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Introduction: Human–robot teams are being called upon to accomplish
increasingly complex tasks. During execution, the robot may operate at different
levels of autonomy (LOAs), ranging from full robotic autonomy to full human
control. For any number of reasons, such as changes in the robot’s surroundings
due to the complexities of operating in dynamic and uncertain environments,
degradation and damage to the robot platform, or changes in tasking, adjusting
the LOA during operations may be necessary to achieve desired mission
outcomes. Thus, a critical challenge is understanding when and how the
autonomy should be adjusted.

Methods: We frame this problem with respect to the robot’s capabilities and
limitations, known as robot competency. With this framing, a robot could be
granted a level of autonomy in line with its ability to operate with a high degree
of competence. First, we propose a Model Quality Assessment metric, which
indicates how (un)expected an autonomous robot’s observations are compared
to its model predictions. Next, we present an Event-Triggered Generalized
Outcome Assessment (ET-GOA) algorithm that uses changes in the Model
Quality Assessment above a threshold to selectively execute and report a high-
level assessment of the robot’s competency. We validated the Model Quality
Assessment metric and the ET-GOA algorithm in both simulated and live robot
navigation scenarios.

Results: Our experiments found that the Model Quality Assessment was able
to respond to unexpected observations. Additionally, our validation of the full
ET-GOA algorithm explored how the computational cost and accuracy of the
algorithm was impacted across several Model Quality triggering thresholds and
with differing amounts of state perturbations.

Discussion: Our experimental results combined with a human-in-the-loop
demonstration show that Event-Triggered Generalized Outcome Assessment
algorithm can facilitate informed autonomy-adjustment decisions based on a
robot’s task competency.

KEYWORDS

autonomy adjustment, competency assessment, proficiency assessment, human–robot
teaming, machine self-confidence, trust, explainable robotics
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1 Introduction

Selecting a level of autonomy in line with an autonomous robot’s
capabilities is a critical challenge to safe, reliable, and trustworthy
robotic deployments. Giving a robot large amounts of autonomy
in an environment in which it struggles could lead to damage to
the robot and, in the worst case, mission failure. On the other
hand, giving a robot less autonomy in an environment where it
is quite capable may unnecessarily increase the workload for a
human supervisor who must spend more time directly managing or
controlling the robot. Robots that can self-assess and report their
competency could provide human–robot teams the ability to make
informed autonomy-adjustment decisions directly in line with the
robots’ abilities.

Consider a scenario where a search-and-rescue (SAR) team is
searching for survivors after a disaster. The environment is quite
dangerous, so the team decides to employ a semi-autonomous robot
to perform a ground search. A human supervisor monitors the
robot’s progress from a safe, remote location outside the disaster
area. The supervisor receives telemetry data and video from the
robot and must use that information to decide whether to take
manual control of the robot or allow it to drive autonomously.
The supervisor’s decision to trust the robot is based on their
perception of the robot’s abilities. However, if there is misalignment
between the supervisor’s perception of the robot’s abilities and the
robot’s actual competency, the supervisor may inadvertently push
the robot beyond its competency boundaries (Hutchins et al., 2015).
Unexpected robotic failure can also lead to lower overall trust in
the robot, which could lead to the supervisor being less likely to
rely on the robot in the future, regardless of the robot’s ability to
accomplish the task (Dzindolet et al., 2003; de Visser et al., 2020). To
make appropriate autonomy-adjustment decisions, the supervisor
needs to understand the robot’s competency and how it may change
during the mission.

Recent work has shown that robots that report a priori
competency self-assessments can align operator perception with
the robot’s actual competency, thus improving decision-making and
performance in a variable-autonomy navigation task (Conlon et al.,
2022b). However, in dynamic and uncertain environments, like the
SAR scenario outlined above, an a priori confidence assessment
can quickly become stale due to environmental changes such
as falling debris or unexpected obstacles. In this work, we first
develop a metric to monitor in situ competency with respect to
the robot’s model-based predictions, which we call Model Quality
Assessment. We then propose an algorithm called Event-Triggered
Generalized Outcome Assessment (ET-GOA), which uses the Model
Quality Assessment to continually monitor for unexpected state
measurements and selectively trigger a high-level self-assessment
of the robot’s task objectives. We present evaluation results across
several simulated and live robot navigation scenarios, where
the environment was unexpected with respect to the robot’s
a priori knowledge. We next discuss a small demonstration
showing how that in situ robot competency information can be
reported to a human supervisor to facilitate informed autonomy-
adjustment decisions. We close with a brief discussion of our results
and directions for future work for competency-based autonomy
adjustment.

2 Background and related work

2.1 Variable autonomy

Variable autonomy is a paradigm in robotics where the level of
control of a robotic system can change at different points during a
task. The level of control can range from a robot with autonomous
capabilities acting andmaking decisions under its own control at one
extreme to a human supervisor fully controlling (i.e., teleoperating)
and making decisions on behalf of the robot at the other extreme.
These levels can be discrete, such as those based on vehicle
capabilities found in the autonomous driving literature (Rödel et al.,
2014), or can be more fluid and based on the capabilities of
the collective human–autonomy team (Methnani et al., 2021). The
autonomy level (and adjustments thereof) can also be a function
of other factors, such as the distance or data link between the
supervisor and robot, the robot’s autonomous competence, or the
supervisor’s trust in the robot. Changes to the autonomy level can
occur at any time throughout a task or mission. These changes
can be initiated by the robot (robot-initiative) (Costen et al., 2022;
Mahmud et al., 2023), the human supervisor (human-initiative),
or from either the supervisor or the robot (mixed-initiative)
(Chiou et al., 2021). While our experiments and demonstration
in this manuscript focus on a human-initiative system, robot
competency assessment for autonomy adjustment can be applied to
mixed-initiative and robot-initiative systems as well.

Autonomy-level changes can be pre-planned and designed into
the task (Johnson et al., 2014) or ad hoc due to robot degradation
or unexpected events (Fong et al., 2002). This work focuses on the
latter: to understand when a human supervisor should adjust the
autonomy level during the mission due to unplanned events. It is
important to note that unplanned events could have a positive or
negative impact on the mission, making it more or less difficult
for the team to accomplish the mission goals. Previous work in
this domain investigated methods for the robot to monitor itself
and call for help when necessary (Fong, 2001; Basich et al., 2020;
Kuhn et al., 2020) or for the human to take a more active role in
monitoring the robot’s abilities and adjust autonomywhen necessary
(Ramesh et al., 2022; 2021). We take a more collaborative approach
that seeks to enable both the robot and the human to monitor
metrics of the robot’s task competency to better understand 1) when
the robot is more or less capable than previously predicted and 2)
when supervisor-initiated autonomy adjustments are necessary. Our
approach enables the team to not only understand when the robot is
less competent than planned andmayneed assistance but also realize
when the robot is more competent and may be able to operate with
increased autonomy.

