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Deep generative models (DGM) are increasingly employed in emergent
communication systems. However, their application inmultimodal data contexts
is limited. This study proposes a novel model that combines multimodal DGM
with the Metropolis-Hastings (MH) naming game, enabling two agents to
focus jointly on a shared subject and develop common vocabularies. The
model proves that it can handle multimodal data, even in cases of missing
modalities. Integrating the MH naming game with multimodal variational
autoencoders (VAE) allows agents to form perceptual categories and exchange
signs within multimodal contexts. Moreover, fine-tuning the weight ratio to
favor a modality that the model could learn and categorize more readily
improved communication. Our evaluation of three multimodal approaches -
mixture-of-experts (MoE), product-of-experts (PoE), and mixture-of-product-
of-experts (MoPoE)–suggests an impact on the creation of latent spaces, the
internal representations of agents. Our results from experiments with the MNIST
+ SVHN and Multimodal165 datasets indicate that combining the Gaussian
mixture model (GMM), PoE multimodal VAE, and MH naming game substantially
improved information sharing, knowledge formation, and data reconstruction.

KEYWORDS

symbol emergence, emergent communication, multimodal, deep generative model,
variational autoencoder, Metropolis-Hastings, naming game

1 Introduction

Emergent communication (EmCom) is vital in developing computational models that
allow artificial agents to use sign systems and form internal representations of their
environments (Cangelosi and Parisi, 2002; Steels, 2003). Rooted in the principles of human
language and communication, EmCom particularly focuses on how the process of semiosis
leads to the emergence of signs. Semiotics, as theorized by Peirce (Peirce, 1991), view the
sign not as a static entity but as something that emerges and evolves through the process
of semiosis. In symbol emergence systems, this concept is replicated in artificial agents,
enabling them to develop their own communication systems. These systems are based
on semiotic principles, where signs (including symbols) emerge and gain meaning in the
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context of agent interactions and their environment
(Taniguchi et al., 2016). The growth of this research area in artificial
intelligence is underscored by efforts to construct multi-agent
systems capable of understanding human language and cognition
(Lazaridou et al., 2017).

Several models, such as the referential signaling game (Lewis,
2008) and naming game (Steels and Loetzsch, 2012), have explored
EmCom, utilizing feedback mechanisms to refine coordination and
vocabulary. In contrast, a recent approach called the Metropolis-
Hastings (MH) naming game offers a different approach to EmCom
which does not rely on explicity feedback, but rather on a principle
of joint attention where both agents focus on the same observation
(Hagiwara et al., 2019). This principle is hypothesized to be critical
in the developmental stages of human infants around nine to
15 months and is theorized to facilitate significant advancements
in lexical acquisition and language development (Tomasello and
Farrar, 1986; Carpenter et al., 1998).TheMHnaming game employs
a unique probability-based approach to evaluate the acceptance
and rejection of information during agent interactions based on
the judgment ratio calculated using the MH algorithm (Hastings,
1970). By focusing on joint attention and incorporating acceptance
probabilities, the agents can improve their abilities to exchange
information and form shared signs or vocabularies (Taniguchi et al.,
2023).

Simultaneously, the evolution of deep learning and neural
networks has allowed researchers to expand the boundaries of
EmCom systems (Lazaridou and Baroni, 2020). This development
is notably relevant in the context of multimodal deep learning,
which combines different data modalities to improve the modeling
of diverse data (Suzuki and Matsuo, 2022). In EmCom systems,
incorporating multimodal information can enrich learning by
providing multiple viewpoints on a dataset for a more accurate
and robust communication strategy (Taniguchi et al., 2019). By
leveraging information from multiple sources, such as visual,
auditory, and textual data,multimodalDGMcan capture and exploit
the complementary nature of different data types (Baltrušaitis et al.,
2019).

Studies on EmCom have employed multimodal data, such as
the Inter-MDM model, which utilizes a multimodal Dirichlet
mixture model to combine modalities within a single agent
framework (Hagiwara et al., 2022). Although promising, its
absence of deep generative modeling limits its capacity to learn
extracted features and reconstruct objects corresponding to signs.
Meanwhile, the Inter-GMM + VAE model, based on joint attention
principles, incorporates DGM for shared vocabulary development
but falls short in handling multimodal objects (Taniguchi et al.,
2023). In this study, we propose using a multimodal
DGM for each agent in our EmCom systems to overcome
these shortcomings.

Furthermore, this study examined the significance of modality
weighting within agent-based EmCom. Although previous research
has highlighted the role of weighting in multimodal contexts
(Baltrušaitis et al., 2019; Sutter et al., 2021), a thorough examination
of agent communication is yet to be conducted. By assigning a
higher ‘weight’ or importance to a modality that an agent can
more readily learn and categorize, we mirror behaviors observed
in human communication, where emphasizing concepts that are
easier to understand improves human comprehension. Hence,

focusing on a more readily comprehensible modality can enhance
the creation of shared signs or vocabularies between agents in
multimodal settings.

In the context of symbol emergence systems that employ DGM
with multimodal data, three critical questions emerge that are yet
to be addressed in previous works (Hagiwara et al., 2019; 2022;
Taniguchi et al., 2023):

(1) Can we improve the categorization of multimodal data to
facilitate symbol emergence by incorporating a multimodal
DGM (as depicted in Figure 1)?

(2) Can the proposed model sustain the functionality of
categorizing each agent through semiotic communication,
even in scenarios with missing modalities?

(3) Given that different modalities may vary in their
interpretability to agents, how doesmanipulating the emphasis
or importance of these modalities affect agents’ ability to
develop a shared understanding and interpretation of signs?.

Building upon Inter-GMM + VAE and employing variational
autoencoders (VAE) (Kingma and Welling, 2013), our study aims
to demonstrate that integrating an MH naming game with a
multimodal VAE can advance the field of EmCom. In this study,
we employed three widely used multimodal approaches within
the structure of the multimodal VAE: product-of-experts (PoE)
(Wu and Goodman, 2018), mixture-of-experts (MoE) (Shi et al.,
2019), and mixture-of-product-of-experts (MoPoE) (Sutter et al.,
2021). These approaches are crucial in determining how the VAE
processes and integrates information from different modalities. The
primary objective is to combine diverse multimodal information
into a single comprehensive representation within a VAE (Suzuki
and Matsuo, 2022). The main contributions of this study
are as follows:

• We introduce EmCom models that employ multimodal VAE
as agents, using MoE, PoE, and MoPoE in conjunction
with the MH naming game. These address the challenge of
extending the Inter-GMM + VAE to handle observations as
multimodal data.
• We refine these models by incorporating the weight of each

modality in multimodal VAE and adjusting the value of β to
disentangle the latent space. We evaluate the impact of weight
and β on the results. This contribution addresses the challenge
of optimizing multimodal VAE by focusing on a modality the
model can more easily learn and categorize.

