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Building causal models for
finding actual causes of
unmanned aerial vehicle failures

Ehsan Zibaei* and Robin Borth

Chair of Software and Systems Engineering, TUM School of Computation, Information and
Technology, Technical University of Munich, Munich, Germany

Finding actual causes of unmanned aerial vehicle (UAV) failures can be split
into two main tasks: building causal models and performing actual causality
analysis (ACA) over them. While there are available solutions in the literature
to perform ACA, building comprehensive causal models is still an open
problem. The expensive and time-consuming process of building such models,
typically performed manually by domain experts, has hindered the widespread
application of causality-based diagnosis solutions in practice. This study
proposes a methodology based on natural language processing for automating
causal model generation for UAVs. After collecting textual data from online
resources, causal keywords are identified in sentences. Next, cause–effect
phrases are extracted from sentences based on predefined dependency rules
between tokens. Finally, the extracted cause–effect pairs are merged to form a
causal graph, which we then use for ACA. To demonstrate the applicability of
our framework, we scrape online text resources of Ardupilot, an open-source
UAV controller software. Our evaluations using real flight logs show that the
generated graphs can successfully be used to find the actual causes of unwanted
events. Moreover, our hybrid cause–effect extraction module performs better
than a purely deep-learning based tool (i.e., CiRA) by 32% in precision and 25%
in recall in our Ardupilot use case.

KEYWORDS

unmanned aerial vehicle, actual causality, natural language processing, causal graph,
root cause analysis, automated diagnosis

1 Introduction

Small unmanned aerial vehicles (UAVs) are becoming popular in various applications,
from medical delivery (Ackerman and Strickland, 2018) to monitoring forests
(Torresan et al., 2017). As UAVs achieve higher autonomous capabilities, scenarios in which
they may fail also become more complicated. Given the quantity and complexity of software
and hardware components in such systems, mere failure detection in a component without
causality analysis does not provide actionable explanations.

The case of the open-source UAV controller software, Ardupilot1, is a good example.
A failure detection program called LogAnalyzer2 is developed in this project, which reads

1 https://ardupilot.org/copter/index.html

2 https://ardupilot.org/copter/docs/common-downloading-and-analyzing-data-logs-in-mission-

planner.html
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FIGURE 1
A simplified causal graph built on the basis of two user statements.

flight logs and checks pre-defined rules on each component’s data to
determine whether it failed during the flight. Despite LogAnalyzer’s
popularity and ease-of-use, many users are still unsatisfied and ask
for additional help analyzing their crash logs in discussion fora3.This
emphasizes that supplying users with only a list of failed components
is insufficient. A user needs to know the actual causes of an unwanted
event to take corrective action.

Textual causal knowledge from users and developers on online
platforms can be useful in this respect. Regarding our example on
the Ardupilot project, there are numerous posts in which users share
causal knowledge. For example, a user argues in a forum post that
“…traveling at 12 m/s and only 4 m off the ground, leading to a
very high speed land that causes a crash.”4 In another post, another
user argues that “…barometer glitches led to previous crashes.”5 By
merging these two pieces of information that have the word crash
as a common term, we can build a causal graph that consists of four
nodes and three directed edges, as shown in Figure 1.This simplified
graph suggests that there are two possible scenarios for the crash of
an Ardupilot-based UAV.

Suppose all events are binary variables and there is a flight
log in which “barometer glitch,” “crash,” and “traveling at 12 m/s
and only 4 m off the ground” occurred, whereas “very high speed
land” did not occur. In this case, the upper path of the graph
could not be a valid causal explanation, because the middle event
did not occur. In contrast, the lower path of the graph could
be a valid causal explanation. Determining this requires further
counterfactual analysis.

We can do a conceptual counterfactual analysis by considering
an imaginaryworld inwhich all events except “barometer glitch” and
“crash” are fixed at their initial state. In this setting, changing the state
of “barometer glitch” to not-occurring, will also change the state of
the “crash” to not-occurring. In other words, had “barometer glitch”
not happened, “crash” would not have happened. Consequently,
“barometer glitch” is the actual cause6 of “crash”.

3 https://discuss.ardupilot.org/c/log-analysis-and-tuning/104

4 https://discuss.ardupilot.org/t/log-analysis-questions-about-expected-

behavior-on-compass-failure/47031

5 https://discuss.ardupilot.org/t/setting-the-maximum-descent-rate-in-

apm/2210/7

6 Actual causation has several definitions in the literature, which we

discuss in Section 2.4.

Note that in the abovementioned example, two levels of causality
are involved: type and actual causality. Type causality describes
the generic causality between events by answering questions of the
form: “does event A cause event B?” On the other hand, actual
causality analysis (ACA) answers questions of the form: “did event
A cause event B?” In fact, ACA determines the causality in a
specific occasion.

We see type causality analysis as a prerequisite forACA. Building
good causal models for a system typically requires deep domain
knowledge and years of experience in working with the system.
Such models are typically scarce, even for popular systems such as
Ardupilot installed on millions of small UAVs. Thus, the necessity
to automate the diagnosis by generating causal models is of utmost
importance in developing such systems. The main idea of this study
is to learn causal models from natural language texts instead of
expensive and time-consuming manual model building.

To realize a natural language processing (NLP)-based solution
for generating causal models that can be used in ACA, we identified
four major challenges:

Challenge 1: domain knowledge is scattered among multiple
online resources with different structures. Domain knowledge
about technical systems may be found in various resources such
as discussion fora and online user manuals with diverse web page
structure and semantics. Moreover, discussion texts may contain a
considerable amount of noise because the issue is discussed in an
informal conversation, where users occasionally thank each other
or terminate sentences without proper punctuation marks. This
necessitates extensive preprocessing and cleaning.

Challenge 2: cause–effect phrases may acquire different
semantic roles. Based on the causal verb and the passive or active
formof the sentence, cause–effect phraseswould fall inwith different
grammatical structures and can appear in various parts of a sentence.
Moreover, theremay bemultiple cause–effect pairs in each sentence.
It is necessary to do a trade-off between the quality and number of
extracted cause–effect phrases.

Challenge 3: extracted phrases should be properly merged
and integrated into a single causal graph.Users may talk about the
same concept in different terms. Using a generic thesaurus would
not suffice because each technical system’s users have an exclusive
terminology that differs from other technical systems. For example,
the Ardupilot community uses the words “fault” and “failure”
interchangeably, whereas such terms have different meanings in the
context of safety standards.
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FIGURE 2
Illustration of the methodology proposed by our framework. Dark cells are manual and light cells are automated processes.

