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This paper presents and discusses the development and deployment of a tour
guide robot as part of the 5 g-TOURS EU research project, aimed at developing
applications enabled by 5G technology in different use cases. The objective
is the development of an autonomous robotic application where intelligence
is off-loaded to a remote machine via 5G network, so as to lift most of the
computational load from the robot itself. The application uses components
that have been widely studied in robotics, (i.e., localization, mapping, planning,
interaction). However, the characteristics of the network and interactions with
visitors in the wild introduce specific problems which must be taken into
account. The paper discusses in detail such problems, summarizing the main
results achieved both from themethodological and the experimental standpoint,
and is completed by the description of the general functional architecture of
the whole system, including navigation and operational services. The software
implementation is also publicly available.

KEYWORDS

5G, humanoids, museum guide robots, autonomous navigation, service robots

1 Introduction

In the last decades, due to technology improvements and drastically declining costs,
many innovative solutions have been integrated into the cultural domain, with the
aim of making art more accessible and engaging. Successful applications range from
the use of mobile apps (Hanussek, 2020) to wearable devices (Alletto et al., 2015), to
electroencephalograph (EEG) signals (Cruz-Garza et al., 2017) to provide personalised
services such as visiting paths.

At the same time, a recent solution to engage visitors in museum tours is to use social
robots. Social robots are embodied, autonomous agents that communicate and interact with
humans on a social and emotional level.They represent an emerging field of research focused
on maintaining the illusion of dealing with a human being.

First examples of museum tour guide robots focused on implementing autonomous
navigation on mobile robotic bases (Burgard et al., 1999). Later iterations provided
improved human interaction via speech (Nourbakhsh et al., 1999), head movements
(Thrun et al., 1999b, Thrun et al., 1999a), display of emotions and bi-directional speech
(Macaluso et al., 2005; Álvarez et al., 2010). As advances in humanoid robots increased their
autonomy and affordability, they were more and more frequently employed (Shiomi et al.,
2006; Falconer, 2013) for their capability of using natural gestures (SOAR, 2019).

The concept of cloud robotics (Kamei et al., 2012) introduced the idea of robots as a
service, where software components such as sensing, computation, and memory are not
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necessarily integrated into a single system. Due to network latency,
variable quality of service, and downtime, cloud robots often
include some capacity for local processing for time-sensitive, low-
latency services and during periods where network access is
unavailable or unreliable. In particular, the requirements of a robotic
system (predictable and low latency, relatively high bandwidth,
reliability of connection) can benefit from the lower latency of 5G
compared to 4G LTE.

The scope of the Horizon 2020 5G-TOURS project is to
demonstrate the ability of 5G technology to empower different
vertical use cases. One of such use cases is the development of
a mobile network-enabled autonomous museum robot guide. The
consistent high bandwidth and low latency of 5G networks are
particularly suited for implementing robotic applications in the
field with low-cost humanoid robots, that must guarantee safe and
consistent operation over long periods of time. Low-cost robots
require to off-load computation because of onboard processing
capability and battery constraints. In this work we present and
discuss the development anddeployment of a tour guide robotwhere
some demanding services are off-loaded to a remote server and to
the internet via 5G. In the reminder of the paper we first summarise
the hardware and software choices in its development, guided by
the requirements and the characteristics of the network. We then
present the operational services that are specific to the tour guide
robot application in order to enable scripted explanations of the
operas and interaction with visitors. We finally report the results of
extensive trials in the field in two separate museums, delineating
the strengths of the proposed application and what are still to be
considered open issues for deployment. In particular, we discuss
results on acceptability and engagement by the public, as well as
autonomy and robustness.

2 Related work

A variety of technologies (e.g., projections, holograms, mobile
apps), interactive systems (vocal interaction, touch, free actions) and
accessibility (virtual tours) are nowadays available to enhance the
visiting museum experience. In addition to these, over the last 20
years accessibility and attractiveness have been augmented with the
employment of service robots, covering various types of applications
and offering different degrees of utility and usability. Robots in
museums generally fall into one of three categories: museum guides,
telepresence platforms, and art installation themselves (Miller et al.,
2008; Germak et al., 2015).

2.1 Museum guide robots

Although static robots that interact with visitors have been
deployed (Bickmore et al., 2011; Pitsch et al., 2011; Yamazaki et al.,
2012; Gehle et al., 2017), mobile robots are more commonly used
as museum guide robots. Mobile tour guides have been first
implemented as wheeled sensorized bases (Burgard et al., 1999),
with the addition of communication devices such as screens,
speakers, colored LEDs, arms. Subsequently, humanoids (Falconer,
2013) or more frequently semi-humanoids consisting of a mobile
base and upper humanoid torso (Shiomi et al., 2006) have been

employed because of their opportunity for natural interaction with
humans. A summary of proposed museum guide robots, with
navigation, interaction capabilities and technology readiness levels,
is reported in Table 1. A more comprehensive review was also
compiled in Hellou et al. (2022).

2.1.1 Mobile bases
The earliest examples of museum guide robotic platforms

include Rhino, introduced at the Deutsches Museum Bonn
(Burgard et al., 1999) in 1997, and a wheeled mobile robot named
Chips, introduced in 1998 at The Carnegie Museum of Natural
History in Pittsburgh, which provided unidirectional narrative
via speech (Nourbakhsh et al., 1999). This was followed by other
iterations of the same platform, also offering limited audio-visual
information (Nourbakhsh et al., 2003). The Smithsonian’s National
Museum of American History introduced Minerva, the successor of
Rhino, a mobile robot equipped with a moving head able to produce
facial expressions to communicate emotions according to the users’s
behaviour (Thrun et al., 1999a). These and later wheeled robotic
platforms were able to autonomously navigate using probabilistic
localization and mapping, global planning and obstacle avoidance,
based on distance sensors (e.g., laser range finders, sonars, infrared).
These early applications focused mostly on efficient mapping and
localization in the dynamic museum environment (Trahanias et al.,
2005). Network communications was first done via dedicated
Ethernet (Thrun et al., 1999b), with core navigation components
running onboard. In particular, in Thrun et al. (1999b), Thrun et al.
(1999a) localization and obstacle avoidance would be executed
mostly onboard, while people detection could be executed remotely.
In our application, we show that even components that are close
to the control loop of the robot, e.g., 3D obstacle avoidance, can
be executed remotely via a low-latency 5G network. Later works
(Trahanias et al., 2005) added Web interfaces, but communication
was asynchronous in these cases, and relegated mostly to
teleoperation.

Later on, the focus was moved from autonomous navigation to
social interaction via speech recognition and emotional states. The
CiceRobot guide robot introduced at the Archaeological Museum
of Agrigento, in Italy, allowed visitors to ask questions. In order to
provide coherent answers, a semanticmodule was developed to filter
questions and retrieve useful information (Macaluso et al., 2005).
Navigation was achieved with an onboard stereo camera and the
placement of ad-hoc markers in the museum. The Urbano guide
robot (Álvarez et al., 2010), deployed in exhibitions around Spain,
was able to recognize questions and modulate speech to reflect a
set of different emotional states, in addition to facial expressions.
Navigation was still achieved via laser range finders, sonars
and infrared. Mobile bases are still used; in Del Duchetto
et al. (2019) the authors focus on high level planning and
long-term operativity. Integration between the robot and the
infrastructure has also recently been used; Temi (2022) is
able to open automatic doors and lower the volume of other
exhibitions.

