ∈ L

The set of invariant spaces for each location Inv(ℓ) is constructed
in a similar fashion to the set of guards. While the guards
parameterize conditions on the state and communication variables
for a particular transition to occur, the invariant spaces are solely
functions of the state variables and represent conditions for the
automaton execution to remain within the location reached by its
associated transition label. In the initial state Location 1, the system
is at rest, all velocities are zero and walking UGV state variables are
initialized to zero. The wheeled UGV state variables are initialized
to some initial value relative to the initial location of the walking
UGV. Additionally, the systemwill also remain at rest in the goal state
marked by Location 8. While the wheeled UGVis within Location
2 and Location 6, the derivative of one of the state variables must
be non-zero so that the vehicle remains in motion. Additionally
for the wheeled UGV to remain in Location 6, the position of the
vehicle must not be located at the desired interaction location.
Within Location 4, the wheeled vehicle is only allowed to rotate so
that it always has angular velocity but zero linear velocities. While
the walking UGV is within Location 3, the inclination angle of the
mechanism θw remains fixed at 0 and the angular velocity of the
arm rotation must take on some non-zero value. In Locations 5 and
7, either the angular velocity of the linkage or of the mechanism
rotation must maintain a non-zero value. Additionally, in Locations
6 and 7, the arm mechanism is lifted to accommodated the joined
vehicle so that θw > 0within those locations. Finally, within Location
7, the joined vehicle is sufficiently close to the prescribed interaction
location and velocities for the wheeled UGV variables are zero as all
movement will be performed by the walking UGV portion of the
vehicle. Taking all of these conditions into account, the invariant set

is written as:

Inv(1) = {(ϕw,θw) ∈ Xw, (xr,yr,θr) ∈ Xr ∣ ϕ̇w
= ̇θw = ̇xr = ̇yr = ̇θr = 0,

ϕw = θw = 0,xr = x
i
r,yr = y

i
r,θr = θ

i
r}

Inv(2) = {(xr,yr,θr) ∈ Xr ∣ ̇xr > 0 ‖ ̇yr > 0 ‖ ̇θr > 0}

Inv(3) = {(ϕw,θw) ∈ Xw ∣ θw = 0, |ϕ̇w| > 0}

Inv(4) = {(xr,yr,θ) ∈ Xr ∣ ̇xr = ̇yr = 0, ̇θr > 0}

Inv(5) = {(ϕw,θw) ∈ Xw ∣ |ϕ̇w| > 0 ‖ | ̇θw| > 0}

Inv(6) = {(ϕw,θw) ∈ Xw, (xr,yr) ∈ Xr ∣ ̇θw = 0, θw > 0,

̇xr > 0 ‖ ̇yr > 0 ‖ ̇θr > 0, qr ≠ qi}

Inv(7) = {(ϕw,θw) ∈ Xw, (xr,yr,θr) ∈ Xr ∣ ̇xr = ̇yr = ̇θr = 0,

|ϕ̇w| > 0 ‖ | ̇θw| > 0, θw > 0, ‖qr − qi‖ < ϵ}

Inv(8) = {(ϕw,θw) ∈ Xw, (xr,yr,θr) ∈ Xr ∣ ϕ̇w
= ̇θw = ̇xr = ̇yr = ̇θr = 0}

The activities (continuous vector fields) for the two UGV hybrid
systems can be expressed as follows:

Act (1,8) = { ̇xr = ̇yr = ̇θr = ϕ̇w = ̇θw = 0 Act (5) = {
ϕ̇w = u

w
1

̇θw = u
w
2

Act (2) =
{{
{{
{

̇xr = u
r
1 cos θ

̇yr = u
r
1 sin θ

̇θr = u
r
2

Act (6) =

{{{{{
{{{{{
{

̇xr = u
r
1 cos θ

̇yr = u
r
1 sin θ

̇θr = u
r
2

ϕ̇w = ̇θw = 0

Act (3) = {
ϕ̇w = u

w
1

̇θw = 0
Act (7) =

{{
{{
{

̇xr = ̇yr = ̇θr = 0
ϕ̇w = u

w
1

̇θw = u
w
2

Act (4) =
{{
{{
{

̇xr = 0
̇yr = 0
̇θr = u

r
2

The above equations for Act(ℓ) thus capture the continuous
dynamics of the dual UGV system within the join hybrid automaton.
We see that the wheeled UGV is modeled using standard unicycle
dynamics while the walking UGV is a basic single integrator model.
Note that the joined UGV inherits the unicycle dynamics of the
wheeled UGV while the walking UGV inputs now control the
movement of the 2-DOFmanipulator. Location 2 corresponds to the
wheeled UGV moving within the 2-Dimensional plane and similarly
Location 3 corresponds to the walking UGV moving horizontally
along the x-axis. Location 4 is a rotational only action of the wheeled
UGV which orients the magnets on the front of the robot so that
they are aligned with the magnets on the rear of the walking
UGV along the x-axis. Location 5 corresponds to the magnetic
connection between the two UGVs performed by the walking UGV,
and the walking UGV also raising its legs off the ground. Location
6 represents the motion of the joined vehicle with the wheeled
UGV component providing the locomotion towards interaction
locations. Location 7 corresponds to the manipulator on the joined
vehicle interacting with the environment while the vehicle remains
stationary. Finally, locations 1 and 8 mark the initial and final state
of the system where both vehicles are stationary.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

6.2 Application: search for an action plan

The construction of an action plan for the dual UGV system
proceeds in a similar fashion to the process outlined in the UAV-UGV
study.The A∗ planner weighs the possible transitions based on cost
functions evaluated on continuous state space variables of the join
hybrid system and the continuous domain is divided and quantized
using the centroids of the resulting workspace cells. While there
are still multiple valid selections for cost functions as inputs to the
planner, the reduced system complexity allows for the selection of
simplified cost functions without effecting planner convergence.

Suppose that the planner is given the system at cell ℓi and
considers transitioning it to some cell ℓj; the cell containing the
goal location (here: the location of the light switch) will be denoted
ℓf . With D(ℓi,ℓj) expressing the Euclidean distance between the
centroids of cell i and j, the short and long-term cost functions that
quantify the cost-benefit ratio of a transition between 2 cells are
given more simply (no workspace obstacles are considered here):

aij = D(ℓi,ℓj) hj = D(ℓj,ℓ f) ,

respectively. For this system these action-specific costs may only
apply to events labeled with symbols in (a, r, j). For the remaining
three events, namely, positioning p, connection c, and interaction i,
fixed costs of the form

aij = C hj = 0,

suffice, given that these as generally fixed duration cooperative
events. For simplicity, positioning p is set to take place at some fixed
distance behind the current location of the walking UGV.

Comparing event sequence costs, the planner this time settles
on the sequence rpcji. This plan represents the wheeled UGV driving
(r) to a location behind the walking UGV and rotating itself to
align itself to connect with other vehicle (p); the walking UGV

making the magnetic connection with the wheeled UGV and lifting
the manipulator mechanism (c); the joined UGV driving towards
interaction location qi (j); and finally, the joined UGV interacting
with a light switch at the designated location (i).

6.3 Physical implementation

Realizations of the walking robot and wheeled robot designs
were achieved using a mix of 3D printed and off-the-shelf
components as seen in Figure 9. Local controllers corresponding to
each location were implemented using microcontrollers on each of
the robotic agents. A Raspberry Pi on the wheeled robot acts as the
coordinating controller in this case and sends the required actions
to the walking robot controller to ensure synchronization between
the two vehicles. The walking robot is controlled by an ESP32 and
commands are received via a Wi-Fi connection with the Raspberry
Pi. In testing, the vehicles were able to magnetically connect,
move to the interaction location, and flip a standard light switch
mounted within the workspace of the walking robot manipulator.
In this manner, the UGVs are capable of successfully implementing

the sequence calculated by the A∗ planner and completing the
desired task.

7 Conclusion

Cooperative planning for tasks not feasible without physical
interaction and nontrivial mechanical coupling between
heterogeneous robotic agents is particularly challenging and pushes
existing multi-robot planning and control methodologies to their
limits.The approach outlined in this paper overcomes this challenge
by (a) incorporating aspects of the underlying continuous dynamics
that capture the intricacies of physical interaction between the
heterogeneous robot teammates and expressing their effects through
a hybrid dynamical system modeling framework; (b) subsequently
abstracting these continuous dynamics into discrete modes resting
on appropriately parameterized control loops, and finally and
arguably more importantly, (c) adapting and introducing a novel
composition operation for hybrid dynamical systems which is
capable of expressing cooperative group behaviors that are neither
the union nor the intersection of those of its group members. The
combined heterogeneous multi-robot system planning and control
architecture is capable of revealing as solutions new cooperative
behaviors that were not previously achievable. Yet more work is
needed to further develop and extend this approach to enable more
automation in the modeling phase, allow concurrent subsystem
actions, and achieve higher computational efficiency. Additionally,
future work will attempt to adapt the turn-based nature of automata
execution to allow for agents to perform concurrent actions. The
relaxation of this restriction is likely nontrivial within the confines
of the current modeling framework.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

MS developed and refined the planning methodologies and
performed the analysis of the case studies. HT supervised the work
andprovided the conceptual framework for the design of the systems
under study. MS and HT wrote and revised the initial draft of the
manuscript. All authors contributed to the article and approved the
submitted version.