2.2 Robot competency self-assessment

Competency self-assessment enables autonomous agents to
assess their capabilities and limitations with respect to task
constraints and environmental conditions. This critical information
can be used to improve internal decision-making and/or can
be communicated to a human partner to improve external
decision-making. Pre-mission (a priori) self-assessments enable an
autonomous agent to assess its competency before the execution
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of a task or mission. These methods generally compute agent self-
confidence based on simulation (Israelsen et al., 2019; Ardón et al.,
2020) or previous experience (Frasca et al., 2020). Our recent
work showed that reporting of a priori self-assessments lead to
better choices of reliance (Conlon et al., 2022c) and improvements
in performance and trust (Conlon et al., 2022b). However, in
dynamic environments, a priori assessment is a poor predictor of
the agent’s confidence due to factors that are not accounted for
before execution, such as environmental changes, task changes, or
interactions with other agents. Running a priori methods online
(periodically) could conceivably capture dynamic competency
changes. However, such assessments can waste computational
resources if competency has, in fact, not changed or may
be too expensive for certain kinds of decision-making agents
(Acharya et al., 2022; Conlon et al., 2022a; Gautam et al., 2022).

Inmission (in situ) self-assessment enables an autonomous agent
to assess (or reassess) its competency during task execution. Popular
methods such as online behavior classification can identify poor
behavior and trigger the agent to halt the operation and ask for
help in the event of a failure (Fox et al., 2006; Rojas et al., 2017;
Wu et al., 2017). These methods, although able to capture dynamic
competency changes, require examples of both good (competent)
and poor (incompetent) behaviors, which may be difficult or
impossible to acquire in many real-world applications. Another
method of in situ self-assessment involvesmonitoring features of the
agent’s current state. For example, Gautam et al. (2022) developed
a method to monitor deviations from design assumptions, while
Ramesh et al. (2022) used the “vitals” of a robot to monitor its
health during task execution. Both methods provide a valuable
instantaneous snapshot of the agent’s state at a given time, which can
indicate performance degradation online; however, neither predicts
higher-level task competency (for example, does the degradation
actually impact the task outcome?).

In contrast, we propose an algorithm that enables the assessment
and communication of high-level task outcome competency both
a priori and in situ. We leverage the method of Generalized
Outcome Assessment, which was originally developed as an a priori
method due to computational cost, to assess a robot’s task outcome
competency. We then develop a method of in situ Model Quality
Assessment that monitors the alignment between the robot’s model
predictions and state observations to intelligently choose when
the robot should (re-)assess and (re-)communicate task outcome
competency. We argue that understanding when and how the
robot’s competency has changed will help human supervisors make
improved autonomy-adjustment decisions.

3 Algorithm development

3.1 Modeling the world

We take a model-based approach to competency self-
assessment. We define a world model, M, as a stochastic model
of the robot, its dynamics, and its environment from which
trajectories can be sampled. M could take the form of a Monte
Carlo-based planner (Israelsen, 2019), a black box neural network
(Ha and Schmidhuber, 2018; Conlon et al., 2022a), or a high-
fidelity simulation environment (Koenig and Howard, 2004;

Michel, 2004). Similar modeling paradigms have been referred
to as model-based in the reinforcement learning literature
(Acharya et al., 2023; Moerland et al., 2023) and digital twins in
the simulation literature (Girletti et al., 2020; Phanden et al., 2021;
Xu et al., 2021). Within the framework of Factorized Machine Self-
Confidence (FaMSeC), the purpose of M is to enable the robot to
simulate itself, executing the task in a representative environment.
Sampling from M results in a predicted distribution of trajectories
through the robot’s state space, which can be analyzed by our
FaMSeC assessments to understand how capable the robot is
expected to be.

3.2 Factorized Machine Self-Confidence

To help facilitate informed autonomy-adjustment decisions, we
capture changes in robot competency with FaMSeC. FaMSeC is
a computational framework that enables an autonomous robot to
self-assess across five different dimensions that are theorized to
impact competency. A diagram of the FaMSeC framework adapted
from Israelsen (2019) is given in Figure 1.

FaMSeC assumes a planning and execution flow commonly
found in autonomous systems, which is shown as tan boxes
with black lines in Figure 1. First, the user issues a command
(or a task) to the robot. Next, the robot must interpret or
translate that task. The interpreted task, along with the robot’s
world model, is then used by the robot’s solver to generate a
plan, and that plan is then executed through interactions with
the environment.

The assessment mechanism—shown as rounded blue boxes
connected with blue dashed lines—evaluates each planning and
execution component to varying degrees, which captures the robot’s
overall competency. Interpretation of Task Assessment (ITA) assesses
how well the agent has interpreted the user commands. Model
Quality Assessment (MQA) assesses howwell the agent’s worldmodel
alignswith reality. SolverQualityAssessment (SQA) assesses howwell
the agent’s solvers and policies align with optimal or trusted solvers
and policies. Generalized Outcome Assessment (GOA) assesses the
plan to predict the degree to which the agent will achieve user-
defined outcomes. Past Experience Assessment (PEA) assesses how
the robot has performed in previous and similar problem instances
by analyzing expected and actual outcomes. A combination of
some or all factors can be reported to a human user to calibrate
their mental model to the robot’s predicted competency, with
respect to a given task and environment. For a thorough treatment
on Factorized Machine Self-Confidence, please refer to Israelsen
(2019).

To date, only the GOA and Solver Quality Assessment (SQA)
metrics have been fully implemented and validated. Outcome
Assessment is a powerful tool to calibrate users to robot capabilities
but only as an a priorimetric. Toward in situ competency assessment,
this work first proposes a novel MQA FaMSeC metric. We then
develop an algorithm that combines MQA with an existing GOA
to enable fast online monitoring and selective assessment of task
outcome competency.
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FIGURE 1
Factorized Machine Self-Confidence framework adapted from Israelsen (2019). Planning and execution components (tan boxes, black arrows) are
assessed across five factors (blue rounded boxes, blue dashed lines) to assess the robot’s competency.

3.3 Assessing task outcome competency

To assess task outcome competency, we leverage Generalized
Outcome Assessment (GOA) (Conlon et al., 2022a), an extension
of the original Outcome Assessment proposed by Israelsen (2019).
For brevity, we refer to this as Outcome Assessment or GOA
henceforth. GOA begins by simulating task execution by sampling
state predictions fromaworldmodel-based distributionπ(st+1|st,at),
which results in a distribution of predictions for a target outcome of
interest. Examples of target outcomes include goals accomplished or
task completion time.