Because of the model architecture, differing objectives, and
multimodal nature of our models, a direct comparison with other
methods is not feasible. Instead, we assessed the performances
of these models in EmCom on various datasets and conditions.
The experiments were conducted on two datasets: the benchmark
dataset, MNIST + SVHN, which provides a controlled environment
for evaluating our model’s performance, and the real-life dataset,
Multimodal165, which examines the model’s ability to generalize
and adapt to more diverse data. The experiments on the real-
life dataset uncovered a limitation in the ability of the current
model to represent real-life objects accurately. To address this
issue, we employed hyperparameter tuning techniques to optimize
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FIGURE 1
The EmCom between two multimodal agents: agents A and B observe a shared object, gathering multimodal data (text, video, image, sound, etc.).
After inferring from this data, they generate and exchange signs. Using the received sign, each agent predicts the related multimodal data.

the model parameters for more accurate representations of real-
life objects. The remainder of this paper is structured as follows:
an overview of related works (section 2), an introduction to the
necessary preliminaries (section 3), a detailed description of our
proposed model (section 4), experimental results on benchmark
(section 5) and real-life datasets (section 6), and concludes
with a discussion of our findings and suggestions for future
research (section 7).

2 Related works

Emergent Communication (EmCom) studies focus on the
evolution of communication systems among interactive agents,
drawing from linguistics (Hurford, 2014) and human science
(Linell, 2009). Research covers language emergence in human-
human scenario (Okumura et al., 2023), and multi-agent systems,
with studies examining population heterogeneity (Rita et al.,
2022a), messaging efficiency (Lian et al., 2021), grammatical
structures (Manning et al., 2020), language and agent co-evolution
(Dagan et al., 2021), and the development of hierarchical reference
systems (Ohmer et al., 2022).

Agents aim to perceive, create, and manipulate symbols
to build a shared vocabulary through interaction and mutual
adaptation (Wagner et al., 2003), leading to an emergent
symbolic language grounded in their collective experiences
(Steels, 2001). Key frameworks in this area include the
referential signaling game (Lewis, 2008) and the naming game
(Steels and Loetzsch, 2012), which aid in the development of
coordination strategies and shared vocabularies through iterative
feedback. The research in naming game, such as the creation
of shared vocabulary (Baronchelli et al., 2006), the convergence

of naming game (Vylder and Tuyls, 2008), also contribute
to the topic.

Recent progress in deep learning has accelerated advances in
EmCom systems, as evident in computer vision (Krizhevsky et al.,
2012), natural language processing (Vaswani et al., 2017), and
tasks that combine vision and language (Anderson et al., 2018;
Zhou et al., 2020). These systems utilize deep generative models
to address challenges such as developing efficient color-naming
systems (Chaabouni et al., 2021), learning language structures
(Gupta et al., 2021). Deep learning models have also advanced
the study of compositionality and generalization in EmCom,
fostering multi-agent cooperation with the emergence of language
(Lazaridou et al., 2020), and allowing systems to formmore complex
messages (Chaabouni et al., 2020; Rita et al., 2022b; Xu et al., 2022).
These contributions are thoroughly reviewed in (Galke et al., 2022;
Brandizzi, 2023), which offer an extensive overview of the strides
made in this domain.

Multimodal deep generative models have garnered considerable
interest (Baltrušaitis et al., 2019).This led to a deeper understanding
of underlying patterns and structures, resulting in communication
systems with greater capabilities (Liang et al., 2023). These models
have shown promise in learning joint representations across audio,
video, and text (Ngiam et al., 2011), in applying graph structures
to focus on relevant multimodal data (Veličković et al., 2018),
and in generating image captions through a unified embedding
space (Kiros et al., 2014). Additionally, multimodal learning
with VAE has been explored using strategies such as JMVAE
(Suzuki et al., 2016), TELBO (Vedantam et al., 2017), M2VAE
(Korthals et al., 2019), and DMVAE (Lee and Pavlovic, 2020),
PoE-MVAE (Wu and Goodman, 2018), MoE-MVAE (Shi et al.,
2019), and MoPoE-MVAE (Sutter et al., 2021) to combine latent
spaces. In the specific context of EmCom, multimodal data has
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been instrumental. Studies include exploring human-human
interaction in multimodal discourse for emergent meaning-
making (Krysanova, 2022) and multi-modal multi-step referential
games to study agent communication (Evtimova et al., 2018).
However, this approach typically processes different modalities
independently for each agent rather than integrating them within
a single agent.

3 Preliminaries

This section explores the core concepts that underpin our
research: Metropolis-Hastings (MH) naming game, Variational
Autoencoder (VAE) and multimodal VAE (MVAE).

3.1 Metropolis-Hastings naming game

Introduced in (Taniguchi et al., 2023), the MH naming game is
a language game played by two agents. Typically, one agent observes
an object and names it based on its perception drawn from its
observations. This agent, playing as the speaker, communicates a
word (i.e., a sign) by choosing from a posterior word distribution
related to the object. The second agent, or the listener, decides
whether to accept the sign based on its ownunderstanding.The roles
then switch between them. Notably, there is no direct feedback from
the listener to the initial speaker. Direct feedback would involve the
listener providing explicit responses or corrections to the speaker,
thereby guiding the speaker’s future naming decisions. In contrast,
theMHnaming game features the joint attention, where both agents
are aware of and focused on the same object. This shared focus
ensures that the listener understands the context of the word or
sign being used by the speaker, even though it does not offer direct
corrective feedback.

EmCom systems are characterized by the inability of agents
to see each other’s internal states, similar to how humans cannot
view another’s thoughts (Steels, 2015). With its probability-
based approach, the MH naming game enables agents to
make inferences about the internal states of their counterparts
based on the observed outcomes of their interactions. The
MH naming game can be derived as an approximate Bayesian
inference procedure for a specific probabilistic graphical
model that represents two agents as an integrated system
(Taniguchi et al., 2023).

Figure 2 illustrates the MH naming game between two
probabilistic generative models involving a sequence of interactions
between two agents, Agent A and Agent B. The graphical
model in Figure 2 can be broken down into components
corresponding to the two agents, following the Neuro-SERKET
framework (Taniguchi et al., 2020). For clarity, consider the
following variables:

• *: denotes a generic agent in the model, where * ∈ {A,B}.
• wd: represents a sign, such as a name, associated with the dth

object.
• z*d: refers to the perceptual state corresponding or the internal

representation of the dth object associated with agent *.
• o*

d: signifies the observation of the dth object from the agent *.