Challenge 4: Causal models should be adapted to the ACA
procedure. In the ACA literature, nodes of the causal models may
be exogenous (i.e., they are instantiated on the basis of a specific
system run) or endogenous (i.e., they are instantiated on the basis
of their parent node). It is not thoroughly clear how the nodes of a
generically built graph should be handled in this respect. Moreover,
the generated graphs have to be acyclic to be used in the standard
ACA tools.

To address these challenges, we propose a technical framework
depicted in Figure 2 consisting of four modules: (1) the first module
crawls different web page structures and collects a large corpus of
text from scattered knowledge over the web, (2) module two finds
multi-pair multi-token cause–effect phrases in each sentence, (3)
module three merges the discovered phrases into a single causal
graph, and, (4) module four finds the actual causes of an unwanted
event in a given flight log.

The contributions of this study are the following:

• Wepropose a generic framework enabling automated collection
of textual data and using it for the diagnosis of UAV systems
• Our work addresses the causal model building task, which can

highly accelerate the adoption of ACA in the industry
• Our hybrid cause–effect extraction module performs better

than a purely machine-learning (ML)-based tool by 32% in
precision and 25% in recall in our Ardupilot use case
• We publish a dataset containing four parts: https://doi.org/10.

6084/m9.figshare.21711608

1. ArduCorpus: A corpus of 935K sanitized sentences
collected from the Ardupilot UAV user manuals, Discord
chat platforms, and discussion fora

2. ArduCE: A set of 2238 cause–effect pairs that
are generated by our extraction module after
analyzing ArduCorpus

3. ArduCrash: Manual analysis of eight real flight logs and
their raw data. Although the flight logs are already on
the internet, we manually categorize them according to
the root cause of the crash and publish the binary events
besides the raw time-series data

4. GroundTruth: A set of 539 sentences as a ground truth
in which exact locations of cause–effect pairs are labeled
manually

The remainder of this paper is organized as follows: In §2, related
studies in web scraping, text processing, and ACA are discussed.
Next, our proposed methodology is illustrated in §3. In §4 the
primary characteristics of the use cases of this study are introduced.
In §5, the proposed methodology is evaluated for its validity and
effectiveness. Finally, in §6 conclusion, limitations, and future works
are discussed.

2 Related work

The gathering of causal knowledge from textual resources has
garnered increased attention in the recent years. There are a few
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end-to-end solutions, such as Ahne et al. (2022) and
Maisonnave et al. (2022), proposing frameworks that can sift
through large amounts of textual data and detect implicit and
explicit causal structures within them. These frameworks could
not be used in our context, because Ahne et al. (2022) is customized
for a medical domain and Maisonnave et al. (2022) is designed to
detect causality between time series instead of binary variables. To
generate causal graphs for our specific context, which is the diagnosis
of UAVs, we identified four major challenges and discuss existing
works in each area in the following paragraphs.

2.1 Web scraping

Web scraping transforms unstructured data from one or
many websites into unified structured data. A broad range of
applications from gray literature search (Haddaway, 2015) to
scraping hematologic patients’ information during the SARS-
CoV2 Pandemic (Melchor et al., 2020) to gathering social media
information (Rajput and Ahmed, 2019) has increased the demand
for versatile scraping techniques.

In practice, three main approaches for implementing a web
data scraper are available: using desktop-based software, building
a web data scraper on the basis of generic libraries, and utilizing
existing frameworks. End-to-end software packages such as Fminer7

are typically inflexible in working with various website formats and
data structures. Combining general-purpose libraries, as proposed
in Mitchell (2018), is not a robust solution, because occasional
changes in the web resources would cause the scraping to fail.
Scraping frameworks provide a balanced solution by gathering
various components under a unified architecture. One of the most
well-known frameworks is Scrapy8, which has been successfully
used in big data applications (Chaulagain et al., 2017; Landers et al.,
2016). Another challenge are dynamic web pages that may require
JavaScript scripts to be executed to extract content. This can
be performed by Selenium9, developed originally for website
testing, which is directly available in the Scrapy framework. Given
Scrapy’s mature technology and versatility, we build our scraping
module on top of it.

2.2 Cause–effect extraction

Detecting cause–effect phrases in natural language sentences has
been extensively studied in the literature. See (Yang et al., 2021) for
a survey of extraction techniques and examples of detecting implicit
and explicit causal relations. We identified two major objectives in
the literature for extracting cause–effect phrases from a given set
of sentences.

Thefirst objective is to determinewhether a given pair of phrases
is causal according to a text. Doan et al. (2019) surveys Twitter
posts for answering the question, “Does stress cause insomnia?”
by searching for several causal patterns, including an active form,

7 http://www.fminer.com/

8 https://scrapy.org/

9 https://www.selenium.dev/

a passive form, and an active form with a proposition. Our work
evaluates combinations of their rules in the context of UAVs.
Sharp et al. (2016) proposed to trace back outgoing dependency
links from root tokens to expand the detected token into a phrase.
Their method can detect multi-token cause–effect phrases instead
of single-token phrases. Similarly, Sorgente et al. (2013) proposed
an approach to finding multiple pairs in a sentence based on
conjunction rules. Our work combines the methods of Sharp et al.
(2016) and Sorgente et al. (2013) to achieve multi-pair multi-token
cause–effect detection in each sentence.

The second objective is recently reported in a series of works
(Frattini et al., 2020; Fischbach et al., 2021) that aim to collect
previously-unknown cause–effect phrases in natural language texts.
Their tool, CiRA, works based on a deep neural network trained on a
corpus of 8,430 sentences. Although most of the training sentences
are in the form of if–then statements, CiRA, is claimed to be able
to extract cause-effect phrases from any type of sentence. Hence, we
include it as a baseline in our evaluations.

2.3 Building causal graphs

Causal knowledge is typically represented through a directed
graph, which encodes events as nodes and causal relationships
as edges (Pearl, 1998). This representation strongly resembles
how the human mind perceives causal relationships in complex
systems. A few studies (Zibaei et al., 2018; Ibrahim et al., 2019a)
investigated converting standard fault and attack trees of UAVs
into causal graphs. These studies assume that fault and attack trees
are initially available, which does not address the core problem
fundamentally.