The outcome predictions are then ranked according to their
desirability to the user such that for outcomes zi and zj, zi < zj if
zi is less desirable than zj, and all outcomes less than a threshold
z* are considered undesirable. For example, a user might desire a
task completion time of no more than z* = 60 s, where a prediction
of a late completion at zi = 65 s is less desirable than a prediction
of an early completion at zj = 45 s. Next, GOA analyzes the ranked
predictions according to the ratio of the upper partial moment to
lower partial moment (Wojt, 2009):

UPM
LPM
|z* =
∑

zj≥z*
(zj − z* + 1)*P(zj)

∑
zm≤z*
(z⋆ − zm) ⋆ P(zm)

.

The UPM
LPM

statistic weights the probability of an outcome by its
distance from z*. Because it ranges from negative to positive infinity,
it is transformed to the range [0,1] through a standard sigmoid
function:

GOA = 1

1+ e−
UPM
LPM
|z*
.

The value of GOA is an indicator of the robot’s confidence in
achieving outcomes equal to or more desirable than z*. We expect
that if the robot’s world model predictions are generally above z*,

then, GOA tends toward 1 (higher confidence), and conversely, if
the world model predictions are generally below z*, we expect GOA
to tend toward 0 (lower confidence). The value of GOA can be
reported as a raw numeric ∈ [0,1] or mapped to a semantic label
indicating confidence. For our quantitative experiments covered
later in thismanuscript, we analyzed rawnumericalGOA confidence
values. For our qualitative human-in-the-loop demonstration, we
reported the semantic labels using the mappings very bad confidence
(GOA ∈ [0,0.25)), bad confidence (GOA ∈ [0.25,0.4)), fair confidence
(GOA ∈ [0.4,0.6)), good confidence (GOA ∈ [6,0.75]), and very good
confidence (GOA ∈ [0.75,1.0)).

It is important to note that GOA can be an expensive operation
to run online due to sampling of potentially complex world models.
To understand how task outcome competency has changed in
situ, a designer must cope with a trade-off between an accurate
understanding of task outcome competency and the computational
expenditures needed to assess the said task outcome competency.
One way to address this trade-off is to provide the robot the ability
to intelligently choose to self-assess based on predicting when its
competency has potentially changed.

3.4 Developing the Model Quality
Assessment

To estimate when competency may have changed, we
implemented a new metric for Factorized Machine Self-Confidence
called MQA. The MQA was defined by Israelsen (2019) as assessing
“how well measurements and events predicted by an autonomous
system model align with what it actually should observe in
reality.” We argue that MQA should be thought of as a distance
function between an autonomous agent’s model prediction and
real observations or measurements gained through interacting with
the environment. Furthermore, we believe that MQA should be
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bounded within a small range to align with the other FaMSeC
factors. In order to assess based on livemeasurements,model quality
should also be fast enough to run online. We propose a general form
of Model Quality Assessment as follows:

MQA = f (y, ŷ) ∈ [0,1] ,

whereMQA should tend toward 1 if there is high alignment between
the model predictions ŷ and real measurements y and tend toward 0
otherwise.

One promising method that fits our requirements is the surprise
index (SI). SI is defined as the sum of probabilities of more extreme
(or less probable) events than an observed event given a probabilistic
model (Zagorecki et al., 2015). For a given event, e, modeled by
probability density function π, SI is computed by summing over the
probabilities of more extreme events in π:

SI (π (e) ,π) = ∫
π(i)<π(e)

π (i)dπ.

The surprise index can be thought of as how (in)compatible an
observation e is given a set of possible events predicted by π. This
is similar to the more well-known entropy-based surprise (Benish,
1999; Baldi and Itti, 2010).However, whereas entropy-based surprise
is unbounded, the surprise index is bounded between zero (most
surprising) and one (least surprising). SI also shares similarities
with the tail probability or the p-value, given the hypothesis that
e is from the distribution π. A large p-value (SI tending toward
one) indicates that e may have been sampled from π, while a small
p-value (SI tending toward zero) indicates strong evidence to the
contrary.

For an autonomous agent with multivariate state st ∈ S at time t,
we define the Model Quality Assessment at time t as the minimum
of the surprise index across the state marginals, given a state
observation st and state prediction πt. Here, πt is predicted by
the agent’s world model, and st is the state observation received
at time t. We marginalize the state and compute the metric over
marginals included in indicator list I. I is a list of designer-defined
state elements that should be monitored to assess competency; for
example, the robot’s (x,y,z) position may be included in I, while its
current control state “teleoperation” or “autonomous” may not. This
gives us a succinct surprise index-based MQA formulation using
only essential state elements:

MQAt =min
i∈I

SI(st,i,πt,i) ∈ [0,1] .

Continuous monitoring of the MQA during task execution can
provide information about how competent the agent is in a given
environment and how that may change in situ. Moreover, we can
use the instantaneous value of the MQA as a trigger for the agent
to re-assess the higher-level outcome of the task. In other words, a
waningMQA indicates that the agent’s worldmodel predictions have
diverged frommeasurements and can be an indicator that the agent’s
higher-level task competency has changed. In this work, we say that
the agent should reassess higher-level task outcomes if theMQA falls
below a designer-defined threshold δ. Additionally, it is important to
note that MQA and GOA operate over world model predictions of
the same form, (st,at, st+1). Trajectories sampled by GOA to assess
outcomes can be used by MQA, along with real observations, to
assess model quality.

Algorithm 1. Event-Triggered GeneralizedOutcome Assessment.

3.5 Putting it together: the Event-Triggered
Generalized Outcome Assessment
algorithm

We combine theModel Quality Assessment and the Generalized
Outcome Assessment into an algorithm for in situ competency
self-assessment called ET-GOA. The algorithm is presented in
Algorithm 1 and can be broken up into two components: (1) a priori
(or before task execution) and (2) in situ (or during task execution).

Before task execution (lines 1–5): Line 1 takes as input a world
model M, a task specification T, a set of GOA thresholds Z, an
MQA threshold δ, and a set of MQA indicators I. Next (line 2), M
is used to simulate the execution of task T, given an initial state
s0. This results in a set of predictions [πt]t=0:N for each time step
t. The predictions for each time step are stored in an experience
buffer (line 3) and then used to compute the initial Generalized
Outcome Assessment (line 4), which can be reported to an operator
(line 5).

During task execution (lines 6–16): The agent receives state
observation st at time t (line 7). It then retrieves the state predictions
πt from the experience buffer (line 8). Next, the algorithm computes
the MQA (line 9). If mqat is below the threshold δ, an anomalous
or unexpected state observation has been received, and task
outcome confidence should be reassessed (line 10). In this case,
a new set of predictions πt+1:N is sampled from simulating M
(line 11) and saved in the experience buffer (line 12). A new
GOA is then computed using the newly updated experience
buffer (line 13), and the associated competency is reported to
the operator (line 14). If, on the other hand, mqat is above the
threshold δ, this indicates that the agent’s predictions align with
its observations, and no confidence update is needed at this time
(line 16). This loop (line 6) continues for the duration of the task,
comparing state prediction πt to the state observation st and (if
necessary) computing and reporting updates to the robot’s task
competency.