• ϕ*: contains parameters governing the relationship between
signs and their perceptual states.
• θ*: holds parameters describing the connections between

perceptual states and observations.
• α: acts as a hyperparameter for ϕ*.
• β*: serves as a hyperparameter for θ*.

The inference via MH naming game involves two agents A and
B. They take on roles as either a speaker (Sp) or a listener (Li). The
combinations of roles are (Sp,Li) ∈ {(A,B), (B,A)}. Below, we report
a breakdown of the process:

1. Perception: Initially, the speaker (Sp) and listener (Li) get the
observations oSpd and oLid by both observing the dth object, then
infer the perceptual states zSpd and zLid , respectively.

2. MH communication: the speaker (Sp) selects the
sign wSp

d by sampling from the posterior distribution
P(wd ∣ z

Sp
d ,ϕ

Sp) and sends this sign to listener. The listener
(Li) evaluates the received sign by applying the probability r =
min(1, P(z

Li
d ∣ϕ

Li,w*
d)

P(zLid ∣ϕ
Li,wLi

d )
), which serves as the acceptance criterion.

3. Learning:After theMH communication is completed for each
object, the listener updates its parameters ϕLi, θLi by sampling.

4. Turn-taking: The roles of speaker and listener are swapped,
and the process returns to step 1.

The study by Taniguchi et al. (2023) provided a comprehensive
explanation and validation of the approach, demonstrating its
guaranteed convergence as an approximate decentralized Bayesian
inference of shared representations P(wd ∣ oAd ,o

B
d).

However, the scenarios where the vocabulary size–number of
words or signs–exceeds the actual number of data categories were
not mentioned in the original work (Taniguchi et al., 2023). To
address this gap, we have conducted an additional experiment,
detailed in Supplementary Appendix S1 of our paper. Our findings
underscore the versatility of the inter-GMM + VAE model, even
in contexts where the vocabulary size surpasses the count of actual
categories. In such settings, a single category might be represented
by multiple signs or words, hinting at the presence of synonyms.
This overparametrization allows agents a larger vocabulary than
the number of input object categories. This communication
mirrors human language in its capacity to categorize input data
(Chaabouni et al., 2020; Dessì et al., 2021).

3.2 Variational autoencoder (VAE) and
multimodal VAE (MVAE)

Variational Autoencoder (VAE) is a probabilistic generative
model designed to learn a latent space representation of objects
(Kingma and Welling, 2013). For a given dataset x, the VAE models
the joint distribution pθ(x,z) with:

pθ (x,z) = p (z)pθ (x|z) (1)

where p(z) is typically a standard Gaussian distributionN (0, I). The
model pθ(x|z) captures the probability of observing x given z, and
it is implemented using a neural network with parameters θ. Due
to the intractability of this distribution, VAE uses an approximate
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FIGURE 2
The MH naming game between two probabilistic generative models: When Agent A is a speaker, (1) it samples perceptual state zAd from the observation
oA
d of the dth object, then (2) samples a sign wA

d from P(wd|zAd,ϕ
A) and sends this sign to agent (B). Agent B, as a listener, (3) evaluates whether to accept

this sign based on the acceptance rate r, then (4) updates its own parameters through a sampling process. Next, two agents swap their roles: Agent B
speaks, and Agent A listens (Taniguchi et al., 2023)

posterior qϕ(z|x). The training process involves optimizing the
Evidence Lower BOund (ELBO):

ELBO (x) = 𝔼qϕ(z|x) [logpθ (x|z)] − βKL[qϕ (z|x)‖p (z)] (2)

With KL(p‖q) denotes the Kullback-Leibler divergence between p
and q. The hyperparameter β is used for controlling the balance
between the reconstruction and regularization terms in the ELBO.
When β is appropriately adjusted, VAEs can achieve disentangled
representations (Higgins et al., 2017).

Multimodal VAE: Multimodal learning is the process of
combining information from different sensory inputs to understand
our surroundings. This approach is useful for artificial intelligence
and robotics, as it equips models and robots with the capability
to interpret their surroundings using a variety of data types (Stein
and Alex Meredith, 1993; Noda et al., 2014). One of the main
challenges in multimodal learning is finding a way to create a
shared representation of different data typeswithout needing explicit
labels (Ngiam et al., 2011). To address this, researchers have looked
into deep generative models, such as VAE Figure 3 shows the
graphical model of VAE and the expansion to MVAE. These models
utilize neural networks to find hidden data representations and
combine these representations frommultimodal data into a cohesive
latent space (Suzuki and Matsuo, 2022). This area of research,
focusing on deep generative models that can handle multiple
types of data, has become increasingly popular in recent years
(Baltrušaitis et al., 2019).

This study focuses on three common approaches for merging
latent spaces: PoE-MVAE (Wu and Goodman, 2018), MoE-MVAE
(Shi et al., 2019), and MoPoE-MVAE (Sutter et al., 2021). In this
section, we aim to enhance the accessibility of our discussion by
providing the formulations of the MVAE equations.

Consider a dataset X comprising D independent and identically
distributed data points, denoted by X = {Xd}Dd=1. Each data point
Xd is characterized by a set of M modalities, represented by Xd =

{xdm}Mm=1. Each of modality is processed by a distinct VAE to
generate the corresponding latent space. To form a unified latent
representation q(z ∣ Xd) for each data point Xd encompassing all
M modalities, we apply a function f to merge these separate
latent spaces. By performing different operations on function f,
various versions of the MVAE can be formulated (Suzuki and
Matsuo, 2022):

q(z ∣ Xd) = f ({qϕm (z ∣ xdm)}
M

m=1
) (3)

In PoE-MVAE (Wu and Goodman, 2018), each expert
is trained to handle a specific aspect of the data. The
final representation is obtained by multiplying the outputs
from the different experts. While this focused expertise and
robust integration are advantageous, it also means that the
model can be disproportionately affected by poor information
from one modality. The unified latent spaces is determined
as follows:

qPoE (z ∣ Xd) ∝ ∏
xdm∈Xd

qϕm (z ∣ xdm) (4)

In contrast, MoE-MVAE Shi et al. (2019) applies the mixture
operation to learn the relationships between different data
modalities. This allows for a more flexible integration of modalities
and better data generation. However, this can lead to less
precise representations for each modality due to diluted expert
contributions. The unified latent spaces of data points are calculated
as follows:

MoE-MVAE, on the other hand, applies a mixture operation,

qMoE (z ∣ Xd) ∝ ∑
xdm∈Xd

qϕm (z ∣ xdm) (5)

MoPoE-MVAE (Sutter et al., 2021) combines the strengths of
both approaches, PoE andMoE, and offers balanced representations.
However, it also introduces increased complexity and potentially
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FIGURE 3
The graphical model of VAE and MVAE. On the left is the VAE with dataset D, latent variable zd for each data point, observed data point xd, and the
model parameters θd. On the right is the MVAE with multiple data modalities. Here, xdm indicates the observed data points across different modalities
m, and θdm represent the parameters for each modality.

higher computational cost. In this approach, after training different
experts, the final representation is obtained by multiplying the
outputs from the different experts and then applying a mixture
operation. Let P(Xd) be the powerset of Xd. The MoPoE-MVAE
equation is expressed as:

qMoPoE (z ∣ Xd) ∝ ∑
S∈P(Xd)

qPoE (z ∣ S) (6)

These differentmethods, each with their own unique advantages
and limitations, will be integrated into our model in this paper. We
will then compare their performance under various conditions to
evaluate their applicability.

4 Proposed models

4.1 Inter-GMM + MVAE

This section introduces the Inter-GMM + MVAE, a model
designed to facilitate EmCom between agents and to handle
multimodal data types. This model combines Gaussian mixture
models (GMM), MVAE, and MH naming game in an integrative
framework. The Inter-GMM + MVAE model characteristics are as
follows:

• GMM forms the basis for each agent’s internal representation,
clustering data points into categories. The GMM supports the
agent in understanding the data categorization.
• MVAE functions as the probabilistic generative model allowing

each agent to learnmultiplemodalities of data points or objects,
such as images, sounds, and haptic sensations.
• The prefix “Inter,” derived from the Latin word for “between,”

highlights the interactions and relationships between agents.
This reflects concepts like “interpersonal” communication in
the MH naming game.

4.1.1 Model components
Assume that we have an observed dataset X of D independent

and identically distributed data, represented as X = {Xd}Dd=1. Each
data point, Xd, consists of a set of M modalities belonging to one
of K categories, denoted as Xd = {xdm}Mm=1.

Figure 4 illustrates the graphical model of the Inter-GMM +
MVAE model, consisting of two agents, A and B, with shared
vocabulary wn. The components of this model are as follows:

• *: denotes a generic agent in the model, where * ∈ {A,B}.
• D,K: represent the number of data pointsD and categories K of

the dataset.
• μ(*)k , Λ(*)k : refer to the mean and precision matrix of the kth

multivariate normal distribution within the GMM component
for agent*.
• wd: indicates the category or sign associated with the data point
Xd.
• (α, l), (γ,v),π: are hyper-parameters for μ(*)k , Λ(*)k and wd,

respectively.
• z(*)d : signifies latent variable of MVAE for the agent (*)

corresponding to data point Xd.
• x(*)dm, θ(*)dm: convey the observed information and its parameters

with modality m of the MVAE for the agent (*) related to data
point Xd.

4.1.2 Connections among modules
To facilitate understanding of the model, Figure 5 demonstrates

the decomposition of the graphical model into separate
modules. The implementation combines several modules that
work collaboratively to create a cohesive system capable of
managing multimodal data and communication through the
MH naming game. The relationships between these modules
are based on the SERKET (Nakamura et al., 2018) and Neuro-
SERKET (Taniguchi et al., 2020) frameworks, which aims
to integrate multiple stochastic models or modules into a
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FIGURE 4
Graphical model of the Inter-GMM + MVAE model involving two agents, A and B. For each data point d, the sign wd is drawn from the prior π, which
influences the latent representations z(A)d and z(B)d corresponding to agents A and B. These latent states are organized by each agent’s GMM comprising

K components with hyperparameters α, l,γ,v, characterized by means μ(A)k and μ(B)k , and precision matrices Λ(A)k and Λ(B)k , for each component

k ∈ {1,…,K}. The latent representations then guide the generation of multi-modal observations x(A)dm and x(B)dm across m modalities, modeled by the

parameters θ(A)dm and θ(B)dm.

unified cognitive model. These frameworks are based on the
concept that the brain processes information by combining
of bottom-up and top-down approaches, which can be
represented using probabilistic generative models. The Inter-
GMM + MVAE model consists of two primary connections, as
described below:

• GMM + MVAE: Connecting and combining the GMM
of internal representations with the MVAE of the deep
learning process for objects ensures that the GMM
will structure the latent spaces representing objects
received from MVAE. The notation “+” signifies the
composition of two graphical models and their mutual (or
simultaneous) inference, following the convention of the
Neuro-SERKET framework.
• Inter-GMM: This connection represents a tail-to-tail

composition of two GMMs. It is created through inference
via the MH naming game between two agents, allowing them
to share and update their internal representations, fostering a
shared understanding of the objects.

By integrating these modules and connections, the Inter-
GMM + MVAE model provides a suitable approach for
handling multimodal data and promoting communication
between agents.

4.1.3 Inference via Metropolis-Hastings naming
game

EmCom in the Inter-GMM + MVAE model, based on the
MH naming game, involves two agents A and B. These agents
alternate between the roles of speaker (Sp) and listener (Li)
during their interactions, pairings of (Sp,Li) ∈ {(A,B), (B,A)}. The
communication between the agents and the observed object is
probabilistic. The speaker (Sp) perceives the object and assigns a
name to it, which is selected probabilistically based on its internal
state inferred from the observation. This name, represented by the
word w, is determined by sampling from the posterior distribution
of words and is then communicated to the listener (Li). The listener
(Li) then decides whether to accept the word according to its belief
state and calculates the judgment ratio using the MH algorithm.
Subsequently, the agents switch roles or alternate turns. This process
comprises the following steps:

1. Perception: The speaker (Sp) perceives the multimodal data
Xd = {xdm}Mm=1. This perception is represented as zd and is
organized within a GMM with μSp and ΛSp.

2. Naming: The speaker (Sp) samples its word wd from
P(wd ∣ z

Sp
d ,μ

Sp,ΛSp) and sends the word wd of that object to the
listener (Li).