The causal graphs we seek to build in the first step are
a type of directed graphs that should be acyclic (Morgan and
Winship, 2014). Another issue that arises is the level of abstraction
of the discovered phrases. Our extraction module outputs a list
of phrases that need to be integrated at a single graph. The
baseline approach is to merge the exactly same phrases into single
nodes. Another technique is to merge the phrases on the basis of
their syntactical and semantical aspects (Khurana et al., 2022). We
study how different merging techniques affect the structure of the
generated graphs.

A more advanced approach is to train a word embedding
(Kutuzov et al., 2017) on the basis of a specific context and use it
to match similar phrases. In that case, for example, “GPS glitch”
and “GPS disconnection” will have a very small vector distance and
could bemerged. For example, Hassanzadeh et al. (2019a) employed
neural networks to effectively capture semantic relations across
phrases. Building such customized word embeddings is an open
problem and out of the scope of this study.

2.4 ACA

ACA is an essential task in any diagnostic procedure. Various
languages, definitions and benchmarks are surveyed in Kueffner
(2021) for actual causality. Among them, Halpern and Pearl (HP)’s
definition in Halpern (2015) is the most popular formalism,
which works on the basis of causal graphs. This approach is built
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on top of three rules, which we discuss in §3.4. Ibrahim et al.
(2019b) automated the process of checking these conditions through
SAT solving and contributed a tool, HP2SAT in Ibrahim and
Pretschner (2020), to perform the reasoning. We use HP2SAT to
perform ACA and indirectly evaluate the validity of the generated
causal graphs.

3 Proposed approach

This section illustrates each of the four modules in our proposed
framework depicted in Figure 2. The framework is generic in the
sense that it can be applied to any UAV platform with minimal
changes, given that the textual domain knowledge and runtime logs
are available. Our use case are UAVs equipped with Ardupilot as the
autopilot system.

3.1 Scraping web resources

Web page scraping consists of two tasks: defining the desired
links, i.e., web crawling, and parsing the response of the server.
Based on Scrapy’s Spider classes10, we define the desired links
and the depths to follow in addition to the customized parsing
functionality. Some web pages such as those in discussion fora
may load dynamically, which requires user interaction. We use
Selenium11 to automate web browser interaction and gather content
by applying manually defined XPaths and CSS selectors to user
statements.

After extracting data from different sources, the output
may still be poorly formatted because of errant punctuations,
inconsistent capitalization, line breaks, and misspellings. We
detect sentence boundaries using Spacy’s12 pre-trained NLP
models. Data from discussion fora or chat platforms require
additional cleaning due to duplicate posts mentioning each
other and broken sentences due to the presence of graphical
objects in texts, which we perform by applying regular
expression patterns.

3.2 Extracting cause–effect pairs

Extraction is the core task in our framework and highly affects
the downstream diagnosis results. We propose a hybrid extraction
procedure that consists of data-driven and rule-based constituents.
Decomposing the gathered sentences into tagged tokens is
performed using pre-trained NLP models, while identifying the
cause and effect phrases in each sentence is realized by using a
rule-based technique.

As a preliminary step, we drop three types of sentences:
(1) interrogative sentences, (2) sentences that do not contain
a verb, object, or subject, and (3) sentences that contain at

10 https://docs.scrapy.org/en/latest/topics/spiders.html

11 https://selenium-python.readthedocs.io/

12 https://spacy.io/

TABLE 1 Meaning of DEP tags.

Tag Meaning

nsubj Nominal subject of the clause

nsubjpass Nominal subject of the passive clause

dobj Accusative object of the verb

pobj Root of a noun phrase following the preposition

prep Preposition that follows a verb

conj the relation between two elements connected by a
coordinating conjunction, such as “and” and “or”

agent Complementary part of a passive verb that sets the stage for
introducing the performer of the action

least one negated word13. We follow the procedure proposed in
Girju and Moldovan (2002) for identifying the potentially causal
sentences. They distinguish between low and high ambiguity causal
verbs. Hence, we search for the sentences that have at least one item
of a list of 25 low-ambiguity causal keywords14.This filtering process
outputs potentially causal statements.

3.2.1 Detecting root tokens of cause–effect pairs
Stanford dependencies (DEP) tags introduced in De Marneffe

and Manning (2008) are very useful for localizing the root token
of cause–effect phrases. DEP tags provide a simple description of
grammatical relationships in a sentence. We use such dependencies
to define causal patterns to be detected in sentences. Spacy’s 4-step
pipeline can be used to assign DEP tags to tokens:

1. Tokenizer splits a text into simple segments, called tokens.
These tokens could be words, punctuations, combinations of
abbreviations, and so on.

2. Tagger assigns POS (parts of speech) tags to the tokens to
specify their grammatical roles in a sentence. Major classes
in standard POS tagging are adjective (ADJ), noun (NOUN),
proper noun (PROPN), and verb (VERB).

3. Lemmatizer groups different inflected forms into a single
word. This component of the pipeline is used in the graph-
building step.

4. Parser adds DEP tags to the tokens. The tags used within
our detection patterns are “nsubj,” “nsubjpass,” “dobj,” “prep,”
“pobj,” and “agent.” The meanings of major DEP tags used by
us are shown in Table 1. A more complete list can be found in
Choi and Palmer (2012).

13 We observe that most negated sentences in ArduCorpus imply that

the user was not sure about the statement. However, some useful

sentences, which discuss the non-occurrence of events, may also

be eliminated by this filter. In any case, there should be a trade-off

between the quality and the quantity of the sentences.

14 Activate, actuate, arouse, associate, cause, commence, derive, effect,

effectuate, elicit, entail, evoke, generate, implicate, induce, kindle,

lead, link, produce, provoke, relate, result, spark, stem, stimulate,

trigger, unleash.
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FIGURE 3
DEP pattern for a causal sentence in active form.

FIGURE 4
DEP pattern for a causal sentence with preposition.

FIGURE 5
DEP pattern for a causal sentence in passive form.

Once the tokens of each sentence are tagged, we use
the three patterns proposed in Doan et al. (2019) to detect
cause–effect phrases:

The first pattern focuses on the form in which the cause is
the subject and the effect is the object. An example of this pattern
is shown in Figure 3, where the arcs represent the dependencies
between tokens. In this sentence, “causes” is the causal keyword,
“fault” is the cause root–token, and “crash” is the effect root–token.

The second pattern is designed to detect causal mentions in
which the causal keyword is followed by a preposition such as “in,”
“of,” or “to.” For this pattern, the cause is linked to the verb with
“nsubj,” whereas the effect is “pobj” linked to the causal verb via
preposition: “prep.” The output of detecting this pattern for the
sentence “A GPS fault leads to a crash.” is depicted in Figure 4.