2.1.2 Humanoids
More recently, tour guide robots have been focusing on human-

robot interaction and acquired a more humanoid appearance.
Repliee Q1-Q2 used at the World Expo in 2005 had a human upper
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TABLE 1 Taxonomy of tour guide robots in terms of navigation capabilities, interaction via speech and additional modalities.

Robot name Museum Task Type Navigation User interaction

Rhino Burgard et al.
(1999)

Deutsches Museum,
Bonn

Tour guide Mobile base Autonomous, laser +
sonars

None

Sage Nourbakhsh et al.
(1999)

Carnegie Museum of
Natural History,
Pittsburgh

Tour guide Mobile base Autonomous, laser +
sonars

None

Minerva Thrun et al.
(1999a)

Smithsonian’s National
Museum of American
History

Tour guide Mobile base Autonomous, laser +
sonars

Touch display

CiceRobot Macaluso
et al. (2005)

Archaeological Museum
of Agrigento

Tour guide Mobile base Autonomous, laser +
sonars

Voice, display, emotion
detection

Urbano Álvarez et al.
(2010)

Various exhibitions,
Spain

Tour guide Mobile base Autonomous, laser Voice, display, emotion
detection

Robovie Shiomi et al.
(2006)

Osaka Science Museum Tour guide Humanoid Tracking via IR markers Voice, gestures

Repliee Q1-Q2 Matsui
et al. (2005)

World Expo 2005 Static interaction Humanoid None Voice, gestures,
expressions, tactile skin

Asimo Falconer (2013) National Museum of
Emerging Science and
Innovation Miraikan

Static interaction Humanoid Semi-autonomous Voice

Pepper SOAR (2019) The Smithsonian Tour guide Humanoid Autonomous, RGB-D +
laser + sonar

Voice

Pang et al. (2018) Chinese Heritage Centre,
Nanyang

Tour guide Humanoid None Voice, gestures

Del Duchetto et al.
(2019)

The Collection museum,
Lincoln, UK

Tour guide Mobile base Autonomous, laser +
bumpers

Voice, display,
expressions

Tour Guide Robot GAM, Turin and
Fondazione Palazzo
Madama, Turin

Tour guide Humanoid Autonomous, RGB-D +
laser

Voice, gestures, head
movements, expressions

body with realistic appearance and communicated through speech,
facial expressions and body language. The body was covered with
tactile skin for sensing touch (Matsui et al., 2005). In a field trial
at the Osaka Science Museum in 2006, four humanoid tour guides
were deployed (Shiomi et al., 2006). Localization was achieved via
an infrared camera tracking system and interaction with visitors via
active RFID tags. Notably, Asimo was employed as a museum guide
in the Japan’sNationalMuseumof Emerging Science and Innovation
in 2013 (Falconer, 2013). Recognition of the speaker among a
group of visitors was explored by means of raising hands, with
mixed results. Six Pepper robots were used in a pilot among three
museums of the Smithsonian in Washington, answering questions
from visitors and using voice and gestures to narrate (SOAR, 2019).
Pepper was equipped with a combination of RGB-D camera, lasers
and sonars.

Other humanoid robots include a humanoid torso, trialed with
visitors in the Chinese Heritage Centre in Nanyang and offering
bilingual speech interaction, people tracking via monocular face
tracking and sound localization (Pang et al., 2018), and recent
commercial solutions (Promobot, 2022).

2.2 Telepresence robots

Telepresence robots have been more widely employed, typically
as ameans for visitors to explore amuseumor otherwise inaccessible
parts of a museum by remote teleoperation. Wheeled platforms
equipped with a screen and a camera are usually employed.
Examples include a pilot by Csiro at the National Museum of
Australia (Schulz et al., 2013), Norio (Norio, 2015) at the National
Centre for Monuments in France, and multiple telepresence robots
used at the Tate Museum in London for remotely exploring the
exhibitions at night (Tate, 2014).

2.3 Experimental evaluation in the field

Most robots were tested in pilot studies in actual museums in
presence of visitors during a period of days or even weeks (SOAR,
2019; Burgard et al., 1999; Nourbakhsh et al., 1999; Willeke et al.,
2001; Thrun et al., 1999b), while at least one remained operative
for 174 days, albeit not continuously and with different hardware
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FIGURE 1
The R1 humanoid robot in the configuration used in the museum trials.

and software iterations (Nourbakhsh et al., 1999) and its successors).
Notably, Del Duchetto et al. (2019) traveled over 300Km for a total
of 2300 tours, with an average tour duration of 4.5 minutes. The
duration of most guided tours tends to be short, ranging from 2
to 10 min (Gasteiger et al., 2021). In contrast, our tour guide robot
was deployed in two different venues for a period of 2 weeks each,
with the first week dedicated mostly to setup and tuning, and the
second week dedicated exclusively to guiding visitors through the
exhibitions and collecting visitors experiences. The actual tour in
both venues was active for a whole week during opening hours, and
both complete tours lasted between 20 and 45 min.

3 Robotic platform

Driven by recent positive results in employing humanoids as
museum tour guides (2.1.2), the R1 wheeled humanoid robot
(Parmiggiani et al., 2017) was chosen as the robotic platform, due
to its ability to provide both gestures and facial expressions, and
smooth movement on planar surfaces. R1 (Figure 1) is an affordable
mobile robot developed by Istituto Italiano di Tecnologia (IIT),
which consists of a humanoid torso and head and a wheeled
base. The robot has two 8 DOF arms and a 2 DOF head with
a programmable RGB LED face display for displaying facial
expressions, which makes it particularly suitable for interacting
with visitors.

During the course of the presented work the robot sensing
equipment, network hardware and onboard computing hardware
went through different revisions, before reaching the final
configuration used in the experimental trials. Originally, the robot

was equipped with two RPLIDAR A2 laser range finders mounted
on the base, between the wheels, facing forward and backwards; one
Realsense D435 RGB-D camera was mounted inside the face, and
two embedded PCs (a NUC inside the robot’s base and a Nvidia
Jetson Xavier AGX mounted inside its torso), as well as a custom
FPGA inside the head for controlling the LED display. A Mikrotik
hAP ac router located in the torso connects all decentralized robot
components and allows remote communication, via a 5G-enabled
smartphone connected via USB, which was fixed on one arm with
an armband. Some devices were not used, such as a stereo camera
system located in the eyes of the robot.