The flowchart of the Generalized Outcome Assessment
algorithm is shown in Figure 2. The left side of the figure shows
the a priori portion of the algorithm: given a user command or task,
the system generates an initial plan, which is assessed byGeneralized
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FIGURE 2
System diagram for the Event-Triggered Generalized Outcome Assessment algorithm. The left side shows the a priori or before-task behavior showing
the initial outcome assessment (GOA), competency reporting, and storing of world model predictions. The right side shows the in situ or during-task
behavior showing the Model Quality Assessment at each time step, and, if triggered, in situ outcome assessments, competency reporting, and updating
of world model predictions.

Outcome Assessment, and then communicated to a user to improve
a priori decision-making.Theworldmodel state predictions for each
time step, π0:N, generated by GOA, are also saved in the experience
buffer. The right side of the figure shows the in situ portion of the
algorithm: at time t, the state measurement from the environment,
st, and world model prediction, πt, are used to compute the MQA.
If the assessment is less than threshold δ, then GOA is executed
and reported to the user for improved in situ situational awareness
and decision-making. After GOA is run, the experience buffer is
updated with new world model predictions πt+1:N. If the assessment
is greater than the threshold, then no reassessment is needed.
The loop of continuous Model Quality Assessment and selective
Generalized Outcome Assessment continues for the duration of the
task.

4 Experimental design

To validate the Model Quality Assessment and the Event-
TriggeredGeneralizedOutcomeAssessment algorithm,we designed
and executed experiments across both simulated and live scenarios.

4.1 Research questions

We developed four core research questions to analyze Model
Quality Assessment and the Event-Triggered Generalized Outcome
Assessment algorithm:

1. How does the Model Quality Assessment respond to different
types of perturbations? We hypothesize that the MQA will

be lower for unexpected state measurements and higher for
expected state measurements. This would indicate that MQA
can capture misalignment between the robot’s world model and
reality.

2. How does the triggering threshold impact the accuracy of ET-GOA?
We hypothesize that GOA accuracy will increase proportionally
to the δ threshold. We believe that a higher δ threshold should
increase the sensitivity ofMQA and increase the number of GOA
triggers.

3. How does the triggering threshold impact the computational
complexity of ET-GOA? We hypothesize that the computational
complexity of the ET-GOAalgorithmwill increase proportionally
to the δ threshold. The increase in threshold will increase
the number of GOA triggers, which will result in higher
computational complexity.

4. Does ET-GOA perform similarly in simulation and on a live
platform? We hypothesize that the ET-GOA algorithm on
a live platform will respond to state perturbations similar
to the simulated robot. We expect to see the same general
trends in MQA behavior between our simulated and live
experiments.

4.2 Robot state, planning, and competency
self-assessment

For both the simulated and live experiments, the robot’s state
took the form (x,y,z)t, where (x,y,z) is the position in meters
in a global frame and t is the time in seconds. To generate
waypoints, we used a rapidly exploring random tree (RRT) planner,
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which is a common stochastic method for generating motion
plans in an obstacle-rich environment (Lavalle, 1998). We used a
simple proportional derivative (PD) controller to compute velocity
actions between individual waypoints. To avoid confounding our
experiments, we did not include any autonomous replanning or
obstacle avoidance maneuvers. In other words, our robot had
only limited competency while driving autonomously. If any
predetermined path was blocked, the robot was programmed to
automatically stop to prevent physical collision with obstacles.

The robot’s world model was an instance of the Webots high-
fidelity simulator (Michel, 2004). The simulator was programmed
with a copy of the robot as well as copies of all obstacles the robot had
knowledge of at the current time step. If the robot sensed an obstacle
in the execution environment using its front-facing camera, the
world model was updated with a simulated obstacle of similar size
and position.When the ET-GOAalgorithmwas active, the robot had
the ability to query theworldmodel on demand for self-assessments.

Generalized Outcome Assessment was computed using 10
Monte Carlo rollouts of the world model robot navigating from
the “real” robot’s current location along the waypoints, given all
known obstacles. Our experiments focused on a single outcome of
interest for GOA: autonomous driving time. This was the time the
robot spent in an autonomous driving state. To facilitate a more
detailed analysis of our ET-GOA algorithm, we separated the time
spent running aGOA assessment from the time spent autonomously
driving in the environment. Thus, the autonomous driving time
outcome was equal to the time spent driving minus the time
spent running GOA. We specified a maximum desired autonomous
driving time of 60 s. This meant that GOA was parameterized
by z* = 60, and the assessment returned the robot’s confidence in
successfully navigating to the goal within 60 s of the cumulative time
spent in the autonomous driving state. For our experiments, the
raw GOA value in [0,1] was used, and for the demonstration, we
mapped the raw GOA value to a semantic label, as in Section 3.3.
Note that we could have instead looked at other outcomes of interest
such asminimumormaximumvelocity, obstacle hit, or exceedances
of operational thresholds. The world model predictions generated
during GOA were saved in an experience buffer for use by MQA.

Model Quality Assessment was run each second using the
current world model predictions in the experience buffer and
state indicators I = [x,y,z]. The choice of indicator set is of critical
importance and should include state elements that the designer
foresees as being impacted by changes in competency. The world
model predictions at each time step for each indicator i ∈ I were
modeled as a normal distribution, N (μi,σi). For a real observation
xi, the surprise index was then the sum of the lower- and upper-tail
CDF, F(x|x < oi ∪ x > oi). In other words, the sum of probabilities of
all observations more extreme than oi. If any in situ re-assessments
occurred, the experience buffer was flushed and updated with the
latest world model predictions.

4.3 Simulation experiment overview

Our simulation experiments were run on a custom-built
Windows 10 PC with an Intel Core i7 3.4 GHz CPU, 32 GB RAM,
and NVIDIA RTX 3060 GPU. We used the Webots simulator
customized for our specific use case. The simulation environment

was a 4× 10 m space with a single ground robot of approximate size,
shape, and capability as a Clearpath Jackal. The robot was equipped
with a notional sensor capable of sensing obstacles within a 2 m
radius from the robot. The robot also received accurate position
information at all times from the simulation. The robot’s physical
capabilities were limited to basic waypoint following and emergency
stopping, and deviation from the planned waypoints would require
human control. In other words, our robot was only moderately
competent.