3. MH communication: The listener (Li) receives the proposed
word wd and decides whether to accept it using the MH
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FIGURE 5
The decomposition of the Inter-GMM + MVAE model between Agents A and B. The reds represent the GMM components. The blue is the Inter-GMM
that facilitates interaction between the agents via the MH naming game. The yellow are the MVAE of each agent.

algorithm. The acceptance probability is computed as r =

min(1, P(z
Li
d ∣μ

Li,ΛLi,wSp
d )

P(zLid ∣μ
Li,ΛLi,wLi

d )
)

4. Learning: Based on the decision, the listener (Li) updates its
parameters μLi and ΛLi.

5. Turn taking:The roles of the speaker (Sp) and listener (Li) are
swapped, and the process iterates from steps (1) through (4).

4.1.4 Probabilistic generative process
Weprovide a clear understanding of the underlyingmechanisms

driving the model’s behavior and gain insights into how the
model integrates information and learns to generate communication
strategies. We denote * ∈ {A,B} as the agent. The probabilistic
generative process of this model is described as follows:

wd ∼ Cat (π)d = 1,…,D (7)

μ(*)k ,Λ
(*)
k ∼N (μ

(*)
k ∣ l, (αΛ

(*)
k )
−1
)W (Λ(*)k ∣ v,γ)k = 1,…,K (8)

z(*)d ∼N (z
(*)
d ∣ μ
(*)
wd
, (Λ(*)wd
)
−1
))d = 1,…,D (9)

x(*)dm ∼ pθ(*)dm (x
(*)
dm ∣ z
(*)
d )d = 1,…,Dandm = 1,…,M (10)

First, for d = 1,…,D, the word wd, which represents the shared
vocabulary of agents A and B, is drawn from a categorical
distribution with parameter π. Then, for k = 1,…,K, the mean
vector μ(*)k and precision matrix Λ(*)k , which correspond to the
parameters of the kth multivariate normal distribution for a given
agent (*), are drawn from a joint Gaussian-Wishart distribution
with hyperparameters α, l, γ and v. Next, the latent variable z(*)d
representing the latent space of the MVAE for agent (*), is drawn
from a multivariate normal distribution with mean vector μ(*)wd

and covariance matrix (Λ(*)wd
)
−1

. This latent variable captures the
underlying structure of the data in a lower-dimensional space, with
categorical assignments provided by GMM. Finally, form = 1,…,M,
the observed information x(*)dm is generated using the corresponding
parameters θ(*)dm.

Following this generative process, the Inter-GMM + MVAE
model can capture the underlying structure of the multimodal data.
The model considers the categorical assignments using GMM and
comprehends the relationships between different modalities.

4.1.5 Running procedure
This iterative process facilitates communication and

understanding between the two agents, allowing them to develop
a shared understanding of the environment and categories of

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1290604
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Hoang et al. 10.3389/frobt.2023.1290604

   Initialize Agent A and Agent B

   while (mutual iteration) do

    Train MVAE of Agent A and Agent B

    while (MH-learning iteration) do

    MH algorithm(from A to B)

    Update parameters of Agent B

    MH algorithm(from B to A)

    Update parameters of Agent A

    end while

 end while

Algorithm 1. Inference via MH naming game

multimodal objects. The pseudo-code for this system is given in
Algorithm 1 and can be described as follows:

• Initially, agents A and B are set up with their respective data
loaders and model parameters.
• The mutual iteration loop encompasses the entire

communication process between the agents, including training
the multimodal VAE of both agents.
• Inside the mutual iteration loop, a nested loop (MH-learning

iteration) focuses on the communication process of the two
agents via the MH algorithm.
• At first, agent A acts as the speaker, sharing its understanding

of the data points using the MH algorithm. Agent B, acting
as the listener, then receives this information and updates its
parameters accordingly, refining its internal model of the data.
• Subsequently, the roles are reversed: Agent B becomes the

speaker and agent A the listener. Using the MH algorithm,
agent B communicates its understanding to agent A, which then
updates its parameters.
• This MH-learning iteration loop continues until a certain

condition, such as convergence or the maximum number of
iterations, is satisfied.
• The entire mutual iteration loop also proceeds until a stopping

criterion is reached. Throughout this process, the agents learn
from each other using the MH naming game, update their
parameters, and refine their internal models of the shared data
points.

4.2 Inter-GMM + Weighted-β-MVAE

The Inter-GMM + Weighted-β-MVAE model is an extension of
the Inter-GMM + MVAE model. It is designed to balance two key
elements: the contributions of different modalities in multimodal
data and the balance between data reconstruction and latent space
regularization (controlled by parameter β). Certain modalities may
be more structured or simpler to interpret in any dataset. Therefore,
focusing on these modalities can improve the communication
process between agents in EmCom. This approach mirrors human
interactions and conversations, where explanations focus on more
readily understood concepts, facilitating “easier” comprehension by
listeners.

In addition, the β parameter influences the degree of
disentanglement in the latent space. This parameter mediates
between two competing objectives: minimizing the reconstruction
loss and encouraging the disentanglement of latent spaces by
scaling the Kullback-Leibler (KL) divergence term. Disentangled
representations enable each dimension in the latent space to
correspond to distinct interpretable variation factors in a dataset
(Higgins et al., 2017). In EmCom, such clear internal representations
assist agents in aligning their vocabularies and promoting a shared
understanding for successful communication.

Let X denote the observed dataset with D independent and
identically distributed data points, represented as X = {Xd}Dd=1. Each
dataXd comprises of a set ofMmodalities, denoted asXd = {xdm}Mm=1.

The loss function for each data point in the Inter-GMM +
Weighted-β-MVAE model is as follows:

LE (Xd) = −βKL(qE (z ∣ Xd)‖p (z))

+ ∑
xdm∈Xd

λm𝔼qE(z∣Xd) [logpθdm (xdm ∣ z)] (11)

where

• E: denotes the expert operations (MoE, PoE, MoPoE)
(described in Section 3.2) used to aggregate the individual
latent spaces derived from each modality into a joint
latent space.
• z: represents latent space of the data from all modalities.
• p(z): signifies prior distribution of the latent variable z, assumed

to be a standard multivariate Gaussian distribution.
• qE(z ∣ Xd): indicates the approximated posterior distribution of
z given the observed data Xd.
• θdm: embodies model parameters associated with the mth

modality of data Xd.
• pθdm(xdm ∣ z): is the likelihood of the observed data xdm (the
mth modality of data Xd), given the latent variable z and
parameterized by θdm.
• β: corresponds to the parameter controlling the weight of

the KL divergence term, thus determining the degree of
disentanglement in the latent space.
• λm: conveys the weight assigned to each modalitym in the data
Xd, indicating its importance in the overall data reconstruction.