During the course of the project, the two laser range finders
were upgraded to RPLIDAR A3s with a maximum usable range of
25m; the RGB-D camera was upgraded to a Realsense D455, which
offers a larger field of view as well as increased depth accuracy. The
larger field of view, in combination with head movements, makes
it possible to enhance visual awareness of dynamic obstacles close
the robot for added safety, while also allowing to plan smoother
trajectories around them.

4 System architecture

This Section describes the components of the actual tour guide
robot application.A graphical overviewof the application is reported
in Figure 2. It shows the components residing onboard the robot,
externally on a local server and remotely over the internet.

From the software standpoint, the R1 humanoid robot is based
on a middleware developed by IIT called YARP (Metta et al., 2006).
All navigation and operational services are built on top of the YARP
libraries, which are responsible for managing the data exchange
across the network. YARP implements communication through
special objects, called ports, which deliver messages to any number
of observers (other ports). The computation can thus happen
locally, i.e., on a single machine, or can be distributed across any
number of machines, each of them running multiple processes,
using any of several underlying communication protocols. The
YARP middleware implements a plug-in system that allows to
add data compression methods to connections, and an efficient
method for inter-process communication through shared memory.
These features were fundamental to optimize the data flow within
the system.

For autonomous navigation, on the other hand, we
used components from the ROS 1 eco-system (ROS, 2023).
Communication within ROS components residing on the same
machine was done through ROS topics, while communication
betweenYARP andROS components and betweenROS components
residing on different machines exploited existing YARP-ROS
interfaces (Randazzo et al., 2018). In particular, ROS Noetic was
used in the proposed application.

The software implementation for the tour guide robot
application is publicly available (guide robot source code, T 2023).

In the remainder if this Section, we will first describe
the implementation of the autonomous navigation services
(localization, map creation, path planning) necessary for the
movement of the robot, then the operational services that constitute
the actual tour guide application.
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FIGURE 2
High-level overview of the application’s main components and their interfaces. The components are organized by abstraction level and by physical
placement. The bottom row represents the navigation level, while the top row contains the application-level components. The main component, Tour
Manager, is executed on a remote machine, as well as the Dialogue System, that communicates with Goole APIs on the internet. The Behaviour Tree is
run locally on the robot, while the Navigation component is split between the robot and the remote machine. Components in green constitute the
navigation system, components in yellow are part of the dialogue system.

FIGURE 3
Network configuration for the museum trials. Onboard the robot, all machines are connected to a router. On the remote side, machines are also
connected via a router, which is in turn connected to the internet. The robot is connected to a commercial 5G network via a tethered smartphone; the
remote side is connected to 5G via an infrastructure of deployed antennas. A VPN tunnel is created between the PC in the robot’s base and a remote
machine acting as VPN server.

4.1 Network configuration

The network configuration is shown in Figure 3. Onboard
the robot, the three machines (r1-base, r1-torso, r1-face) are
connected through an internal router. During experimental
tests, an external machine (r1-laptop3 in Figure 3) was also
connected via Wi-Fi directly to the router, and was used to
monitor operation, as well as launch and restart parts of the
application.

A series of compromises were made in order to allow R1 to
connect to the 5G infrastructure. Initially, the use of an integrated

router-5G modem was explored, but no commercially available
solution was compatible with the application requirements. For this
reason, a compromise solution was implemented with the addition
of a 5G-enabled smartphone connected via USB to the internal
router in tethering mode. The smartphone was fixed to one of the
arms with a sport armband.

As with most robotic frameworks that support distributed
communication, YARP requires all the hosts to belong to the
same subnet and have a reachable IP address. While this is
normally achieved in a laboratory setting, it is not the case on a
commercial mobile network. To overcome this difficulty, a VPN
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FIGURE 4
Effect of payload size on application level latency for two machines
connected via 5G and through a VPN tunnel with a default
configuration, using different YARP transport layers.

tunnel was initially set up between the robot’s internal router
and the remote host, but the Mikrotik router, as well as similar
alternatives, restricts the maximum bandwidth for VPN traffic
to 100Mbps. For this reason, the VPN tunnel was moved in
between the PC in the robot’s base and the remote host (r1-laptop1,
as outlined in Figure 3). Computationally-heavy services (crowd
detection, gaze detection, obstacle avoidance) were off-loaded
and distributed over the remote machines (r1-laptop1, r1-laptop2
in Figure 3).

4.2 Navigation services supporting robot
operation

For autonomous navigation of the robot, traditional laser-based
methods for indoor planar environments were chosen. These are
available as off-the-shelf components in most robotic frameworks.
While initial studies were devoted to assess the need for learning-
based methods for visual navigation, preliminary experimental tests
showed howoff-the-shelfmethodswere robust enough in practice to
guarantee safe navigation, due to the relatively static and structured
nature of the museum environment.

Autonomous navigation services are executed both onboard and
externally to the robot, in order to take full advantage of remote
computational power and to study the feasibility of offloading a core
capability such as autonomous navigation over a 5G network. In
particular, localization (Section 4.2.1) is executed onboard the robot.
This is motivated by the fact that localization is a vital component of
navigation and requires as little delay as possible for safety, while at
the same time being relatively computationally light. Path planning
4.2.2 is also a service that needs to be responsive. However, for safely
purposes we implemented 3D obstacle avoidance which requires
ray-casting (see 4.2.2). With our setup, the path planning pipeline
was not able to run on the onboard embedded PCs without missing
computation steps, because of the heavy computational load. For
this reason, the whole path planning service was moved to a remote

machine, posing the issues of network delay and bandwidth. The
bandwidth issue was addressed through sensor data compression
(Section 4.2.4) and safe operationwas possible due to the low latency
of the 5G network.

4.2.1 Localization and mapping
SLAM for map creation, we used the off-the-shelf gmapping

SLAM package provided by ROS, tuned for the R1 platform.
This was possible due to the fact that museums are typically
static environments and that the mapping process could be done
beforehand, when the museum is empty, before or after opening
time. Due to the large scale of the map, the relative lack of geometric
features (the walls are mostly bare) and lack of intermediate loop
closings in one of the two venues, we found that a low-cost laser
range finder with 5 m of usable range was not enough to obtain
an accurate map without the help of temporary obstacles to be
put in the environment during mapping (e.g., small boxes in our
experiments) to act as additional features. However, the second
iteration of the robot, equipped with LIDARs with a usable range of
18 m, was able to map both museum floors without any additional
infrastructure.

Localization for localization inside the map we also used ROS,
in particular the AMCL package which implements 2D LIDAR
global localization, that was also tuned to the sensors of R1. AMCL
proved to be robust to high amounts of occlusion caused by visitors
surrounding the robot. This was tested in simulation by embedding
a crowd simulator inside the system, and measuring the localization
performance with varying amounts of people cluttering the laser
range readings.