The third pattern is proposed for detecting passive causal
statements such as “A crash was caused by a GPS fault.” In this
pattern, “by” is tagged as “agent” and accompanies the causal
keyword. The cause is “pobj,” which is linked to “agent.” The effect
is “nsubjpass,” directly linked to the causal keyword. An example of
this pattern is depicted in Figure 5.

3.2.2 Detecting multi-token cases
Considering the example: “A GPS fault causes a crash,” it

is clear that “fault” → “crash” is not sufficiently informative for

diagnostic applications. A better extractionwould return “GPS fault”
→ “crash.”15 Similar to Sharp et al. (2016), to expand the root token
into a phrase, we collect the tokens, which are connected to the root
token via specific DEP dependency tags.16

3.2.3 Detecting multi-pair cases
Now consider an even more complex example: “An empty

and defect battery, a GPS fault or a defect motor cause a crash.”
By considering our collected sentences, we realized that in a
conversational text, “and” and “or” are loosely used without
implying a logical meaning. Given that speakers use “and” and “or”
interchangeably to refer to a set of elements, the safest approach is
to treat all pairs as disjunctions. Hence, the above sentence contains
four cause–effect pairs to be detected:

• empty battery causes a crash
• defect battery causes a crash
• GPS fault causes a crash

15 We investigate the proper level of the phrase abstraction in the graph

building module.

16 These tags serve our purpose: csubjpass, nsubjpass, nsubj, csubj, dobj,

pobj, nn, amod, nmod, advmod, compound, prep, poss.
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• defect motor causes a crash

To detect multiple causal pairs in one sentence, we rely on “conj”
DEP tag. Similar to Sorgente et al. (2013), we take tokens connected
by “conj” for separate causes of the effect. If there are more than one
causes and more than one effects, we extract all combinations of the
detected causes and effects.

3.3 Building causal graphs

Causal graphs have two main aspects: structural and functional
forms. The structural form is a graphical representation that
determines which nodes causally influence each other. The
functional form specifies to what extent and under which
functionality each node influences its child node. Knowing
the structural form is a sufficient starting point for diagnostic
applications. Hence, finding the extent to which each parent
node influences its child nodes is considered out of the scope
of this study. Moreover, we assume that graph nodes are
binary variables that either occur or not occur in the course of
the UAV flight.

To form the causal graph structure, we first initialize one
node for each distinct member of the extracted cause–effect
pairs. Then, we assign a directed edge between nodes that are
in the same cause–effect pair. When a phrase is the effect in
two distinct cause–effect pairs, we consider the relationship as a
disjunction of the two causes. This baseline merging technique
enables us to form an inclusive graph containing all collected
cause–effect phrases.

It is also possible to equate similar phrases to achieve a more
compact graph. The challenge to be addressed here is that humans
use different terms to talk about the same concepts. This issue
is highly remarkable in Ardupilot, which lacks a standardized
taxonomy of the system-related concepts. Furthermore, the
community of this open-source project includes people from all over
the world with varying levels of English proficiency, which increases
the diversity of terms used in the discussions. In addition to the
baseline, we consider three merging techniques on the basis of the
preprocessed tokens:

• In lemma-based merging, we equate phrases that have
the same lemma. In this way, for example, “worse GPS
connection” will be represented by “bad GPS connection” node
in the graph, because “bad” is the basic morphologic form
of “worse”.
• InPOS-basedmerging, phrases are set equal when their tokens

with “NOUN,” “PROPN,” and “VERB” POS tags are the same.
In this technique, we only keep tokens with the mentioned POS
tags. This technique merges the two abovementioned phrases
into one “GPS connection” node.
• In root-based merging, we equate two phrases when the root

token of them, which is assigned on the basis of DEP tags, are
the same. If, in our example, GPS is the root token for both
phrases, we would merge them to the node “GPS.”

Two issues need to be addressed for preparing the causal graphs
to be used in HP2SAT. First, the raw graphs may contain cycles,

however, HP2SAT is only compatible with acyclic graphs. We use
the fact that in our application, there should always be a to-be-
diagnosed unwanted event. Hence, we calculate all shortest paths
between the unwanted event and its ancestor nodes. Then, we
drop the ones that are subsets of other detected paths. This gives
us a connected and acyclic graph that can be directly used by
HP2SAT library.

Second, while the occurrence or non-occurrence of the root
events in the causal graph (i.e., exogenous variables) should be
specified for the HP2SAT tool, some of them may have not
been monitored by the UAV logging mechanism. For practical
reasons, we drop the paths that do not start from a monitored
event. Note that if the set of monitored events is small, then
this step would significantly reduce the size of the graph.
Similar to other diagnostic solutions, our ACA module depends
on the inclusiveness of the logging mechanism to produce
comprehensive results.

3.4 Using causal graphs

We follow HP’s definition in Halpern (2015) to find the actual
causes of UAV failures. When sufficient evidence (e.g., a run-time
log) and a causal graph are available, HP’s definition can determine
whether an event (or a conjunctional set of events) is the actual cause
of an unwanted event. According to HP’s definition, if the following
three conditions hold for the events A and B, then A is the actual
cause of B:

1. The occurrence of both A and B is recorded in the logs.
2. Two counterfactual conditions hold:

• If, in a hypothetical world (i.e., our causal graph), A is
flicked off, B will also flick off.
• If, in a hypothetical world (i.e., our causal graph), any

other node rather than A and B flicks off, B does not
flick off.

3. If A is a conjunctional set of nodes, it is minimal.

The first condition makes sure that the events in question
really occurred in the logs, otherwise there is no need for
considering them. The second condition, which has its roots in
the philosophical views on actual causality, checks counterfactual
scenarios. The third condition is proposed to comply with the
principle of parsimony in generating minimal diagnoses. We use
the “inference” functionality of HP2SAT (Ibrahim and Pretschner,
2020) to find all actual causes of specific events in specific
flight logs.