Funding

This work has been supported in part by the U.S. Army through
a subcontract by PPG under Collaboration Agreement Number
2022016-142122.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Sebok and Tanner 10.3389/frobt.2024.1172105

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1172105/full#supplementary-material

References

Bhattacharya, S., Kumar, V., and Likhachev, M. (2010). “Search-based path planning
with homotopy class constraints,” in Proceedings of the twenty-fourth AAAI conference
on artificial intelligence, 1230–1237.

Casarez, C. S., and Fearing, R. S. (2016). “Step climbing cooperation primitives for
legged robots with a reversible connection,” in 2016 IEEE international conference on
robotics and automation, 3791–3798.

Cassandras, C., Pepyne, D., andWardi, Y. (2001). Optimal control of a class of hybrid
systems. IEEE Trans. Automatic Control 46, 398–415. doi:10.1109/9.911417

Egerstedt, M., Wardi, Y., and Axelsson, H. (2006). Transition-time optimization
for switched-mode dynamical systems. IEEE Trans. Automatic Control 51, 110–115.
doi:10.1109/tac.2005.861711

Heinz, J., and Rogers, J. (2013). “Learning subregular classes of languages with
factored deterministic automata,” in Proceedings of the 13th meeting on the mathematics
of language (MoL 13) (Sofia, Bulgaria: Association for Computational Linguistics),
64–71.

Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Nayar, H. D., Aghazarian,
H., Ganino, A. J., et al. (2003). CAMPOUT: a control architecture for tightly
coupled coordination of multirobot systems for planetary surface exploration. IEEE
Trans. Syst. Man, Cybern. – Part A Syst. Humans 33, 550–559. doi:10.1109/tsmca.
2003.817398

Johnson, A. M., Burden, S. A., and Koditschek, D. E. (2016). A hybrid systems
model for simple manipulation and self-manipulation systems. Int. J. Robotics Res. 35,
1354–1392. doi:10.1177/0278364916639380

Karydis, K., Zarouk, D., Poulakakis, I., Fearing, R. S., and Tanner, H. G. (2014).
“Planning with the star(s),” in Proceedings of the IEEE/RSJ international conference on
Chicago, IL: Intelligent Robots and Systems, 3033–3038.

Kiener, J., and von Stryk, O. (2007). “Cooperation of heterogeneous, autonomous
robots: a case study of humanoid and wheeled robots,” in Proceedings of the IEEE/RSJ
international conference on intelligent robots and systems, 959–564.

Kim, S., Bhattacharya, S., and Kumar, V. (2014). “Path planning for a
tethered mobile robot,” in 2014 IEEE international conference on robotics and
automation, 1132–1139.

Mathews, N., Christensen, A. L., O’Grady, R., and Dorigo, M. (2010). “Cooperation
in a heterogeneous robot swarm through spatially targeted communication,” in
Swarm intelligence. Editors M. Dorigo, M. Birattari, G. A. Di Caro, R. Doursat, A.
P. Engelbrecht, D. Floreano, et al. (Berlin, Heidelberg: Springer Berlin Heidelberg),
400–407.

Mellinger, D., Lindsey, Q., Shomin, M., and Kumar, V. (2011). “Design, modeling,
estimation and control for aerial grasping and manipulation,” in Proceedings of the
IEEE/RSJ international conference on intelligent robots and systems, 2668–2673.

Mellinger, D., Shomin, M., Michael, N., and Kumar, V. (2013). “Cooperative grasping
and transport using multiple quadrotors,” in Distributed autonomous robotic systems.
Editors A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh,
et al. (Berlin, Heidelberg: Springer), 83, 545–558.

Messing, A., Neville, G., Chernova, S., Hutchinson, S., and Ravichandar, H. (2022).
Grstaps: graphically recursive simultaneous task allocation, planning, and scheduling.
Int. J. Robotics Res. 41, 232–256. doi:10.1177/02783649211052066

Miki, T., Khrapchenkov, P., and Hori, K. (2019). “Uav/ugv autonomous cooperation:
uav assists ugv to climb a cliff by attaching a tether,” in 2019 international conference on
robotics and automation, 8041–8047.