To investigate our first research question, we tasked the robot
with driving from point A to point B along a fixed set of waypoints.
We varied the amount and type of state measurement perturbation
the robot experienced as well as how well those perturbations were
captured in the robot’s world model. We developed the following
three conditions:

1. Accurate world model: The actual execution environment
contained an area of high transition noise, whichwe programmed
to 1) reduce the robot’s intended speed by 50% and 2) added
random Gaussian noise (μ = 0,σ = 0.5m

s
) to the robot’s velocity

actions. The robot’s world model was provided accurate a
priori information about all obstacles in the environment.
This condition represented the baseline case where the robot’s
world model accurately captured all information about the
environment.

2. Unexpected transition noise: The actual execution environment
contained an area of high transition noise, whichwe programmed
to (1) reduce the robot’s intended speed by 50% and (2) added
random Gaussian noise (μ = 0,σ = 0.5m

s
) to the robot’s velocity

actions. Neither could the robot directly sense the area nor did
the robot’s world model contain any a priori information about
this area. This condition represented a case where the robot
experienced increasingly unexpected position measurements in
situ due to the impact of the area.

3. Unexpected blocked path: The actual execution environment
contained a wall blocking the robot’s ability to navigate to the
goal. The robot’s world model had no a priori information
of this wall. This condition represented a case where the
robot experienced both an instantaneous unexpected obstacle
measurement when it sensed the wall and increasingly
unexpected position measurements as it was unable to continue
the navigation due to the wall.

All three conditions are shown in Figure 3. It should be noted
that the only difference between the accurate world model and
unexpected transition noise conditions was the a priori knowledge
provided to the world model.

To investigate our second and third research questions, we
tasked the robot with driving from start (S) to goal (G) along a fixed
set of waypoints. The execution environment was a combination of
the transition noise and blocked path conditions. Here, the robot’s
path first took it over the high-transition-noise area, followed by
the blocked path area en route to the goal. The robot’s world model
had no a priori knowledge about the obstacles. We endowed the
robot with a sensor capable of sensing the transition noise area
and the wall. As the robot navigated through the environment, it
added previously unknown obstacles to its world model as they
were sensed. GOA was computed using 10 Monte Carlo runs
of the robot’s world model, which was updated with all a priori
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FIGURE 3
Simulation study environment configurations with the approximate path shown in a black dotted line from start (S) to the goal (G). (A) The robot’s world
model had accurate knowledge about an area of high transition noise. (B) The robot’s world model did not have accurate knowledge about an area of
high transition noise. (C) The robot’s world model did not have knowledge about a wall blocking the path to the goal. The contents of the robot’s world
model can be seen in each robot’s thought bubble. (A) Accurate world model condition. (B) Unexpected transition noise condition. (C) Unexpected
blocked path condition.

information and in situ observations. For MQA, we restricted the
world model’s minimum state variance to 1 m to prevent the ET-
GOA algorithm from sampling a degenerate (or constant) state
distribution in the event the world model was overly confident.
Our conditions consisted of seven ET-GOA triggering thresholds,
δ = (0.0,0.1,0.25,0.5,0.75,0.9,1.0).

4.4 Live experiment overview

Our live experiments were conducted in the University
of Colorado Boulder Smead Aerospace Engineering Sciences
Autonomous Systems Programming, Evaluation, and Networking
(ASPEN) Laboratory. We used a Clearpath Jackal equipped with
an onboard computer, wireless communication, and front-facing
camera for basic object detection. We affixed AR tags on the
obstacles, which gave the robot accurate measurements of the
obstacle type and reduced any confounds relating to the accuracy
of detection algorithms. The ET-GOA algorithm as well as all task
planning was conducted off board on an Ubuntu 20.04 laptop with
an Intel Core i7 2.3 GHz CPU, 16 GB RAM, and NVIDIA RTX
A3000 GPU. All communication between the robot, camera, and
laptop was conducted over the Robot Operating System (ROS),
a popular robotics middleware (Quigley et al., 2009). The robot’s
mission area was a 4× 10 m area within the ASPEN Laboratory
equippedwith aVICONcamera system,whichwas used for accurate
position estimates. Similar to the simulated robot, the live robot’s
physical capabilities were limited to basic waypoint following and
emergency stopping, and deviation from the planned waypoints
would require human control.

Our live evaluation of MQA mirrored the simulation conditions
covered in Section 4.3. Our first two conditions evaluated expected
and unexpected transition noise. Instead of simulated transition
noise, the real environment contained a set of uneven sandbags
along the robot’s prescribed path, which created transition
disturbances as the robot drove over them. Under the accurate world
model condition, we provided the robot’s world model accurate a
priori information about the sandbag location and impact to velocity.
Under the unexpected transition noise condition, we did not provide
the robot any a priori information about the sandbags. Our third
condition, unexpected blocked path, evaluated the MQA response
when the robot could not continue on its prescribed path. Instead of
a simulated wall blocking the path, the real environment contained
a large cardboard box blocking the prescribed path. An ARTag was
affixed to the box, which helped the robot identify the obstacles and
update its world model accordingly.

For each episode, the robot attempted to drive approximately
4 m, during which it experienced the condition. All three conditions
are shown in Figure 4. Similar to our simulation experiments, the
accurate world model condition was identical to the unexpected
transition noise scenario, except that the world model had full
knowledge about the sandbags.

4.5 Measures

We used three primary measures to evaluate MQA and the ET-
GOA algorithm:

1. Model quality response: The goal of this measure was to
understand how well MQA captured state measurement
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FIGURE 4
Live study environment configurations with the approximate path shown in a black dotted line from start (S) to the goal (G). (A) The baseline condition
contained a set of sandbags that the robot’s world model was given full knowledge about. (B) The area contained a set of sandbags that the robot’s
world model did not have knowledge of. (C) A popup obstacle was placed in front of the robot shortly after the task began, which the robot’s world
model had no a priori knowledge about. The contents of the world model can be observed in each robot’s thought bubble. (A) Accurate world model
condition. (B) Unexpected transition noise condition. (C) Unexpected blocked path condition.

perturbations at various times throughout the task execution and
with varying amounts of alignment between theworldmodel and
reality. We measured the raw MQA value at each time step and
computed the mean across the task.

2. Computational cost: The goal of this measure was to understand
the computational efficiency of ET-GOA. We measured
the time in seconds that the robot spent executing a self-
assessment (Model Quality Assessment and Generalized
Outcome Assessment) during the duration of the task.

3. Outcome assessment accuracy: The goal of this measure was to
understand how accurate the ET-GOA-triggered Generalized
Outcome Assessments were. We computed the mean squared
error (MSE) between the ET-GOA-triggered Generalized
Outcome Assessments and a ground truth periodic GOA
at each time step. For time steps where ET-GOA did not
trigger an updated Outcome Assessment, we reused the
last ET-GOA-computed Outcome Assessment in the MSE
computation.