For diagnosing a specific flight log, the occurred events in
it should be specified as the “context” in HP2SAT. For the sake
of comprehensibility, we consider an event as “occurred” in our
analysis, if it occurs at least once in the course of the flight. An
alternative approach is to enumerate the instances of the same event
and consider them separately in the analysis. This assumption is not
restrictive in the context of UAVs, because the length of flights are
typically less than 10 min andmost events such as take-off and crash
occur only once.
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4 Use cases and the ground truth

4.1 Internal use case

In the past decade, Ardupilot17, a successful open-source
autopilot project, has emerged, enabling small robotic systems
to perform autonomous missions. Because of its robustness and
versatile functionalities, it has been used in numerous scientific
and commercial applications (Baldi et al., 2022; Baidya et al., 2018;
Luo et al., 2019). Given the large number of developers, 640 as of
Autumn 2022, it has grown to cover different vehicle platforms,
including rovers, boats, and different types of aerial robots. The
project consisting of 700 k lines of code is now mature but complex.

Another interesting aspect of Ardupilot is that its developers and
users use various discussion platforms, which are also accessible to
public. Users ask questions in discussion fora. Developers discuss
existing bugs and new features in Discord chats. In addition, there
are user manuals written by experienced developers who possess
valuable knowledge about the system.

Ardupilot has also a relatively better logging system than other
open-source autopilot platforms, such as PX418 and Paparazzi19, in
that, abstracted events are monitored and recorded at runtime in
addition to raw sensor outputs. This enables us to effortlessly map
the mentioned events by users and developers to flight log events.
For example, take-off, andGPS failsafe are already recorded as binary
events in the flight logs. In contrast, PX4 flight logs only contain
time-series data necessitating an abstraction process to detect events
in the time-series data and thenmap them to the concepts that users
and developers talk about.

4.2 External use case

Strategic Foresight Analysis Report (NATO-SFA)20 is an annual
publication by NATO which summarizes “trends that will shape
the future security environment and possible implications for
the Alliance.” It also includes generic geopolitical findings and
prognoses about the world in textual form. Hassanzadeh et al.
(2019b) published a dataset that contains cause–effect phrases
implied by this document. We manually complemented the
cause–effect phrases with random causal verbs to build complete
sentences. Such a Synthesized dataset is of interest to us for two
reasons: first, the cause–effect terms in NATO-SFA are used in the
literature as a benchmark to evaluate the accuracy of binary causal
classifiers (Kayesh et al., 2020; Hassanzadeh et al., 2019a); Second,
documentations of commercial UAVs are more likely to be concise
and straightforward compared to open-source UAVs. Hence, having
a concise text, similar to our synthesized NATO-SFA dataset, gives
us a rough estimation of how accurate our cause–effect extraction
module would work, if we had a very well-written descriptive text
for UAVs.

17 https://ardupilot.org/dev/index.html

18 https://github.com/PX4/PX4-Autopilot

19 https://github.com/paparazzi/paparazzi

20 https://www.act.nato.int/futures-work

4.3 Building GroundTruth dataset

The input to the extraction module are raw sentences and the
output are cause-effect phrases. To evaluate the performance of the
extraction module, we need a labeled dataset as the ground truth.
The labeled dataset should specify which tokens in each sentence
constitute the cause and effect phrases.

To our knowledge, there is no such labeled dataset in the
literature that specifies exactly where cause and effect phrases lie
in a sentence. Thus, we randomly selected 439 sentences from
ArduCorpus and 100 sentences from NATO-SFA document. Two
authors of this paper annotated the cause–effect phrases. The rate
of agreement for the two annotators is 76%, which is not very high,
because labeling the cause–effect tokens is such a delicate task that
even domain experts may interpret natural language statements
differently. In any case, the agreement rate of 76% indicates that the
annotations were not erratic. For measuring the performance of our
techniques, we take the mean performance among the two ground
truth datasets.

5 Results

In this section, we (1) review scraping and data cleaning
results, (2) assess how accurately cause–effect phrases are extracted
from the text, (3) determine how each merging technique affects
the structural characteristics of the generated graphs, and (4)
investigate the validity of diagnoses generated by our ACA module.
In particular, we answer the following research questions:

RQ1: How effective are the pattern-based rules in identifying the
cause–effect pairs?

RQ2: How does our hybrid extraction module perform compared
to CiRA?

RQ3: How much does cause–effect extraction improve when larger
NLP models are used in the pipeline?

RQ4: To what extent does the conciseness of the text affect the
extraction performance?

RQ5: Which merging technique outputs better causal graphs in
terms of the validity of the diagnoses?

5.1 Web scraping results

By applying our scraping module, we collected approximately
1.8M pieces of text from Ardupilot online resources, with 1.3M
coming from discussion fora, 380K from user manuals, and 120K
fromDiscord chats. After preprocessing and cleansing the rawpieces
of text, we reduced the size of the corpus to 935K sentences. We
publish this dataset as ArduCorpus.

5.2 Extraction results

5.2.1 Finding causal keywords
The extraction procedure begins with finding the causal

keywords. From 935K sentences in ArduCorpus, only around 40K
contained one or more instances of our 25 causal keywords. In
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FIGURE 6
Distribution of causal keywords in ArduCorpus.

particular, we found that “link,” “cause,” “result,” “lead,” and “trigger”
constitute around 75% of the detected keywords in ArduCorpus.

According to Figure 6, which depicts the distribution of causal
keywords, more formal and technical keywords such as “lead”
and “trigger” are used in user manuals, whereas different causal
keywords such as “cause” and “result” are prevalent in discussion
fora. Moreover, the “link” keyword is most common in Discord
chats.One reason is thatDiscord chats aremainly used by developers
who usuallymention development issues in the form of links in their
arguments. Nevertheless, this type of usage for the “link” keyword
does not match any of the three patterns described in §3.3 and our
causal extraction algorithm disregards such usages of it.

5.2.2 Extracting cause–effect phrases
Because our framework allows for the extraction of multiple

tokens and multiple pairs in every sentence, we cannot directly
use the performance measures from other studies that only extract
single tokens and single cause–effect pairs. To resolve this issue,
we employ the Jaccard index and harmonic mean, similar to the
object detection practice in the image processing field, where
several objects of different sizes have to be detected in each image.
The evaluation procedure is similar to the evaluation of object
detection tasks with one difference: objects are cause–effect pairs
in this case.