The loss function in Eq. 11 comprises two main terms:

• The first is the Kullback-Leibler (KL) divergence between
the approximated posterior distribution qE(z ∣ Xd) and prior
distribution p(z), which is typically assumed to be a standard
multivariate Gaussian distribution. This term, scaled by a
factor β, encourages the model to learn a disentangled latent
space by minimizing the difference between the approximated
posterior and the prior. The β parameter controls the trade-off
between disentangling and reconstruction, with higher values
emphasizing a more disentangled latent space.
• The second corresponds to the reconstruction loss. It is the sum

of the expected log-likelihood of each observedmodality xdm in
dataXd given the latent variable z.This expectation concerns the
approximated posterior distribution qE(z ∣ Xd). Specifically, the
computation of z depends on the expert operation E (MoE, PoE,
or MoPoE), aggregating the individual latent representations
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derived from each modality into a joint latent space. This
term measures how well the model reconstructs the observed
data from the latent variable z. Furthermore, each modality
is weighted by a factor λm, representing the importance of
that specific modality in the overall reconstruction. The model
can prioritize reconstructing specific modalities over others by
multiplying the expected log-likelihood for each modality with
this weight.

Thus, the first term encourages themodel to learn a disentangled
latent space close to the prior, and the second term encourages
the model to learn a latent space with the likely observed
data given the latent variables. The balance between these
two competing objectives is controlled by β and the modality
weights λm.

4.3 Hyper-parameter tuning

During the experimental process, we observed that certain
datasets presented unique challenges during the model training.
For instance, expert operations can cause the latent space to
become overly concentrated or flattened at unexpected locations.
This irregular distribution of the latent space could prevent GMM
from functioning optimally, primarily because of a mismatch
between the predefined hyperparameters and the actual latent space
configurations, leading to inaccurate results.

To address these challenges, we propose dynamic adjustment
of the hyperparameters during training. This strategy aims to shift
the coordinates of the latent space to optimal positions. Specifically,
we calculate the means of all the data points in the latent space
and determine the new coordinates for the updated latent space
based on these means. This adjustment allows the stochastic process
of GMM to adapt to new hyperparameters, facilitating a more
balanced distribution in the latent space. The primary objective of
this strategy is to improve the accuracy of the stochastic points
generated during training, thereby enhancing the overall model
performance.

The pseudo-code for the Inter-GMM + Weighted-β-MVAE
models, including the hyperparameter tuning strategy, is detailed
in Algorithm 2. This procedure is similar to that outlined in
Algorithm 1 and described in Section 4.1.5. The key distinction
is that the hyperparameters l and v, which are part of the set
of hyperparameters (α, l), (γ,v), respectively, associated with each
agent (described in Section 4.1.1 and illustrated in Figure 4),
are dynamically adjusted following the MVAE training during
each round of mutual iteration. This process ensures continuous
alignment of the hyperparameters with evolving configurations of
the latent space throughout training.

5 Experiment 1: MNIST + SVHN

This experiment aims to evaluate the proposed model under the
conditions posited by our experimental hypotheses (see Section 5.1).
We used the benchmark MNIST (LeCun et al., 2010) and SVHN
(Netzer et al., 2011) datasets because they provide a controlled

   Initialize Agent A and Agent B

   while (mutual iteration) do

    for (each agent) do

    Train MVAE

    Compute the mean and variance of all

data points in latent space

    Update the agent’s hyperparameters l

and v

    end for

    while (MH-learning iteration) do

    MH algorithm(from A to B)

    Update parameters of Agent B

    MH algorithm(from B to A)

    Update parameters of Agent A

    end while

 end while

Algorithm 2. Inter-GMM+MVAEwith hyperparameter tuning

environment that simulates multimodal sensory data, making them
ideal for this evaluation.

5.1 Hypotheses

Addressing the three questions outlined in the Introduction 1,
this section puts forth three hypotheses concerning the proposed
Inter-GMM-MVAE model, as follows:

(1) By integrating the MH naming game with MVAE, agents can
establish perceptual categories and communicate signs using
multimodal sensory data.

(2) Even when some modalities are missing, semiotic
communication between agents allows for continued
categorization accuracy within the agent.

(3) Increasing the weight ratio to emphasize a more readily
modality improves agent communication.

5.2 Datasets

We constructed a multimodal dataset by pairing the MNIST
(LeCun et al., 2010) and SVHN (Netzer et al., 2011) datasets,
comprising images of handwritten digits and street-view house
numbers, respectively. Each data point in our combined dataset
consists of an MNIST image and a corresponding SVHN image
representing a single digit. Though both datasets represent
numerical digits, they are inherently different in style and visual
context. We term this combined dataset “multimodal”, following
the convention in multimodal VAE research where different
representations of similar data are integrated, not in the sense of
different data types (e.g., audio and visual), but rather in the sense
of integrating different visual representations.

We assigned the dataset to two agents, A and B. Agent A
received the original MNIST and SVHN images, whereas agent
B received versions of the same images rotated by 45° (Figure 6).
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TABLE 1 The results of condition 1 with All Accepted and No Communication scenarios. In each column, the best results are denoted by underlined and
bold numbers, while the second-best results are indicated by bold numbers only.

Scenarios Kappa ARI DBS FID-MNIST FID-SVHN

A B A B A B A B

Inter-GMM + MoE-MVAE

MH naming
game

0.903 0.051 0.052 13.10 13.82 24.6 15.4 124.1 79.9

All accepted 0.576 0.034 0.031 20.64 21.58 26.6 17.4 76.5 60.3

No
communication

0.010 0.003 0.003 33.48 32.32 33.7 19.4 90.2 67.1

Inter-GMM + PoE-MVAE

MH naming
game

0.953 0.315 0.314 4.41 3.62 48.8 37.0 86.7 53.6

All accepted 0.833 0.024 0.025 3.00 2.44 41.1 39.7 85.7 55.7

No
communication

0.018 0.003 0.003 29.30 29.53 51.4 40.5 115.1 106.1

Inter-GMM + MoPoE-MVAE

MH naming
game

0.901 0.179 0.180 12.46 11.43 23.7 16.2 114.1 30.3

All accepted 0.700 0.121 0.108 14.65 13.30 26.2 18.8 87.9 56.1

No
communication

0.011 0.003 0.003 31.97 33.50 24.4 17.0 85.3 48.9

This design choice allowed us to evaluate the capability of the
model to vary the input data and assess the agents’ ability to
establish a shared understanding despite these differences. Such
an arrangement simulates the inherent differences in perspective
that characterize human communication, where no two individuals
experience the same scene in an identicalmanner.Our approach is in
line with data augmentation previously investigated in (Dessì et al.,
2021; Kharitonov et al., 2021).