We utilized statistical significance testing in our analysis
of Research Question 1. For analyzing a main effect across
conditions, we performed a one-way analysis of variance (ANOVA),
measuring the effect size by partial eta-squared (η2

p). To analyze
differences between individual conditions, we utilized Tukey’s
honestly significant difference (HSD) test with Cohen’s d effect
size measure. For all statistical testing, we set α = 0.05. For
research questions 2 and 3, we analyze the correlation across
thresholds using Pearson’s correlation. For research question
4, we provide a higher-level analysis and discussion of our
results.

5 Results

5.1 Model Quality Assessment response in
simulated scenarios

We executed 20 episodes per condition and measured the
MQA response at each time step and then computed the
mean MQA across each task. A one-way ANOVA indicated
a significant main effect across the three conditions, F(2,57) =
2464.6,p < 0.001,η2

p = 0.99. Further analysis using Tukey’s HSD
test showed a significant decrease in MQA between the accurate
world model condition (M = 0.88) and the unexpected transition
noise condition (M = 0.16), p < 0.001,d = 18.2, a significant decrease
in MQA between the accurate world model condition and the
unexpected blocked path condition (M = 0.08), p < 0.001,d = 20.1,
and a significant decrease in MQA between the unexpected
transition noise condition and the unexpected blocked path
condition, p < 0.001,d = 1.9. This supported our hypothesis that
MQA could capture unexpected perturbations to the robot’s
state. Additionally, these results showed that different types of
perturbations elicited different MQA responses. A plot of the mean
MQA response across the three simulated conditions is given in
Figure 5.

5.2 ET-GOA response in simulated
scenarios

To understand the accuracy of the ET-GOA algorithm, we
computed the MSE between the ET-GOA-triggered confidence
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FIGURE 5
Boxplot showing the MQA response across three simulated conditions. The whiskers indicate the first quartile ±1.5× interquartile range. We observed
that the unexpected transition noise and unexpected blocked path conditions showed significantly lower MQA than where the robot was given an
accurate world model.

FIGURE 6
Plot showing ET-GOA evaluated across seven triggering thresholds. The orange triangles indicate the mean squared error, which decreases with an
increasing threshold. The purple squares indicate the percentage of task time spent running the ET-GOA algorithm, which increases with an increasing
threshold. There is a trade-off between ET-GOA self-assessment accuracy and the computational cost of executing said self-assessments.

predictions and a ground truth GOA at each time step. Note
lower MSE equates to more accurate predictions. The results
of Pearson’s correlation indicated that there was a significant
negative correlation between the δ threshold and GOA error,
r(138) = −0.75,p < 0.001,R2 = 0.57. This can be seen as the orange
triangles in Figure 6. The lower thresholds rarely triggered GOA,
while higher thresholds captured in situ competency changes due
to triggering GOA more often. The higher the rate of triggered
GOA, the more in line with the ground truth the robot’s in
situ performance predictions were. These findings supported our
second hypothesis that GOA accuracy would increase (error would
decrease) proportionally to the triggering threshold.

We measured the computational cost as the percentage of task
time in seconds that the robot spent running the ET-GOA algorithm
in the periodic MQA assessment and the triggered GOA portions.
We found a significant positive correlation between the δ threshold
and computational cost, r(138) = 0.86,p < 0.001,R2 = 0.74. This can
be seen as the purple squares in Figure 6. Lower thresholds led
to less computational cost, and higher thresholds led to higher
computational costs. At the extremes, a threshold of δ = 0 leads to

exactly one a priori self-assessment because the sensitivity of the
trigger is at a minimum, and a threshold of δ = 1 induced behavior
similar to a periodic assessment because the sensitivity of the
trigger was at its maximum. Further analysis revealed that the per-
observation MQA was quite fast (M = 0.003 s), while the triggered
GOA was the computational bottleneck (M = 46.17 s) of the
algorithm. This is not unexpected as the GOA algorithm executed
several Monte Carlo rollouts of a high-fidelity simulator each time
it was triggered by MQA. Additionally, the goal of MQA is to limit
the computational expenditure of robot competency assessment by
triggering outcome assessments onlywhen necessary.These findings
supported our third hypothesis that the computational cost of ET-
GOA increased proportionally to the triggering threshold.

Figure 7 shows all of our simulation data in a single plot. Each
subplot shows the data for each threshold we examined. For a given
threshold, we plotted the MQA and GOA over autonomous driving
time, along with the 1σ error bounds. Recall that autonomous
driving time ignores the time the robot spends running GOA and
allows for a straightforward comparison of the ground truth and
ET-GOA-triggered assessments at each step. The δ threshold for the
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FIGURE 7
MQA and GOA measured across several thresholds during task executions. The black dashed line indicates the MQA threshold for triggering GOA.

event triggering is shown as a red dotted line on the Model Quality
Assessment plot. The periodic GOA (ground truth) is shown as a
series of black circles on the Outcome Assessment plot. The ground
truth indicates that the robot should initially be quite confident
in task success. However, at approximately time t = 20 s, when the
robot encounters (and learns of) the high-transition-noise area, its
confidence should decrease becauseMonte Carlo simulations of that
area result in lower probability of success. At approximately t = 40 s,
the robot encounters a previously unknownwall.With knowledge of
the wall blocking the path, the robot’s confidence is now essentially
zero. Moving left to right and top to bottom, we can see that the
number of triggers increases as the threshold increases. The increase
in triggers causes an increase in in situGOA assessments.The higher
frequency of assessments leads to a more accurate overall picture of
task outcome confidence but at a cost of increased computation time,
as we discussed earlier. The increase in accuracy can be seen in the
plots as the triggered GOA tightly enveloping the periodic ground
truth GOA.

Our simulation experiments helped us answer our first three
research questions. First, we found evidence supporting our
hypothesis that MQA could capture unexpected state perturbations
across three scenarios, where the world model had varying
knowledge of the environment. Second, we found evidence
supporting our hypothesis that GOA accuracy would increase
proportionally to the triggering threshold.Third, we found evidence
supporting out hypothesis that computational cost would increase
proportionally to the triggering threshold. In investigating the

second and third hypotheses, we found that there is a distinct trade-
off designers must make with respect to computational cost and
GOA prediction accuracy. Additionally, both the MQA and the ET-
GOA algorithm showed the behavior we were expecting within the
experiments.