We define the token detection rate (TDR) as the Jaccard index of
the detected tokens in Eq. 1:

TDR =
|detected_tokens∩ correct_tokens|
|detected_tokens∪ correct_tokens|

(1)

Correct tokens are specified by the ground truth explained in 4.
For example, if the correct phrase contains three tokens in “bad GPS
connection,” and only “GPS connection” is detected by the extraction
module, the detection achieves a TDR of 2/3. The denominator in
this measure prevents extraction algorithms to exhaustively pick out
all tokens for the cause–effect phrases. Next, because each causal pair
consists of two phrases (i.e., cause and effect), we need to take the
detection rate of both phrases into account. Hence, we define pair
detection rate (PDR) in the sentence as the harmonic mean of cause

and effect TDRs in Eq. 2:

PDR =
2×TDRcauseTDReffect

TDRcause +TDReffect
(2)

To determine whether the pair was correctly detected, we
convert the continuous PDR into a binary value using pair detection
threshold (PDT). If the PDR is above PDT, the pair is considered
to be correctly detected, i.e., true positive. If the PDR for a detected
pair is below PDT, that pair is considered to be incorrectly detected,
i.e., false positive. If a pair is not detected by the algorithm, that is a
false negative. We use standard definitions of precision, recall, and
Matthews correlation coefficient (i.e., MCC) in Eq. 3:

Precision = TP
TP+ FP

,

Recall = TP
TP+ FN

,

MCC = TP∗TN− FP∗ FN

√(TP+ FP) ∗ (TP+ FN) ∗ (TN+ FP) ∗ (TN+ FN)
(3)

The abovemeasures allow for the evaluation of causal extraction
algorithms by taking the location of multiple cause–effect phrases
into account.

Note that choosing an appropriate PDT value should be based
on the requirements. If accurate localization of cause–effect phrases
is important, a high threshold should be chosen. In the literature,
PDT is usually treated superficially and the smallest overlap between
the detected phrase and correct phrase is taken as a true positive.
Because there is no consensus in the literature on choosing the
PDT, we characterize the performance of the extraction module
based on this parameter. Moreover, to ensure the generalizability
and robustness of our results, we split the GroundTruth dataset into
5 folds and reported the mean of the precision, recall and MCC
among these 5 folds as the final value. This approach ensures that
the algorithm is robust and performs equally well on all subsets of
the original dataset.

In Figure 7, precision, recall, and MCC for all seven
combinations of the three causal patterns from §3.2 is plotted. For
all combinations, as the PDT increases precision, recall, and MCC
degrade. The passive pattern achieves the highest average precision
of 67%, however, it has the lowest average recall of 5%. The simple-
phrasal-passive combination, achieves a moderate average precision
of 48% while having the highest average recall of 33%. MCC does
not seem to be influenced by the number of rules.

Our extraction module shows the feasibility of a hybrid
cause–effect extraction technique that uses NLP to preprocess
the sentences and then extract the cause–effect phrases based on
manually-defined rules. Although the performance of our extraction
module is not high, these results demonstrate that employing more
versatile and accurate rules may increase the precision and recall,
which will consequently improve the downstream diagnosis results.

RQ1: We find that composing several patterns generally
increases the recall in the cause–effect extraction task. The
simple–phrasal–passive pattern achieves the highest average
recall (33%) while maintaining a moderate average precision
(48%).

Figure 8 compares the performance of our rule-based extraction
technique to CiRA on the Ardupilot sentences of the GroundTruth
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FIGURE 7
(A) Precision, (B) Recall, and (C) MCC of various combinations of patterns based on the Ardupilot sentences of the GroundTruth.

FIGURE 8
(A) Precision, (B) Recall, and (C) MCC of our hybrid extraction module vs. CiRA.

dataset. CiRA achieves an average precision and recall of 16% and
8% respectively. The average precision and recall of our hybrid
extraction module are 32% and 25% higher than CiRA. The reason
for the low performance of CiRAon theGroundTruth dataset is that,
although CiRA is the most similar tool in the literature to our cause-
effect extraction module, it is not mainly designed for detecting
generic causal statements. Given that requirements engineering
documents are typically in the form of if–then statements, it is
mainly trained it to detect if–then statements. The authors of CiRA
assume that if–then statements are causal. CiRA exclusively regards
if-then structures as causal, whereas we interpret these structures as
non-causal. Consequently, CiRA achieves a mean MCC of −57% for
the Ardupilot sentences of the GroundTruth dataset. Nevertheless,
CiRA is based on a state-of-the-art data-driven approach which
can be significantly improved, if it is trained to detect other causal
structures.

RQ2: We find that our hybrid extraction module performs
on average 32% and 25% higher than CiRA in
precision and recall.

Next, we investigate the extraction performance in terms of
the enormity of NLP core models. Figure 9 depicts how precision,
recall, andMCCdiffer when using small (12 MB),medium (40 MB),
and large (560 MB) NLP models from Spacy. The plot shows that
the performance is not influenced significantly when different NLP
models are used. Hence, using larger models that are trained on the

generic text rather than a domain-specific text does not improve the
extraction performance.

RQ3: We find that using larger generic NLP models does not
significantly improve the cause–effect extraction
performance.

Figure 10 depicts precision, recall, and MCC of the extraction
module on the two subsections of the GroundTruth dataset. Our
extraction module achieves an average precision and recall of 82%
and 51% respectively in the NATO-SFA sentences, which is higher
than its performance on the Ardupilot sentences of the ground
truth. This stems from the fact that our NATO-SFA sentences
are crafted in a structured manner, which makes it easier for the
extraction algorithm todetect cause–effect phrases.This observation
emphasizes the fact that in addition to other engineering tasks in
the development process, diagnostic tasks would also benefit from a
structured documentation in the long-term.

RQ4: We find that our hybrid extraction module achieves on
average 34% higher precision and 18% higher recall on
NATO-SFA sentences. This can be attributed to the
conciseness of the sentences in NATO-SFA compared
to the sentences from Ardupilot.

The output of the extraction module are 3558 distinct phrases
that constitute the cause–effect pairs. We publish these cause–effect
pairs as ArduCE dataset.
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FIGURE 9
(A) Precision, (B) Recall, and (C) MCC of our hybrid extraction module using three NLP core models.

FIGURE 10
(A) Precision, (B) Recall, and (C) MCC of our hybrid extraction module on the sentences from NATO-SFA and Ardupilot.