5.3 Conditions

To ensure a fair comparison, the following evaluation metrics
were consistently applied across all experimental scenarios:
Cohen’s Kappa coefficient (Kappa) (Cohen, 1960), Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985), Davies-Bouldin
Score (DBS) (Davies and Bouldin, 1979) and Fréchet Inception
Distance (FID) (Heusel et al., 2017). More details about these
metrics can be found in Supplementary Appendix S2. Furthermore,
we use t-distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten and Hinton, 2008), a dimensionality reduction
technique, to visualize each agent’s internal representations (latent
spaces). These visualizations assist in understanding the structure
and distribution of the latent spaces and interpreting the results
from our evaluation metrics.

A direct comparison between our models and other methods
is impractical because of the unique integration of the MH naming
game andMVAE in our approach, which fundamentally differs from
existing models. Instead, we evaluate our models under various
conditions designed to test our experimental hypotheses:

5.3.1 Condition 1
To validate hypothesis (1), we assess the performance of Inter-

GMM + MVAE under two contrasting baseline conditions: “All
accepted” and “No communication.”

• All accepted: Agents approve all messages without evaluation.
This allows us to measure the impact of unrestricted
information acceptance on multimodal learning.
• No communication: Agents do not communicate.This scenario

allows us to understand the role of communication in
multimodal learning within our MVAE models.

5.3.2 Condition 2
To evaluate hypothesis (2), we investigate the performance of

Inter-GMM + MVAE when certain modalities are missing. This
evaluates how communication between agents can compensate for
missing sensory data. The specific scenarios considered are as
follows:

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1290604
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Hoang et al. 10.3389/frobt.2023.1290604

TABLE 2 The results of condition 2 inmodality missing scenarios. In each
column, the best results are denoted by underlined and bold numbers,
while the second-best results are indicated by bold numbers only.

Scenarios Kappa ARI DBS

A B A B

Inter-GMM + MoE-MVAE

No missing modality 0.903 0.051 0.052 13.10 13.82

Agent B with only MNIST 0.825 0.494 0.657 20.73 2.91

Agent B with only SVHN 0.487 0.002 0.001 16.41 6.81

Inter-GMM + PoE-MVAE

No missing modality 0.954 0.315 0.314 4.40 3.62

Agent B with only MNIST 0.928 0.564 0.575 5.16 2.75

Agent B with only SVHN 0.606 0.137 0.127 3.18 9.83

Inter-GMM + MoPoE-MVAE

No missing modality 0.901 0.179 0.180 12.46 11.43

Agent B with only MNIST 0.883 0.541 0.618 17.30 2.76

Agent B with only SVHN 0.389 0.023 0.002 10.67 7.39

• Full Modality Scenario: Both agents have full access to the
MNIST and SVHN datasets.
• Scenario 2: Agent A has full access to both modalities, while

Agent B has access only to MNIST.
• Scenario 3: AgentA has full access to bothmodalities, but Agent

B has access only to SVHN.

5.3.3 Condition 3
To evaluate hypothesis (3), we adjust the weight ratio between

the MNIST and SVHN modalities and vary β parameter that
governs disentangling in the latent space. This will help us
understand how prioritizing a more distinct modality affects
communication between agents. The specific models compared are
as follows:

• MNIST:SVHN = 1:1, β = 1. This is our baseline model, with
equal dataset weights and β = 1.
• MNIST:SVHN = 1:1, β = 100. Model with increased β to assess

its effect on model accuracy.
• MNIST:SVHN = 4:1, β = 1. Model with the dataset weight

skewed towards MNIST.
• MNIST:SVHN = 4:1, β = 100. Model with the dataset weight

skewed towards MNIST and increased β.

5.3.4 Experimental setup
This experiment applied a latent dimension of 20 and consisted

of three iterative stages: mutual iteration (5 times), MVAE
training iteration (10 times), and the MH naming game (10
times). Three MVAE models: MoE (Inter-GMM + MoE-MVAE),

PoE (Inter-GMM + PoE-MVAE), and MoPoE (Inter-GMM +
MoPoE-MVAE), were tested. Variational parameter β values
of 1 and 100, and weighted ratios between the MNIST and
SVHN datasets of 1:1 and 4:1, were also examined. The model
architecture is shown in Supplementary Appendix Figure S9 of
Supplementary Appendix S3.

5.4 Experimental results

5.4.1 Results in condition 1
The results are listed in Tables 1. The key observations are as

follows:

• Kappa, ARI, and DBS values confirm hypothesis (1): agents
can establish perceptual categories and communicate signs
based on multimodal sensory data. The MH naming game
improves information sharing and learning between agents of
multimodal DGM.
• Furthermore, despite the impact of various configurations,

the FID values are consistently high, indicating high-quality
generated images, suggesting that the MH naming game
primarily influences knowledge sharing and does not impact
the training model.
• Moreover, multimodal VAE methods, such as MoE, PoE,

and MoPoE, significantly affect the creation of latent
spaces. The PoE generates the highest overall ARI values,
creating meaningful latent spaces compared to MoE
and MoPoE.

5.4.2 Results in condition 2
The experimental results when investigating the influence of the

missing modalities on the MH naming game are shown in Table 2.
The key observations are as follows:

• The good Kappa results confirm hypothesis (2), asserting
that semiotic communication between agents can sustain
categorization accuracy, even in the absence of specific
modalities.
• In addition, Kappa values are highest when both agents

have full modalities, signifying optimal agreement
when both have complete information. This highlights
the significance of communication in fully-multimodal
learning settings.
• ARI and DBS are highest when agent B has only MNIST, while

the lowest scores occur when B has only SVHN. This indicates
the more orderly structure of MNIST compared to SVHN,
emphasizing that communication tends to be better with more
systematically organized data.

5.4.3 Results in condition 3
The experimental results are presented in Table 3. Key insights

include:

• Kappa, ARI, and FID results show that emphasized weight ratio
on a distinct modality can improve agent communication and
validate hypothesis (3).
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TABLE 3 Evaluation results under condition 3: Impact of varying ratios of MNIST to SVHN (denoted as r = MNIST:SVHN) and different β values on the
model’s performance. In each column, the best results are denoted by underlined and bold numbers, while the second-best results are indicated by bold
numbers only.