Ogusu, Y., Tomita, K., and Kamimura, A. (2020). “Microdrone-equipped mobile
crawler robot system, dir-3, for high-step climbing and high-place inspection,” in
Proceedings of the IEEE/RSJ international conference on intelligent robots and systems,
1261–1267.

Parker, L. E. (2001). Heterogeneous multi-robot cooperation. Cambridge, MA:
Massachusetts Institute of Technology.

Pirjanian, P., Leger, C., Mumm, E., Kennedy, B., Garrett, M., Aghazarian, H., et al.
(2002). “Distributed control for a modular, reconfigurable cliff robot,” in Proceedings of
the IEEE international conference on robotics and automation, 4083–4088.

Posa, M., Cantu, C., and Tedrake, R. (2014). A direct method for trajectory
optimization of rigid bodies through contact. Int. J. Robotics Res. 33, 69–81.
doi:10.1177/0278364913506757

Rimon, E., and Koditschek, D. E. (1992). Exact robot navigation using artificial
potential functions. IEEE Int. J. Robotics Automation 8, 501–518. doi:10.1109/70.163777

Sebok, M. A., and Tanner, H. G. (2019). On the hybrid kinematics of
tethered mobile robots. Proceedings of the 2019 Am. Control Conf., 25–30.
doi:10.23919/ACC.2019.8815354

Stager, A., and Tanner, H. (2019). Composition of local potential functions
with reflection. Proceedings of the IEEE Int. Conf. Robotics Automation, 5558–5564.
doi:10.1109/ICRA.2019.8793807

Stager, A., and Tanner, H. G. (2016). “Stochastic behavior of robots that navigate by
interacting with their environment,” in Proceedings of the IEEE conference on decision
and control, 6871–6876.

Stager, A., and Tanner, H. G. (2020). “Mathematical models for physical
interactions of robots with their environment,” in Proceedings of the 2018 international
symposium on experimental robotics (Springer Proceedings in Advanced Robotics),
549–558.

Sutera, G., Borgese, A., Guastella, D. C., Cantelli, L., andMuscato, G. (2020). “Amulti-
robot system for thermal vision inspection,” in Proceedings of the 23rd international
symposium on measurement and control in robotics, 1–6.

van der Schaft, A. J., and Schumacher, H. (2000).An introduction to hybrid dynamical
systems. Springer.

Zhao, P., Mohan, S., and Vasudevan, R. (2020). Optimal control of polynomial
hybrid systems via convex relaxations. IEEE Trans. Automatic Control 65, 2062–2077.
doi:10.1109/tac.2019.2929110

Zhu, F., andAntsaklis, P. J. (2015). Optimal control of hybrid switched systems: a brief
survey. Discrete Event Dyn. Syst. 35, 345–364. doi:10.1007/s10626-014-0187-5

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2024.1172105
https://www.frontiersin.org/articles/10.3389/frobt.2024.1172105/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1172105/full#supplementary-material
https://doi.org/10.1109/9.911417
https://doi.org/10.1109/tac.2005.861711
https://doi.org/10.1109/tsmca.2003.817398
https://doi.org/10.1109/tsmca.2003.817398
https://doi.org/10.1177/0278364916639380
https://doi.org/10.1177/02783649211052066
https://doi.org/10.1177/0278364913506757
https://doi.org/10.1109/70.163777
https://doi.org/10.23919/ACC.2019.8815354
https://doi.org/10.1109/ICRA.2019.8793807
https://doi.org/10.1109/tac.2019.2929110
https://doi.org/10.1007/s10626-014-0187-5
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Physical interaction in multi-agent systems
	2.2 Optimal planning and control of hybrid systems
	2.3 Existing limitations and proposed solution

	3 Hybrid automata for cooperative behavior
	4 Cooperative plans with physical interaction
	4.1 Discretization of the workspace
	4.2 The search for the right action sequence

	5 Case study 1: a tethered UAV–UGV system
	5.1 Determining hinge points
	5.2 Application: search for an action plan
	5.3 Extension to a heterogeneous system with three agents
	5.4 Comparison to possible alternative methodologies

	6 Case study 2: the dual UGV system
	6.1 Hybrid automata models
	6.2 Application: search for an action plan
	6.3 Physical implementation

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