5.3 Graph building results

The merging techniques introduced in §3.3 aim to unify similar
nodes in the graph. In this subsection, we characterize them in terms
of affecting the graph structure properties. Equation 4 specifies
how to measure the density of the generated graphs as defined in
Coleman and Moré (1983):

Density =
|Edges|

2( |Nodes|
2
)
=

|Edges|
|Nodes| (|Nodes| − 1)

(4)

The extraction step resulted in 3558 distinct phrases. Thus,
our baseline merging technique builds a graph that consists of
3558 nodes. Table 2 presents the node count, edge count, the
number of tokens per node, and the density of the graph for each
merging technique. Root-based increases the density more than
othermerging techniques.This can be attributed to the functionality
of root-based merging technique in reducing the phrases into
single tokens. We also observe that lemma-based merging actually
increases the number of tokens per node, whereas POS-based and
root-based merging reduce it compared to the baseline. This can be
explained by considering the fact that POS-based and root-based
merging techniques filter tokens on the basis of their semantic roles.
In contrast, lemma-basedmerging technique transforms the phrases
to equivalent phrases without dropping tokens.

Note that validating the generated causal graphs requires a
concrete ground truth that typically does not exist in practice. Even
the most adept users do not have a comprehensive understanding
of the entire UAV system and its component interactions. The
only suggested method for validating a causal relationship,
according to the causal inference literature (Gentzel et al., 2019),
is random experimentation. Performing random experimentation
for validating each edge of a large graph is impractical. Hence,
we indirectly assess the causal graphs by applying them to
UAV diagnosis tasks in § 5.4, where we analyze the validity of
the diagnoses.

5.4 ACA results

Wild et al. (2016) surveyed official reports of 152 civil UAVflight
incidents that occurred between 2006 and 2015. The reports address
the managers and regulators, not the technical stakeholders and
hence, are not deeply technical. Nevertheless, Wild’s findings on
the categorization of the causes of UAV failures is relevant for our
application. They argue that in contrast to manned aircraft in which,
failures typically have roots in the operator error, failures ofUAVs are
due to the functional problems in the system.They conclude that the
three most frequent categories of UAV failure scenarios are: (1) loss
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TABLE 2 Characteristics of the generated graphs from different merging techniques.

Merging technique Nodes Edges Tokens per node Density

Baseline 3558 2503 2.64 0.00020

Lemma-based 3376 2490 2.70 0.00022

POS-based 2747 2422 1.97 0.00032

Root-based 1271 1970 1.00 0.00122

FIGURE 11
Depiction of (A) Baseline, (B) Lemma-based, (C) POS-based, and (D) root-based graphs after dropping the nodes that are either not monitored or do
not have a path to the Crash event.

of control in-flight, (2) events during takeoff and in cruise, and (3)
equipment problems.

Given that the manual validation of the diagnosis results is a
very time-consuming task due to the large size and dimensions
of the flight logs, only eight flight instances belonging to above
mentioned categories were analyzed by ACA. Nevertheless, higher
heterogeneity is a necessary factor in evaluating any diagnosis
framework and hence, extensive study on numerous flight logs is
needed to draw conclusions on the framework’s effectiveness.

One of the most important unwanted events in Ardupilot flight
logs is the crash event. The monitoring mechanism for the crash
event runs continuously during the flight, and once the sensor
readings match the specified criteria21, an instance of the crash
event is recorded in the flight logs. The crash event (as a class, not
as an instance) also exists in our generated graphs. The cuts of
the generated graphs containing the crash event and its monitored
ancestors (as specified in §3.4) are depicted in Figure 11.

To diagnose the crash instances in the ArduCrash flight logs,
we import the four generated causal graphs into HP2SAT. Next, we
set the “context” according to the monitored events in each flight.
Finally, we run the “inference” functionality of HP2SAT to compute
the actual causes of the crash event in each flight log.

5.4.1 Category 1: loss of control in-flight
Flight logs 1 to 3 belong to this category. Due to space

constraints, we provide a summary of the diagnoses in the first
column of Table 3, while elaborating only on flight log 1 in detail
here. The altitude signal of the UAV during flight log 1 in addition

21 https://ardupilot.org/copter/docs/crash_check.html

to the important events are depicted in Figure 12. In total the
UAV was airborne for 70 s. In the last seconds before crash, the
UAV was performing a fast maneuver to change its direction.
This maneuver is very demanding even for high performance
multicopters and typically results in the loss of control.Moreover, the
inadequate controller parameters contributed to the destabilization
and crashing of the UAV.

According to Table 3, the “copter” can be attributed to the type
of the UAV (i.e., multicopter that generates lift using rotating blades
instead of fixed wings). “Copter” was chosen correctly as one of
the actual causes by HP2SAT using the baseline, POS-based, and
root-based graphs.The “ekf ” (extended kalmanfilter) error occurred
after crashing to the ground and hence is not a correct diagnose.
Thus, using the graphs from baseline and lemma-based techniques
resulted in partially incorrect diagnoses. On the other hand, POS-
based and root-based graphs led to the correct diagnoses. Using the
POS-based graph resulted in a more comprehensive diagnosis by
detecting the untuned controller parameters (i.e., ¬autotune).

5.4.2 Category 2: events during takeoff and in
cruise

Flight logs 4 and 5 belong to this category. Due to space
constraints, we provide a summary of the diagnoses in the second
column of Table 3, while elaborating only on flight log 4 in detail
here. The altitude signal of the UAV during flight log 4 is depicted in
Figure 12. In this flight, the UAVflew to over 100 m and lost its radio
connection. As a result, the radio failsafe triggered the “return to
launch” (RTL) maneuver. This Manuever caused the “input throttle”
to fall to zero. Consequently, the UAV which had a quadcopter
structure, lost its balance and fell to the ground.
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TABLE 3 Actual causes of the crash event according to HP2SAT using the generated graphs.

Graph

Log#
1,2,3 (Category 1) 4,5 (Category 2) 6,7,8 (Category 3)

Baseline [ekf], [copter] [copter], [radio failsafe] [¬ autotune]

Lemma-based [ekf] [radio failsafe] [battery failsafe]

POS-based [copter], [¬autotune ∧ copter] [rtl], [copter] [battery failsafe]

Root-based [copter] [¬ autotune], [¬ekf] [¬ autotune], [¬ ekf]

According to Table 3, “Radio failsafe”, “copter”, and “rtl” are
plausible diagnoses provided by the baseline, lemma-based, and
POS-basedmethods. However, using the root-based graph results in
irrelevant diagnoses in our point of view. ¬autotune (no autotune) is
irrelevant because even doing an autotune could not enable system
to stand the zero throttle conditions. ¬ekf (no extended kalman
filter) suggests that non-occurrence of the perception error is an
actual cause, which is not valid.