Localization introspection on the other hand, particle filter
localization is known to not be robust to highly symmetric
environments (Abrate et al., 2013), in particular in the case of robot
kidnapping or re-localization. In order to detect such cases when
the robot pose estimate becomes inconsistent, an introspection
module was implemented as shown in Figure 4 that compares
different streams of localization both in space and time to detect
inconsistent pose estimates.The implementation is based on the one
proposed in Antonante et al. (2021). Two localization streams were
investigated for the trials: laser-based AMCL and open-loop wheel
odometry. For each localization stream, independent consistency
checks are done separately on position and orientation estimates.
These tests are executed both on the same stream through time
(e.g., by comparing estimates at successive timesteps and detecting
large temporal discrepancies according to the robot motion model),
and across different streams (e.g., comparing the output of laser-
based localization and open-loop odometry displacement at the
same timestep). Independent fault counters are updated according
to found inconsistencies, and are then summed in order to predict
a localization state: consistent if there are no faults, warning state
if there are less than a given threshold number of faults, error
state if there are more that the threshold number. If the output of
the introspection module is an error state, navigation is stopped
for safety and the robot requests assistance from the operator.
This is handled by the behaviour tree component (4.3.2). During
experimental tests in the lab, a third visual localization stream was
used. However, during the final trials, it was found that LIDAR-
based localization was robust enough in practice to not require the
use of the ORB-SLAM2 stream.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1323675
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Rosa et al. 10.3389/frobt.2023.1323675

4.2.2 Robust planning and obstacle avoidance
Path planning and obstacle avoidance services were

implemented using off-the-shelf algorithms from the ROS move_
base package. In ROS, motion planning of the robot mobile base is
implemented as a dual layer architecture consisting of a global and
a local planner. The global planner plans an optimal trajectory to a
given goal according the obstacles in the map and the local planner
follows the trajectory while avoiding dynamic obstacles acquired
from the robot’s distance sensors, generating velocity commands for
the base. move_base keeps track of fixed and dynamic obstacles
via occupancy grid-maps, called costmaps. These are implemented
as a series of composable layers. A* was used as a global planner
and the Dynamic Window Approach (DWA) was used for obstacle
avoidance.

Since the robot is moving around and close to people, it is
necessary to detect dynamic obstacles in the full 3D space around
it. The voxel layer was used in order to generate a 3D voxel
map around the robot and extending up from the ground plane to
the robot’s height; the voxel map is then projected onto the ground
plane, and ifmore than a set number of voxels (2 in our experiments)
are projected down onto the same map cell, that cell is marked as
an obstacle.

A YARP node was implemented that, given the planned
trajectory for the robot, moves the head so as to look ahead at the
next point on the trajectory that lies on a circle of a given radius
around the robot frame. This helps mitigate the narrow field of view
of the camera when the robot is turning and more in general helps
detecting dynamic 3D obstacles that are above the laser range finder
and on the robot’s path during movement (Nobile et al., 2021).

As an additional safety layer, certain areas of the map (e.g.,
areas that are too close to the operas) are masked out and result
as non-feasible during planning. This was achieved using the
costmap_prohibition_layer. The prohibited areas were
markedmanually aftermap creation, based on the layout of the tour.

Another important aspect of navigation that is needed to make
the robot’s movement more natural is the ability to recover from
situations where the planning has failed. We used the recovery
behaviours defined by move_base. After planning failed for three
consecutive times due to obstacles still present around the robot,
a recovery behaviour clears all remaining dynamic obstacles from
the costmap. Although this could be potentially dangerous if the
robot is in fact close to an obstacle that is not seen by its sensors,
the combination of head scanning and local planner made the
navigation safe enough in practice.

4.2.3 Crowd detection and gaze detection
A YARP OpenPose (Cao et al., 2019) node was run remotely for

the purpose of checking that the next navigation goal (the next opera
in the tour or the starting/docking pose) is not being occupied by
one or more visitors. This is checked at the application level by the
behaviour tree component (see Section 4.3.2).

Additionally, in order to increase the robustness of
speech recognition in the wild, a gaze estimation YARP node
(Lombardi et al., 2022) was also employed that detects the presence
of visitors looking directly at the robot’s face (camera). The gaze
detector takes as inputs the presence of people in front of the
camera from OpenPose, as well as a subset of the face keypoints
representing each person’s face, and detects eye contact from people

actively looking at the camera via a Support Vector Machine (SVM)
classifier. The combination of detected speech by the voice activity
detector (Section 4.3.3) and detected gaze (indicating attention) are
used to robustly detect a visitor asking a question. In addition, the
robot’s head actively tracks the closest visitor facing the robot, to
provide more natural interaction during speech.

4.2.4 Sensor data compression and choice of
carrier

When designing a networked robotic system, transmitted data
could be broadly divided into command and sensor data. Command
data (e.g., velocity commands) are typically sent from an external
controller to the robot and can be both sporadic or repeated at
a constant rate. Sporadic commands or Remote Procedure Calls
(RPCs) are used to set the value of a specific control parameter
and require an acknowledge/status reply, since their loss could
cause a catastrophic failure of the system. For this reason, sporadic
commands in YARP typically use the YARP TCP carrier. to an
external controller On the other hand, in the case of repeated
commands only the most recent one is important. Missing a
command may cause a glitch, but the system will recover when the
next command is received. Streaming commands typically employ
theYARPTCP_fast carrier. Commanddata are typically small in size
(below 50 bytes on average) and are required to have low latency.

Sensor data, when transmitted over the network, are usually
sent by the robot at a constant rate and can be large in size.
Only the last received value is usually meaningful: similarly to
streaming commands, data packets can be sporadically lost in the
queue, without causing a catastrophic failure of the system.However,
prolonged packet loss (e.g., over a 100 ms time) will cause issues. In
YARP, the transmission of sensor data typically relies on the UDP
carrier, with the only exception of compressed image data which
may use different protocols, depending on the specific compression
algorithm. The YARP MJPEG carrier, for example, is based on get
HTTP requests and uses TCP at a lower level. Different sensors
generate different types of traffic: the size of the array of encoders
measurements ranges between 0.8 and 2KB, a LIDAR scan between 1
and 20KB, a compressed camera frame between 50 and 500 KB.That
these values are substantially larger than the ones corresponding to
command data.

After the installation of the 5G coverage in the areas inside
both museums that were designated to be the site for the trials,
preliminary functional tests were carried out in one of the two sites
to evaluate the viability of 5G connectivity in comparisong with pre-
existing connectivity. The tests evaluated the performance of the
system in terms of video quality, smoothness of movements, end-
to-end delay of audio and video streams (Table 2). The tests were
carried out using the project’s dedicated 5G connectivity, existing
4G connectivity, and (where available) an infrastructural Wi-Fi
connection. The results showed a marked improvement in both
qualitative and quantitative performance using mobile networks
compared to Wi-Fi. Using Wi-Fi connectivity, the RTT showed a
large standard deviation of 3.5s. The bitrate under these conditions
was also significantly lower than either 4G or 5G at about 0.54Mbps
uplink. On the other hand, using mobile connectivity, the variance
in RTT was much more contained, with an average 0.125s for the
4G network, and between 60 ms and 0.088s for the 5G network.
However, 5G showed a lower standard deviation inRTT.Uplinkwith
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TABLE 2 Preliminary evaluation of data transmission performance
to/from the robot in the museum environment. For 5G and 4G, the
robot is connected to the infrastructure via the tethered smartphone.
We report mean and standard deviation values (standard deviation in
parentheses).