5.3 Model quality response in live scenarios

We executed 20 episodes per condition and measured the MQA
response at each timestamp and then computed the mean MQA
across each task. We found a significant effect of the condition on
MQA, F(2,57) = 232.7,p < 0.001,η2

p = 0.89. Further analysis using
Tukey’s HSD test showed a significant decrease in MQA between
the accurate world model condition (M = 0.91) and the unexpected
transitionnoise condition (M = 0.60), p < 0.001,d = 3.3, a significant
decrease in MQA between the accurate world model condition and
the unexpected blocked path condition (M = 0.26)p < 0.001,d = 6.8,
and a significant decrease in MQA between the unexpected
transition noise condition and the unexpected blocked path
condition, p < 0.001,d = 3.5. This supports our hypothesis that the
MQA response on a live robot captured unexpected perturbations
to its state. We observed behavior similar to that of our simulation
experiments, albeit with much smaller effect sizes. These smaller
effect sizes are most likely due to the mean MQA being slightly
closer across the live scenario conditions than across the simulated
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FIGURE 8
Boxplot showing the MQA response across the three live conditions. The whiskers indicate the first ±1.5× interquartile range. We observed that the
unexpected transition noise and unexpected blocked path conditions showed significantly lower MQA than when the robot was given an accurate
world model.

conditions. A plot of the mean MQA response across the three live
conditions is given in Figure 8.

Our live experiments helped us answer our research question
4. We found evidence to support our hypothesis that MQA would
show a similar response between the simulation and live studies.
We observed that MQA did, in fact, perform in line with our
expectations across the three scenarios. This reinforced our belief
that MQA and the ET-GOA algorithm could be used on live
robot platforms to calibrate a human supervisor’s understanding
of robot competency and facilitate supervisor-initiated autonomy-
adjustment decisions.

5.4 A demonstration and discussion of
ET-GOA for autonomy adjustment

Our experiments showed that 1) the Model Quality Assessment
can capture events that were unexpected with respect to the robot’s
world model and 2) that the ET-GOA algorithm can respond to
changes in Model Quality Assessment with updated task outcome
assessments. However, to understand how ET-GOA may add value
to human–robot teaming, we must evaluate with a human in the
loop. To that end, we developed a proof-of-concept scenario where
a human–robot team was tasked with navigating the robot from
point A to point B. The team would be faced with in situ events that
impacted the robot’s competency, and the human supervisor would
need to make autonomy-adjustment decisions in order to achieve
the task goal.

The role of the human supervisor was played by the first author
of this manuscript. We used the same Clearpath Jackal from our
previous experiments. The robot had access (via ROS) to the ET-
GOA capability, which enabled it to autonomously and selectively
assess and report the outcome competency to the human supervisor.
The scenario required the robot to autonomously plan and follow
a set of waypoints through a virtually constrained space. There
were two autonomy levels available to the team: 1) autonomous
control, where the robot’s autonomy generated velocity commands

between waypoints and 2) human control, where the supervisor
teleoperated the robot using video from the front-facing camera
and PlayStation controller. A single in situ popup obstacle blocked
the robot’s ability to complete the navigation task. In other words,
the robot was not capable of navigating around this obstacle and
would require assistance.This could be similar to real-life situations,
where falling debris or unexpected craters block the robot’s path.The
popup obstacle put the team in the position of needing temporary
ad hoc autonomy adjustment: from autonomous control to human
control, as the supervisor helps the robot around the obstacle and
from human control to autonomous control once the robot is back
on a traversable path. Figure 9 provides an annotated image of the
demonstration area. The robot is shown in the foreground, and the
approximate positions of the start (S) and goal (G) are shown in
orange ovals.The approximate initial path is shown as a black dashed
line. A red oval depicts the area of the popup obstacle. The obstacle
itself was a cardboard box with a set of AR tags that the robot
used to detect the obstacle. The box was placed to block the robot
when it was approximately at the secondwaypoint.The yellow arrow
depicts the approximate location and direction of the temporary
teleoperation by the supervisor to help the robot around the
obstacle.

Robot supervisory control, planning, and competency
assessment reports were presented to the supervisor through the
user interface, as shown in Figure 10.The left panel shows the robot’s
live-state telemetry data, which included position, orientation, the
next waypoint, and the current mission time in seconds. There was
input for choosing the goal location, generating awaypoint plan, and
selecting the autonomy level (robotic autonomy or teleoperation).
The center panel displayed a simple map of the mission area,
the waypoints are denoted by black circles connected by a black
line, the robot’s current position is denoted by a blue circle, and
the goal location is denoted by a green circle. The right panel
showed the robot’s real-time self-confidence for both the GOA
and MQA through the ET-GOA algorithm. The right panel also
had buttons to set the GOA outcome threshold and to manually
query the autonomy for a competency report based on GOA. The
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FIGURE 9
Annotated image of the ET-GOA demonstration area. The robot was
tasked with navigating from the start (S) to the goal (G). A popup
obstacle, shown in red, caused the ET-GOA algorithm to report low
confidence. A temporary autonomy adjustment to teleoperation
occurred approximately along the yellow dashed line that helped the
robot around the obstacle. The thought bubble shows the robot’s
world model at t = 0 prior to the robot learning of the obstacle and at
t = n after the popup obstacle was observed and added to the world
model.

supervisor was also given access to a PlayStation controller for ad
hoc teleoperation.

We executed 10 demonstration episodes. Each episode utilized
the same start/end point but a unique set of waypoints generated
by the RRT planner. We chose the ET-GOA threshold of δ = 0.05
because it showed a reasonable trade-off between GOA accuracy
and algorithm runtime in our initial studies. The GOA outcome of
interest was total task time, the robot’s self-confidence that it could
navigate to the goal in z* = 100 s. The total task time was equal to
the time spent driving plus the time spent assessing. We chose to
investigate this outcome to facilitate a higher-level analysis of ET-
GOA in a human-in-the-loop system. Figure 11 shows the aggregate
data from our demonstrations, where the numbers indicate the
approximate locations of events and autonomy adjustments during
the task. The robot begins the task in autonomous control mode
at t = 0. At 1), the popup obstacle is placed in front of the robot.
The robot’s camera detects the obstacle and updates the world
model by emplacing a simulated obstacle approximately in front
of the robot. Additionally, the robot executes a temporary stop,
while the obstacle is blocking it. At 2), the ET-GOA algorithm
triggers due to the increasingly unexpected state measurements: the
world model’s initial predictions had the robot on a continuous
trajectory, while the robot’s real state was stationary because it
was blocked by the obstacle. The robot then executed GOA, which
took into account the new obstacle added to the world model.
At 3), the robot reported “very bad confidence” in navigating to
the goal, at which point the supervisor changed the autonomy
level to teleoperation control and drove the robot around the
obstacle. At 4), the supervisor returned control to the robot,

which then executed GOA for an updated assessment. At 5),
the robot reported “very good confidence,” and the supervisor
approved it to continue the remainder of the task in autonomous
control mode. At 6), the robot arrived safely and successfully at
the goal. This live, albeit proof-of-concept demonstration showed
that the robot equipped with the Event-Triggered Generalized
Outcome Assessment algorithm could monitor and report its in situ
competency in a dynamic environment. The supervisor could, in
turn, make informed autonomy-adjustment decisions based on the
robot’s reported competency.