5.4.3 Category 3: equipment problems
Flight logs 6 to 8 belong to this category. Due to space

constraints, we provide a summary of the diagnoses in the third
column of Table 3, while elaborating only on flight log 6 in detail
here.The altitude signal of theUAVduring the last 2 minutes of flight
log 6 is depicted in Figure 12. In this flight, battery was drained out
after around 13 min of flight and the UAV started to lose altitude.
Contrary to its original purpose, the “battery failsafe” contributed
to the problem by causing the UAV to fly away from its starting
point. Had the “battery failsafe” procedure immediately control the
horizontal position, the crash would not have occurred. Note that
the “ekf ” error that occurred after crashing to the ground is not
an actual cause of the occurred crash, but an effect of the hitting
the ground.

According to Table 3, the root-based graph results in wrong
diagnoses because its raw version only had “battery” instead of
“battery failsafe.” The node “battery” was dropped in the node
filtering process, because it was too generic to be mapped to the
monitored events. The baseline graph fails, because although, its
raw version has a “battery failsafe,” there are no paths between it
and the crash event and hence, this node was removed from the
final baseline graph. This example demonstrates that HP2SAT may
generate erratic diagnoses, if the provided causal graph does not
contain relevant nodes or edges.

RQ5: We find that the POS-based graph shows a
superior diagnosis validity compared to the rest
of the graphs in diagnosing the flight logs in our
ArduCrash dataset.

5.5 Discussion

The scraping technologies are effective and mature enough in
gathering millions of sentences from the Internet. Although our
cause–effect extraction module achieves better precision and recall
than a state-of-the-art deep-learning based tool (i.e., CiRA), its

performance is still lower than the human level. The merging and
filtering techniques based on the observability and relevance of the
nodes heavily affect the generated graphs and hence, the diagnoses
computed based on them. The POS-based graph results in better
diagnoses in our ArduCrash dataset. One reason could be that it
provides a trade-off between the abstraction and inclusiveness of
the nodes. In any case, an extensive analysis on more flight logs
is required to have a conclusive comparison among the merging
techniques.

5.6 Threats to validity

5.6.1 Internal threats
Our cause–effect phrase labels may differ from Ardupilot

experts’ opinions. To reduce the subjectivity of the annotations, two
authors of this paper with different levels of expertise in the UAV
domain annotated the 539 sentences of our ground truth. Next, the
performance of the extraction was computed against the two sets of
annotation and the average was taken as the final performance.

The technical validity of statements in the online resources of
Ardupilot should be taken with a grain of salt, because there is no
qualification procedure for participating in discussion fora, Discord
chats, or even writing user manuals. To increase the confidence level
in the extracted cause–effect phrases, we could drop the causal pairs
with too few mentions in our corpora. However, in our current
implementations, this could significantly reduce the number of
identified cause-effect pairs. In general, the confidence level in the
causal statements of the users needs to be taken into account for
better results.

5.6.2 External threats
Our extraction module achieves 65% mean precision and

42% mean recall on our ground truth dataset, which is lower
than human-level performance. Nonetheless, it serves our goal to
demonstrate how the cause–effect extraction module can be used in
the diagnosis pipeline. In case more accurate extraction algorithms
are proposed in the literature, integrating them into our framework
is straightforward.

Our primary use case in this study is the Ardupilot UAV
controller, which is only one instance of the open-source autopilot
systems. Nevertheless, Ardupilot is the most popular open-source
UAV controller according to its project statistics on Github22.

22 https://github.com/ArduPilot/ardupilot
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FIGURE 12
Altitude signal and important events during flight logs.

Moreover, it is designed on the basis of the sense-plan-act pattern,
which is a standard architecture for autonomous systems.

Another issue about our internal use case is that cause–effect
phrases from Ardupilot web resources may contain information
about various types of UAVs such as multi-rotors, fixed-wing
airplanes, and helicopters. In any case, we expect to havemostly non-
conflicting knowledge for the three types because physical laws and
many software components are the same for all of them. Hence, we
see Ardupilot (and its primary UAV type, which is quadcopter) as a

suitable case study for identifying and addressing the challenges of
NLP-based diagnosis in UAVs.

6 Conclusion

This study proposes a novel methodology to utilize powerful
NLP tools to generate causal graphs forUAVdiagnosis.We identified
four main challenges in realizing an end-to-end solution, among

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1123762
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zibaei and Borth 10.3389/frobt.2024.1123762

which cause–effect extraction is the most crucial one. We combined
several cause–effect extraction techniques to realize a multi-token
and multi-pair extraction module. Moreover, we demonstrated
how different node merging techniques affect the structure of the
generated causal graphs. Finally, we demonstrated how the graphs
could be used to diagnose a real UAV failure based on HP’s
definition of ACA. In summary, the results indicate the feasibility
of gathering causal knowledge from textual data and using it to
diagnose real UAV failures. Although, not all of our generated
diagnoses are correct, our proposed methodology is a promising
approach in improving the safety of UAVs by automating the failure
diagnosis process.

Several directions can be followed up in the future. First, better
preprocessing can result in more and cleaner sentences in the
main corpus. By analyzing sentences with pronouns and tracing
them back to find the referred concept, we will be able to extract
more usable cause–effect pairs. Approximately 935K raw sentences
were collected, which could be increased by scraping more web
pages including generic UAV websites. In any case, there should
be a trade-off between the comprehensiveness and specificity of
the gathered information. Moreover, the NLP models we use to
tokenize and tag the sentences are already trained on generic
datasets including 300Kweb data and 120K telephone conversations
(Weischedel et al., 2013). Language models tuned on a corpora
from the study context (i.e., articles related to UAVs) may lead to
better results.

Second, pure machine learning techniques, rather than our
hybrid approach, can be investigated. Although our hybrid
extraction method performed better than CiRA, building proper
rules to extract cause–effect phrases is time-consuming. In general,
data-driven methods are more scalable and can automate the entire
process, even though they rely on the availability of large labeled
data. Moreover, the confidence in the extracted cause–effect pairs
can be increased by considering the experience of the users that
mentioned them or by assigning a confidence value on the basis of
the frequency of discovered causal relationships.

Third, different approaches can be applied to equate cause–effect
phrases. An advanced word embedding mechanism trained on
the system context is expected to result in a more effective
node merging.

Finally, the correctness and completeness of other abductive
reasoning algorithms, such as consistency-based diagnosis (Peischl
and Wotawa, 2003), should be compared with our implementation
of the ACA procedure. A qualitative study on user satisfaction is of
interest to determine whether identifying the actual causes results in
preventing future failures of the system.
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