Wi-Fi 4G 5G

Uplink (Mb/s) 0.54 (1.31) 1.75 (0.76) 2.20 (1.25)

Downlink (Mb/s) 0.55 (1.85) 6.11 (1.50) 6.10 (2.25)

RTT (s) 0.15 (3.5) 0.125 (0.085) 0.088 (0.032)

5G showed the best results at 2.2Mbps of average bitrate; the variance
was similar to 4G and Wi-Fi. The difference between 4G and 5G was
also evident above all in a qualitative evaluation of the stability of
autonomous navigation throughout the areas where the tests were
carried out.

Preliminary tests were conducted to characterize the
performance of the different YARP carriers in the application
scenario, where two remote machines (one located onboard the
robot and one offboard) are connected via 5G and are connected
by a VPN tunnel (OpenVPN). The results are shown in Figure 5
and show the effects of adding a VPN tunnel. Up to a payload
size of ∼ 1KB, UDP and TCP_fast exhibit a similar latency of
15 ms (comparable to the base network latency in the test), while
TCP exhibits an higher latency of 100 ms. When the payload size
increases above 1KB, the latency for TCP_fast jumps to close to
100 ms, while the latency for UDP keeps increasing up to 100KB,
at which point YARP is unable to reorder fragmented packets due
to internal buffer limits. It was experimentally found that by careful
configuration of the VPN it is possible to reduce TCP latency. In
particular, the TCP_NODELAY flag was enabled, which disables
the internal Nagle’s algorithm by sending data as soon as possible
instead of accumulating it until a TCP ack from previous packets is
received. Additionally, the values for MTU and MSS were optimized
and the preferred VPN transport protocol was set to UDP. The
results are shown in Figure 6. It is possible to see that the latency for
both YARP TCP carriers was greatly reduced to values close to the
UDP carrier.

The main challenge in developing a networked robotic
application over a 5G mobile network based on the Non-Stand
Alone (NSA) architecture is the asymmetric bandwidth, where the
download bandwidth is significantly larger than upload. On the
contrary, a robotic application has the opposite requirement of
uploading large amounts of sensor data from the robot, making
the uplink an upper bound for the amount of transmitted data.
Three solutions were adopted: careful throttling of sensor data, data
compression, and routing through YARP repeaters and a network
wrapper architecture. Figure 7 shows the network data streams in
our tour guide robot.

Throttling: both LIDAR and RGB-D camera streams were
throttled to 10 Hz. This was possible due to the fact that RGB-D
images are only used for obstacle avoidance by the ROS navigation
system and for higher level tasks that do not require a higher frame
rate (crowd detection, gaze detection).

Compression: all networked sensor data is compressed via YARP
port monitors. Port monitors are extensions that can be plugged

FIGURE 5
Effect of payload size on application level latency for two machines
connected via 5G and through a VPN tunnel, after VPN optimization.

into the port of an existing YARP module, and are loaded as
shared libraries (or run-time scripts); they can modify outgoing
or incoming messages directly via shared memory access, thus
introducing no communication overhead. In particular, RGB image
data is compressed with a lossy MJPEG encoding, while distance
sensor data (depth images and LIDAR) are compressed with lossless
zlib compression. Compression and decompression are executed by
port monitors on the output and input ports of each sensor stream
respectively (Figure 7).

Repeaters: to avoid data duplication over the network
due to multiple clients connecting to the same sensor data,
a YARP repeat node intercepts RGB and depth images and
relays them to the different clients on the same machine via
Unix streams.

With the combination of three strategies the bandwidth
occupied by sensor data was reduced to less than 50Mbps, well
below the maximum upload bandwidth of the system. Network
Wrapper architecture: YARP Network Wrapper Servers (NWS) and
Clients (NWC) extend device drivers functionalities to remote
devices. A NWC is a device driver that implements the same
interfaces of a normal device, but instead of being connected to a
physical device, it is connected to a NWS, or equivalent for different
middlewares such as ROS. A NWS is a thin wrapper that forwards
the interfaces of a device driver to a client. This makes possible to
access devices in a seamless way, whether they are located locally
or remotely.

4.3 Operational services

The components which constitute the application layer of the
tour guide robot are the tour manager, the behavior tree and the
dialogue system. The tour manager and the dialogue system run
externally to the robot and communicate with it through the 5G
network. On the contrary, the behavior tree is computationally
lightweight and is executed onboard, in order to be able to maintain
control of the system in case of network connectivity issues.
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FIGURE 6
Management of sensor streams over the network via YARP repeaters and data compression via port monitors. Yellow blocks represent YARP network
wrapped device drivers; white blocks represent sensors; green blocks represent macro components (either ROS-based or YARP-based). On the remote
side, YARP ports are multiplexed to different subscribers via a YARP reperater, to avoid data duplication.

4.3.1 Tour manager
The tour manager component is in charge of orchestrating the

tours. A tour is organised as a map of the venue and a collection of
Points Of Interest (POIs); each POI represents a 2D pose in the map,
and a series of actions to be executed when the robot reaches each
POI. These are stored in a configuration file in the JSON format. A
special POI is the starting/ending point for the tour, in which users
can select the tour language and also acts as a docking location for
battery recharging.

At eachPOI, the robotwill stop and execute the actions specified,
which can be of three kinds:

Speak: the robot explains the opera or asks the visitors for
input. The text is specified in the configuration file (the JSON
tour database in Figure 2) and is sent to the dialog manager to be
converted to speech.

Dance: this action can be any movement of the robot’s joints
(e.g., moving the arm to a particular pose in order to point at an
opera during an explanation; turning the head to point at an opera).
Dance movements can be executed in series or in parallel with other
actions such as speaking.

Signal: this is a special action which is used to switch language
when a new language is selected at the start of the tour or to
introduce a pause in the tour.

The tour manager component is called by the behaviour tree
(Section 4.3.2) whenever the robot has to move to a new Point Of
Interest (POI) and no hardware or localization errors are triggered
(GoToPOI action within the Behavior Tree 9). The tour manager
fetches the next POI from the tour configuration, communicates it
to the ROS navigation component, monitors the state of navigation
when asked by the behaviour tree and, when a new POI is

successfully reached, it orchestrates the actions to be executed at that
particular POI (speak, dance or signal actions) as described in the
tour configuration.

4.3.2 Behaviour tree
The behavior tree interacts with the navigation and the tour

manager components (Section 2). It manages navigation faults, both
hardware and software, by checking for fault conditions and calling
suitable actions. In addition, it triggers the action of moving to the
next POI in the tour manager. Behaviour Trees (BTs) are a graphical
model for reactive, fault-tolerant task execution (Colledanchise and
Natale, 2021). A BT is modeled as a directed rooted tree, with
the internal nodes representing behavior compositions and the
leaf nodes representing actuation or sensing. Execution starts from
the root node, that sends activation signals to its children. When
activated, children nodes are executed left to right in sequence
or in parallel. A child node returns to its parent a status that
can be either Success, Failure on completion, or Running if it is
still executing. The tree is organized hierarchically, with its leaves
representing either conditions (e.g., triggers for specific behaviors)
or actions.

