AUTHOR=Siegel Joshua R. , Battraw Marcus A. , Winslow Eden J. , James Michelle A. , Joiner Wilsaan M. , Schofield Jonathon S. TITLE=Review and critique of current testing protocols for upper-limb prostheses: a call for standardization amidst rapid technological advancements JOURNAL=Frontiers in Robotics and AI VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2023.1292632 DOI=10.3389/frobt.2023.1292632 ISSN=2296-9144 ABSTRACT=
This article provides a comprehensive narrative review of physical task-based assessments used to evaluate the multi-grasp dexterity and functional impact of varying control systems in pediatric and adult upper-limb prostheses. Our search returned 1,442 research articles from online databases, of which 25 tests—selected for their scientific rigor, evaluation metrics, and psychometric properties—met our review criteria. We observed that despite significant advancements in the mechatronics of upper-limb prostheses, these 25 assessments are the only validated evaluation methods that have emerged since the first measure in 1948. This not only underscores the lack of a consistently updated, standardized assessment protocol for new innovations, but also reveals an unsettling trend: as technology outpaces standardized evaluation measures, developers will often support their novel devices through custom, study-specific tests. These boutique assessments can potentially introduce bias and jeopardize validity. Furthermore, our analysis revealed that current validated evaluation methods often overlook the influence of competing interests on test success. Clinical settings and research laboratories differ in their time constraints, access to specialized equipment, and testing objectives, all of which significantly influence assessment selection and consistent use. Therefore, we propose a dual testing approach to address the varied demands of these distinct environments. Additionally, we found that almost all existing task-based assessments lack an integrated mechanism for collecting patient feedback, which we assert is essential for a holistic evaluation of upper-limb prostheses. Our review underscores the pressing need for a standardized evaluation protocol capable of objectively assessing the rapidly advancing prosthetic technologies across all testing domains.