6 Discussion

Factorized Machine Self-Confidence is a framework and set
of metrics that can enable autonomous robots to self-assess and
communicate competency to human supervisors. Our results
indicate that the proposed MQA metric coupled with a higher-level
GeneralizedOutcomeAssessment (GOA)may be a valuablemethod
to improve ad hoc autonomy adjustments and general decision-
making within a human–robot team. We found that the Model
Quality Assessment can detect in situ misalignment between state
measurements and world model predictions in both simulations
and real robot operations. When there was alignment between
predictions and reality, MQA tended toward 1, indicating high
alignment. This was evident in the case where there were known
obstacles modeled by the worldmodel (i.e., the baseline conditions).
Conversely, when there was misalignment between predictions
and reality (i.e., in the other conditions), MQA tended toward 0,
indicating high misalignment. We take misalignment to indicate
that the robot’s predictions may not be valid, and as such, the robot
may not be as competent as previously believed.

MQA provides us an indication of when competency may have
changed but not how it has changed. To understand the how, we
developed an ET-GOA algorithm, which uses MQA as a trigger
for the robot to analyze higher-level task outcomes using GOA.
Because GOA samples from a possibly complex world model, it can
be computationally expensive, so we want to limit re-assessments
during task execution.McGinley (2022) proposed a potential avenue
to reduce computational complexity ofGOA through approximation
and selective sampling of the world model; however, whether these
techniques translate to live platforms and dynamic operational
environments is an open question.

The strong reliance on the world model paradigm presents
several challenges as well. First and foremost is the existence of a
world model. We provided several examples of world models in
Section 3.1; however, most were a significant simplification of the
“real world.” Future work toward competency assessments using
world models will have to contend with trade-offs. On the one hand,
simple environments with simple dynamics are easier to develop
and simulate, but that simplicity may lead to inaccurate assessments.
On the other hand, world models with realistic environments
and dynamics could facilitate accurate robot self-assessments but
may be difficult to develop and simulate. Given a world model,
a second challenge is how to efficiently update it. In this work,
we utilized a camera to help the robot detect and place obstacles
within its world model, but this assumes that the robot is capable
of detecting and understanding these obstacles in the first place.
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FIGURE 10
User interface for the ET-GOA demonstration. The left panel shows the robot real-time state and provides controls for planning as well as changing the
autonomy level from robot control (Auto) and human control (Telop). The center panel shows the mission area, waypoint/path as black circles, the
robot as the blue circle, and goal as the green circle. The right panel shows the robot’s self-assessment metrics mapped to a semantic label and
includes controls to manually trigger GOA. A PlayStation controller and video interface (not shown) were used during teleoperation.

FIGURE 11
Model Quality Assessment and GOA measured across 10 live demonstrations of the ET-GOA algorithm. The robot begins with high confidence due to
the world model indicating an easily navigable environment. (1) The popup obstacle appears in front of the robot; (2) the ET-GOA triggers and begins
GOA; (3) GOA completes, the robot reports “very bad confidence,” and the supervisor takes control to help the robot around the obstacle; (4) the
supervisor returns control to the robot, and the robot begins GOA; (5) the robot reports “very good confidence,” and the supervisor allows the robot to
continue autonomous operation; and (6) the robot successfully arrives at the goal.

Other common approaches, such as LIDAR and RADAR, might
have better detection ability but may not capture contextual and
semantic information about the obstacle (for example, a concrete
block and cardboard boxmay be the same size, but one can be driven
over more easily than the other). An interesting direction could be
for the supervisor to help the robot fill in any blanks caused bymodel
simplifications or sensor limitations.This could provide amore fine-
grained and collaborative way for the robot to understand the world
around it and how that world impacts its competency.

We found that there are trade-offs in the choice of ET-GOA
parameters a designer must make. In our experiments, a δ threshold
close to zero provided a good trade-off between the accuracy of the
triggered outcome assessments and the computational cost involved
in computing those assessments. However, the choice of triggering
threshold could be mission-dependent, based on how cautious the

designer requires the robot to be. For example, a rover on Mars
might have a higher ET-GOA threshold (more sensitive) to capture
unexpected events early and often, while a food delivery robot in
San Francisco might have a lower ET-GOA threshold (less sensitive)
to prevent unneeded delays due to overly cautious re-assessments.
Additionally, we did not vary the number of type of indicators
used for ET-GOA. We believe that these may be task-dependent
as well. Future work could investigate the impact of different ET-
GOA indicators, as well as how to choose appropriate triggering
thresholds. The choice of the indicator and threshold could even
be chosen dynamically, based on factors such as mission needs or
obstacle locations (Theurkauf et al., 2023).

Lastly, it is important to understand how knowledge about a
robot’s competency impacts decision-making. This work is focused
on improving a human supervisor’s autonomy-adjustment decisions
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within a human–robot team, i.e., calibrating the supervisor as to
when they should rely on, or trust, the robot to operate with some
degree of autonomy. Our human-in-the-loop demonstration shows
that the ET-GOA algorithm can report changes in competency,
which in turn may help the supervisor understand when the robot
should and should not operate autonomously and thus when the
robot would and would not need human assistance. Future work
is needed to perform full human-subject studies in more complex
deployments to validate the ET-GOA algorithm, the interaction it
facilitates, and the general usability of competency assessment in
realistic, live scenarios. Our work here utilized two autonomy levels:
human control and robot control. However, one could imagine
that monitoring changes in robot competency may help autonomy
adjustment at a fine-grained level. For example, the robot reporting
“fair” confidence could be a signal that the supervisor should
monitor the robot’s progressmore closely but not necessarily execute
a control takeover. Future work could investigate how competency
reporting may facilitate more fluid autonomy adjustments.

7 Conclusion

In this work, we investigated using self-assessed robot
competency information to facilitate ad hoc autonomy adjustments
for human–robot teams operating in dynamic environments. We
presented a new MQA metric for the Factorized Machine Self-
Confidence framework. We then developed an Event-Triggered
Generalized Outcome Assessment algorithm, which used real-time
computations of MQA to trigger a GOA of the robot’s confidence in
achieving high-level task objectives. The GOA can be used to assist
human supervisors in making in situ, ad hoc autonomy-adjustment
decisions. We presented simulated and live results showing that
MQA could capture unexpected perturbations to the robot state
and that the ET-GOA algorithm could provide accurate online
self-assessment capability for an autonomous robot. We concluded
with a proof-of-concept demonstration and discussion of using
ET-GOA in a human-in-the-loop system, which enabled a human
supervisor to make ad hoc autonomy adjustments based on the
robot’s reported competency. We believe that robot self-confidence
can provide future human–robot teams with valuable information
about the competency of the robot, which can in turn improve
human decision-making and enable more effective human–robot
teams.
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