The behaviour tree for the tour guide robot is shown in Figure 8.
The main functions of the behavior tree component are sending
the next point of interest to the navigation component (this is done
by triggering the “GoToPOI” action) and the reactive management
of hardware and software failure cases. For instance, if during the
navigation the robot is lost (”Condition: robotNotLost”,
Figure 8), the behaviour tree stops navigation and the robot
issues a warning via speech. Fault conditions implemented by the
application are: running internal diagnostics that monitor the status
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FIGURE 7
The behaviour tree for the tour guide robot application. Conditions are shown as green leaves; actions as white leaves. Compositional nodes are
shown in blue (fallback) and purple (sequence).

of the motors to detect overcurrent faults, calling the localization
introspection module for checking localization inconsistencies,
calling the crowd detector for checking availability of the POI. Other
reactive behaviors that were implemented but not used during the
final trials were: checking the state of network connectivity, checking
battery charge, checking whether the robot is being touched
by a user.

4.3.3 Dialogue system
The dialogue system handles all speech interaction and

is composed of three blocks: the speech recognition system,
the dialogue manager, and the speech synthesizer. The speech
recognition system is activated by specific actions executed by the
tour manager (e.g., the robot asks the visitors if they have questions
about the current artwork).

Speech recognition system: a Voice Activity Detector (VAD)
based on libfvad (Libvfad, 2023) runs locally on the robot and
is used to cut snippets of live audio containing candidate sentences
(questions and answers by the visitors) from the continuous
audio stream captured by the microphone. The extracted audio
is then transmitted to Google Cloud Services over the internet.
The reply is a textual transcription of the sentence, which is

then analyzed by the second block of the processing pipeline, the
dialogue manager.

Dialogue manager: The dialogue manager is also based on
a cloud application provided by Google, Dialogflow. Dialogflow
behaviour is similar to a finite state machine, whose transitions
between the different states are triggered by intents, i.e., the
sentences received by the transcribed text received from the speech
recognition system. The rationale for the choice of Dialogflow for
our application is the ability to accurately classify intents, even if the
text does not match exactly. For instance, questions such as “Could
you tell me who the author is?” and “What’s the name of the author?”
correspond to the same intent, and the system can be trained to
extend its database of knowledge by providing additional examples
of sentences to recognize. One limitation is that the language has
to be known in advance, and this is selected by the users at the
start of each tour. In our trials we chose to support only Italian and
English, and the intents for both languages were manually added to
Dialogflow. It should be noted that, due to the nature of the dialogue
system, it would be trivial to add support for additional languages.

Speech synthesizer: the final block of the pipeline is the speech
synthesizer, which is also implemented via Google Cloud Services.
The speech synthesizer converts the text which is associated with
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FIGURE 8
Location of the points of interest (blue circles) and DOT antennas (red squares) for the GAM museum (A) and Palazzo Madama (B). Environment
dimensions are ∼60×20m for the GAM museum and ∼30× 12m for Palazzo Madama. Note that the CAD maps are not necessarily accurate to the
actual dimensions and layout of the actual environment.

FIGURE 9
The localization introspection module. The three localization streams are represented with different colors. For each stream, the consistency checks
are divided into independent position and orientation checks. Faults from each stream are accumulated on order to make a decision on the
localization state.

each state included in the Dialogflow agent to an audio stream. The
speech synthesizer is also invoked when the robot has to describe an
artwork and it is called by the tour manager so that some specific
actions (e.g., the movements of the arms to indicate an opera) are
synchronized with speech, according to the tour configuration.

5 Experimental trials and lessons
learned

Theapplicationwas evaluated during two trial sessions of 1 week
of continuous operation each, each preceded by 1 week dedicated
to setup and experimentation. The trials took place in two different
museums located in Turin, Italy: the Galleria d’Arte Moderna
(GAM) and Palazzo Madama. For both locations, the tour guide
robot was operating on a single floor, selected bymuseumpersonnel,
that was mapped beforehand. The robot was operating for the whole
week during opening hours, and the visitors who showed interest
were invited to take a free tour. Both tours lasted for 30 min on
average. A number of safety precautions were taken in order to avoid
collisions in case of software or hardware failures. An operator was
always equipped with a joystick with a fail-safe button, connected
via WiFi directly to the robot, to stop navigation in case of failures.
Moreover, a hardware switch to stop all motors was also present on
the robot as a last safety measure.

The first trial was performed in the first floor of GAM. The
guided tour consisted of visiting six operas of interest identified in
advance by museum personnel. The tour guide robot would guide
visitors to each of the selected operas, give a short description, then
interact with them by encouraging visitors to ask any of a set of
pre-defined questions related to the installation. The robot would
then move to the next opera, giving additional information while
traveling. At the end of the tour, the robot would thank the visitors
and let them know they could continue their visit on their own.
The total duration of each tour was ranging from 20 to 40 min,
depending on how many questions the visitors asked during the
tour, along a path of approximately 150–200 m in length.The second
trial was performed in the ceramics gallery, at Palazzo Madama.
The structure of the tour was substantially similar to the one in
GAM; the only difference was the number of points of interest
(eight showcases). For each point of interest, the robot provided a
main artwork description, and the visitors were able to ask three
additional questions (details about the author, about the historical
period, about the execution technique).The duration of a tour in the
ceramics galleywas approximately between 20 and 45 min (based on
questions from the visitors) for a total length of 70 m. The points of
interest and the placement of 5G antennas in the two museums is
shown in Figure 9.

The trials were successful: both individual visitors and schools
enjoyed following the robot and interacting with it. localization
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FIGURE 10
The robot in action during the trials in GAM.

FIGURE 11
The robot in action during the trials in Palazzo Madama.

performances were robust for the duration of the trials. In particular,
no navigation issues were noted during the week of the trial. Path
planning and obstacle avoidance worked reliably, although in two
occasions the robot moved too close to obstacles and this was shown
to be because of network bandwidth issues. In both cases the robot
was stopped by the operator. Examples of the tour guide robot
guiding groups of visitors are shown in Figures 10, 11.

5.1 Acceptability and engagement with
visitors

Visitor satisfaction was evaluated via an anonymous and
optional questionnaire at the end of each tour. Feedback was
collected from more than 100 people. More details are reported

in the Appendix A. Similarly to previous studies (Gasteiger et al.,
2021), the tour guide robot was found to be acceptable by the visitors
for use within the museum setting, with good visitor engagement
and interaction with the robot guide as well as interaction and
engagement between the visitors. Also similarly to previous results
(Pitsch et al., 2011; Nieuwenhuisen and Behnke, 2013), children in
particular were positively engaged by the presence of the robot, and
often surrounded it more closely than adult visitors. Engagement
tended to be higher at the start of the tour, while some visitors started
to explore the installations more and more by themselves as the tour
proceeded.

The largest complaint was directed to speech interaction, which
sometimes presented delays or not responsive enough (see Section).
Similar results were found in another work (Polishuk and Verner,
2017). A recent study (Yousuf et al., 2019) found that visitors feel
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more engaged if the robot moves and directs its gaze to whoever is
speaking, without perceivable delays. However we found that, since
our implementation of gaze direction does detect people gazing at
the robot’s face but is not able to detect which person is speaking,
when many visitors were surrounding the tour guide robot its face
orientation tended to switch from person to person.

5.2 Ethical and privacy issues

In terms of data collection and privacy, only distance sensors
were used for the application (2D LIDAR for localization, mapping
and obstacle avoidance; depth camera for obstacle avoidance). For
gaze detection, keypoints were extracted from camera images and
no RGB images were collected. No sensible data on the users was
collected aside from the optional and anonymous questionnaire at
the end of the tour.

5.3 Hardware and software issues

R1’s onboard battery has a capacity of around 1 h while
the robot is moving. This made battery charge a bottleneck for
the application, since both tours lasted around half an hour.
Occasionally, some visitors or groups of visitors were unable to
follow a guided tour because the robot was docked for battery
recharging. This issue would be easily solved by employing multiple
robots. Robots could in principle run concurrently, although this
would require more orchestration at the tour operational level, e.g.,
for avoiding conflicts such as multiple robots competing for the
same opera.

The challenges with speech recognition and voice interaction
in the wild are for a large part in separating speech from other
noises, and the voice of other people that are not interacting with
the robot. One of the problem we encountered in particular, was
the noise made by the robot itself during movement. To avoid
this, the microphone of the robot was muted during navigation
and whenever the arms were moving. This in turn created some
difficulties to visitors, because it was not always clear to them
when the robot was listening to speech requests. To help visitors
to understand when to ask questions or reply to the robot, we
programmed the LEDs of the face of the robot to turn green or red to
signal when the robot was respectively listening or not. Despite this
technical solution, some visitors had difficulties to understand the
correct timing when verbally interacting with the robot. Together
with background noise and noise due to reverb in the museum large
spaces, this was one of the main source of errors during the verbal
interaction between visitors and the robot.

The placement and type of microphone used has showed crucial
for operation. A microphone with a narrow directional pattern
was chosen to mask noises coming from other visitors around the
robot. The microphone was pointed in front of the robot’s face,
assuming the visitor would face the robot while asking questions
or answering. This was combined with a VAD module, that uses
a neural model to separate speech from other noises. Consistently,
the robot would not understand the answer of a visitor, requiring
to repeat or reformulate the answer one or multiple times. This
shows how speech recognition in the wild still needs consistent

improvements in order to be usable for robot guides interacting with
humans.

One open issue in tour guide robot applications is that of
maintenance. There was one mechanical failure in one of the arms
joints during one trial, requiring a number of guided tours to
continue without the ability of the robot to use gestures to point at
certain operas.

5.4 Network connectivity performance and
issues

For the trials, both sites were instrumented with antennas
in order to offer 5G coverage of the respective floors where the
guided tour takes place. The instrumentation was evaluated in
terms of video quality, smoothness of robot navigation, end-to-
end delay of audio and video streams. Comparative tests were
also carried out using the project’s dedicated 5G connectivity,
existing 4G connectivity and, where available, an infrastructural
WiFi connection. For the tests, the robot was connected to the
4G and 5G networks through a smartphone connected via USB
to the internal router; the robot was controlled by a remote PC
connected via cable to the 5G infrastructure. The same route
spanning the whole floor was followed by the robot for all
experiments. Confirming the results obtained in the preliminary
tests, mobile networks showed a marked improvement in both
qualitative and quantitative performance compared to WiFi. The
Round-Trip Time (RTT) of the WiFi connection varied between
values of slightly below 100 ms to peaks of 0.5s or more, exhibiting
great variance. Bitrate also undergoes large fluctuations. On the
other hand, on the mobile network solution designed for this
application, the RTT showed to be more stable, with values between
80 ms and 150 ms for the 4G network, and between 10 ms and
100 ms for the 5G network. Additionally, the stability of 4G
and 5G connections proved to be more consistent across the
whole floor.

The measured maximum throughput in GAM, from a PC
onboard the robot to the remote server, was 400 Mbps for downlink
and 40 to 65 Mbps for uplink. For comparison, the maximum
measured downlink between the 5G smartphone located on R1’s
arm and the remote server was 400 Mbps to 1Gbps, indicating
the onboard router is limiting the maximum download bandwidth.
When performing the same test through the VPN, there was a
difference between UDP and TCP connections, with TCP downlink
further limited to 300Mbps, and TCP uplink to 35 Mbps. 5G mobile
networks (NSA) are asymmetric in terms of available download
and upload bandwidth, typically offering much larger download
bandwidth compared to upload. This is an issue for a robotic
application, which has the opposite requirement of uploading large
amounts of sensor data from the robot. In this sense, the network
upload bandwidth becomes an upper bound for the amount of
transmitted data and must be taken into consideration at the design
phase. Due to sensor data compression and throttling that were
implemented (more details in Section 4.2.4), during the trials the
data transmitted and received by the robot was between 4Mbps
and 6Mbps in upload, and between 15Mbps and 20 Mbps in
download, falling well between the operational limits of the network
infrastructure.
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TABLE 3 Latency (in ms) measured from the robot’s onboard PC (r1-base in Figure 3) to different machines during the trials.

Target 5G smartphone Google services Remote server VPN server

min 0.5 14.8 22.7 23.5

max 2.8 195.8 125.8 126.9

mean 0.7 29.8 36.4 39.8

std 0.3 14.4 13.1 14.7

The measured latency towards different machines during the
trials is shown in Table 3. The mean latency experienced by the
robotic application was 23.5 ms during operation, with a standard
deviation of 15 ms. The VPN, after optimization of its parameters,
did not affect latency by any appreciable degree.

Network congestion was experienced in particular during a time
of higher than normal affluence in Palazzo Madama. The coverage
implemented in bothMuseumswas design tomeet the requirements
of the application developed during 5G-Tours Project. As expected,
during the peaks of visitors’ affluence to the Museums, the network
load increased considerably and the service availability was adapted
consequently. From the mobile network perspective this condition
would be managed by the Slice mechanism, which was not foreseen
for this project designed solution.

Depending on the specific designed coverage and by the signal
strength, in few cases the 5G smartphone switched to the 4G
service, working in a different network condition: in case of reduced
bandwidth availability (about 1Mbps in up-link), the robot stopped
the tour.When available again, the automatic attach to the 5G service
was driven by themobile device, and required in some cases operator
intervention on the phone.This behavior is expected to be optimized
by using an integrated 5G-router.

5.5 Navigation performance and issues

The main challenge in performing navigation in the GAM
museum was due to it’s size and relative lack of geometric features.
During preliminary experiments, we found out that it was not
possible to create an accurate map of the floor using the original
LIDARs installed onR1, with a usable range of 5 m thatwas often not
enough to see any wall or obstacle around the robot while traveling.
This issue is made worse by the necessity to keep a safe distance from
operas, thus having the robotmove in the center of the corridors. For
this reason, a first workaround was to add infrastructure to the floor
plan by placing small buckets across the corridors, to augment visible
geometric features during SLAM. Later, the onboard LIDARs were
upgraded in order to offer a higher usable range. The issue was not,
however, impacting the localization accuracy; the AMCL algorithm
was able to keep a consistent estimate of the robot’s position with
both LIDAR configurations.

Mapping did not present any issues in Palazzo Madama. A
difference from GAM in terms of navigation was the size of
the environment. Although the environment could seem more
challenging in terms of localization due to the presence of many
glass display cases across the room and its walls (Figure 11), their

TABLE 4 localization performances in terms of RMSE at different POIs
of the tour (in m).

POI 1 2 3 4 5 6 7 8

0.07 0.1 0.13 0.1 0.1 0.15 0.1 0.1

presence was not actually affecting the navigation system, since R1’s
LIDARs were placed at a sufficiently low height with respect to the
ground to be able to detect the wood basements of the display cases.
If this was not the case, a different means of localization would
have to be utilized, such as a visual SLAM approach (e.g., ORB-
SLAM2) that was used during the preliminary tests. In Table 4,
we report the localization performances in terms of Root Mean
Square Error (RMSE) at each point of interest between the POI
position defined in the tour and the estimated position of the robot
at the same POI. This shows how the robot was able to consistently
reach each POI across all tours, and be in the correct position to
point to operas while explaining. We also show in Figure 12 an
example of the tour trajectories over the span of half a day. It can
be seen from the image that the trajectories between POIs vary
slightly in the first part of the tour (upper side of the map) and
this is consistent with the higher engagement by visitors at the
beginning of the tour, sometimes standing in the robot’s path. After
the last POI, visitors usually departed from the robot, leaving it
free to move.

It can be noticed that the sixth POI in Palazzo Madama (12)
shows one of the robot trajectories wandering off close to a wall.This
was the only navigation failure case in Palazzo Madama, and it was
determined to be the effect of the decreased bandwidth availability
due to the design of the experimental network: this specific zone was
covered by 4G signal only, with an insufficient bandwidth for data
transmission, as mentioned later in 5.6. In particular, the navigation
component was not able to receive data from the robot in time and
to send correct velocity commands to it. In this case, the robot was
safely stopped by the operator from the joystick, that is connected
directly to the robot and can stop the wheel motors. A further fail-
safemeasure would have been to push the emergency stop button on
the robot’s back.

On the visitors side, another difference between of the two
tours was their length. The gallery of ceramics in Palazzo Madama
was much smaller in size compared to the large artwork collection
of GAM, therefore the travel time from one installation to the
next one was shorter, giving the impression of a more dense and
detailed tour.
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FIGURE 12
Robot trajectories for a subset of tours in GAM and Palazzo Madama. It is possible to notice a larger variance in the trajectory along the first part of the
tour in both GAM and Palazzo Madama, due to more visitors surrounding the robot as well as a larger number of followers on average.

5.6 Open challenges with tour execution

The experiment showed the advantages of the 5G network
solution performances compared with previous mobile generation
(4G). However, the implemented solution for this project is
based on the NSA architecture, and did not adopt the Slice
management, that would be able to grant constant bandwidth.
Mobile Coverage of the areawas designed to satisfy the experimental
requirements and to explore the challenges of deployment in the
field, including the most critical circumstances in which the robot
stops to operate.

This challenge could also be addressed from the standpoint of
autonomous navigation, via sliding autonomy approaches, shifting
from the full navigation setup to a fallback navigation setup running
locally on the robot, with limited sensing, able to run on the limited
onboard hardware.

6 Conclusion

We presented the development choices and findings related
to the deployment of an autonomous tour guide robot as part of
the 5G-TOURS EU project. The whole application was developed

around the concept of exploiting 5G connectivity to off-load part
of the computation from the robot itself, testing the feasibility of
moving some services that are usually close to the hardware such
as obstacle avoidance to a remote machine.This was proved possible
due to the low latency of 5G as well as the particular design of the
application. The application was deployed in two trials in the field,
with a total operational time of 10 days. The experiences collected
during the trials showed us that 5G-instrumented environments are
an enabler for robotic applications that require streaming of high-
bandwidth data such as video for remote processing and for cloud
service access. In our application, safe 3D obstacle avoidance and
engagement with visitors via gaze detection was possible because of
the 5G network, but future tour guide robots that will rely heavily on
deep learning techniques that require streaming of raw sensor data
for both navigation and natural interaction will benefit from low-
latency and relatively constant throughput. The results show how
autonomous navigation in a dynamic environment and managing
of the tour are possible, and confirm previous findings on how
humanoids are a good choice for interactingwith visitors, as they can
provide naturalmodes of operation such as voice, gestures, and facial
expressions. Some open challenges that were exposed by the trials
are speech recognition in the wild, and the need for good network
coverage and hardware that can fully exploit 5G technology.
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Appendix A:

Questionnaire for visitors
The trials obtained feedback from over 100 people during

the days operating in GAM and Palazzo Madama. The questions
were formulated based on the Quality of Experience (QoE)
evaluation methodology, which focuses on the entire service
experience. The specific evaluation methodology was developed
during the course of the 5 g-TOURS project.The seven questions are
shown below:

• Q1: Please state how much you agree with the following
statement: the telepresence guide is better than the traditional
audio guide.
• Strongly agree, agree, neutral, disagree, Strongly Disagree

• Q2: How pleasant was the user experience in terms of
responsiveness of the service?
• Strongly Excellent, Good, Fair, Poor, Very Poor

• Q3: How pleasant was the user experience in terms of
intuitiveness of the service?
• Strongly Excellent, Good, Fair, Poor, Very Poor

• Q4:Howpleasantwas the user experience in terms of usefulness
of the service?
• Strongly Excellent, Good, Fair, Poor, Very Poor

• Q5: Please state how much you agree with the following
statement: I feel comfortable interacting with and close to the
robot during my visit in the museum.
• Strongly agree, agree, neutral, disagree, Strongly Disagree

• Q6: Please state how much you agree with the following
statement: I would like to pay an extra fee for the usage of the
augmented tourism experience.
• Strongly agree, agree, neutral, disagree, Strongly Disagree

• Q7: Please state how much you agree with the following
statement: Your interaction with the museum contents
has been stimulated and you felt deeply involved in the
artistic context.
• Strongly agree, agree, neutral, disagree, Strongly Disagree

• If you like, please provide your open feedback on your
experience during the Museum visit:
• “Open comment”

The questionnaire results are shown in Figure B1.

Appendix B:

FIGURE B1
Aggregated QoE results for the final trials in GAM and Palazzo
Madama.
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