Scenarios Kappa ARI DBS FID-MNIST FID-SVHN

r β A B A B A B A B

Inter-GMM + weighted-β-MoE-MVAE

r = 1:1 β = 1 0.903 0.051 0.052 13.10 13.82 24.6 15.4 124.1 79.9

r = 1:1 β = 100 0.641 0.003 0.003 10.38 11.96 97.8 83.6 293.3 137.9

r = 4:1 β = 1 0.753 0.010 0.015 3.29 3.45 27.4 14.2 115.9 46.6

r = 4:1 β = 100 0.859 0.122 0.116 3.11 3.23 45.4 49.6 240.7 128.8

Inter-GMM + weighted-β-PoE-MVAE

r = 1:1 β = 1 0.953 0.315 0.314 4.41 3.62 48.8 37.0 86.7 53.6

r = 1:1 β = 100 0.941 0.308 0.313 5.87 5.37 100.1 85.4 222.6 119.4

r = 4:1 β = 1 0.970 0.794 0.791 3.80 3.30 32.4 21.5 78.2 55.5

r = 4:1 β = 100 0.972 0.713 0.710 3.53 3.32 45.0 32.6 251.9 151.9

Inter-GMM + weighted-β-MoPoE-MVAE

r = 1:1 β = 1 0.901 0.179 0.180 12.46 11.43 23.7 16.2 114.1 30.3

r = 1:1 β = 100 0.892 0.473 0.477 2.60 2.54 96.1 71.7 227.1 101.3

r = 4:1 β = 1 0.894 0.344 0.358 15.77 12.31 23.2 13.6 85.7 52.8

r = 4:1 β = 100 0.889 0.230 0.233 2.29 2.18 56.2 45.5 246.5 102.1

• Across all models, FID values are consistently good, indicating
a high-quality image generation. Notably, higher beta values
negatively affect FID scores, while adjustments in dataset
weight ratios have a positive impact, leading to better
image generation. The generated images are shown in
Supplementary Appendix Figure S11, S12, S13.
• DBS values are good, keeping stability and consistency across

various configurations with no noticeable changes when
adjusting weights and β.
• ARI values vary significantly among the models. PoE models

exhibit the best ARI values overall, especially when the weight
ratio is adjusted to focus on the MNIST modality.
• Thet-SNEvisualizations (Supplementary Appendix Figure S14)

reveal that PoE models generate the most well-separated
clusters, notably when the weight is skewed towards MNIST.
Meanwhile, MoPoE presents moderately distinct clusters,
whereas the clusters in MoE models’ visualizations are less
well-defined and harder to interpret.

Our experiments confirmed three key hypotheses: First,
integratingMHnaming game andMVAE enables agents to establish
perceptual categories and communicate signs for multimodal data.
Second, even with missing modalities, semiotic communication

FIGURE 6
One object consists of two images (MNIST + SVHN) of one digit. Agent
A with original images (rows 1 and 2). Agent B with images rotated 45°
(rows 3 and 4)

between agents sustains categorization accuracy within an agent.
Third, emphasizing a more distinct modality by increasing the
weight ratio improves agent communication.

Furthermore, our experiments revealed the unique
characteristics of different models. The MoE is suitable for image
generation; however, its application in the MH naming game
encounters difficulties. The MoPoE, with the potential for EmCom,
could benefit from further refinement. In contrast, the PoE
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FIGURE 7
Samples from Multimodal165 - real-life object dataset.

consistently yielded the best results. The Inter-GMM + PoE-MVAE
proved to be a potent tool for symbol emergence with multimodal
DGM and MH naming game, as evidenced by high Kappa scores,
commendable ARI scores, and stable DBS values.

6 Experiment 2: Multimodal165

In experiment 2, we employed the Inter-GMM + MVAE model
to examine hypotheses (1) and (3) (as described in Section 5.1) using
a real-life object dataset. During implementation, we observed that
the latent spaces from the real-life object datasets were less organized
and more divergent than those from the benchmark datasets. This
divergence caused the GMM to struggle to capture the latent space
structure accurately, leading to errors in training and reduced
performance. Therefore, we adjusted certain hyperparameters
during training (as described in Section 4.3) to accurately identify
the latent space coordinates using the newly calculated means of all
data points.

6.1 Dataset

The Multimodal165 dataset, developed by Nakamura et al.
(Nakamura and Nagai, 2018), comprises 165 directories, each
containing robot-generated multimodal data for a specific object.
This data includes visual, auditory, haptic, and word information
obtained by observing, grasping, shaking, and describing objects
(Figure 7).

In this experiment, the agents were assumed to learn about
real-life objects autonomously, without human input, by focusing
on visual, audio, and haptic modalities. For vision, images were
resized to 256 × 256 × 3, with agent A receiving a −30-degree angle

image, while agent B obtaining a 0-degree angle image, providing
distinct perspectives. For audio, shaking sounds were processed
using MFCC = 20; agent A obtained sound lengths from 0 to 4/5
of the recording, while agent B used from 1/5 to the end, giving each
agent unique audio data. For haptic data, A and B access the first and
second grasping haptic information, respectively, enabling them to
experience different haptic aspects of the objects.

6.2 Conditions

Each data instance has three modalities: visual, audio, and
haptic. The latent dimension, that is, the number of dimensions
in the abstract space where the data are represented, was set to
21. This selection of a 21-dimensional latent space is based on the
dataset architecture. Given the three modalities of the experiment,
we choose a latent space whose dimensionality is divisible by three,
facilitating the integration and combination with MoE and MoPoE
models, which necessitate dimensions that are multiples of three.

In this experiment, we evaluate three variations of the
Inter-GMM+(MoE/PoE/MoPoE)-MVAE model. Each variant will
undergo examination in three contexts: the baseline Inter-GMM
+ MVAE, an iteration with hyperparameter tuning, and a version
with both hyperparameter tuning and a weight adjustment across
the modalities. Because the haptic modality is the best-organized
modality within the visual, audio, and haptic modalities in our
dataset, the weighting will be biased in favor of the haptic modality
at a ratio of “r = visual:audio:haptic = 1:1:3”.

The experiment consists of 10 mutual iterations
(including iterations between models), 30 MVAE training
iterations, and 30 MH naming game iterations. The model
architecture is displayed in Supplementary Appendix Figure S10
of Supplementary Appendix S3.
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TABLE 4 The comparison of Inter-GMM + weighted-β-PoE-MVAE in Multimodal165 dataset. Here, r represents the weight adjustment and “Hyper.”
indicates the hyperparameter tuning strategy. In each column, the best results are denoted by underlined and bold numbers, while the second-best
results are indicated by bold numbers only.

Scenarios Kappa ARI DBS

r Hyper A B A B

Inter-GMM + weighted-β-MoE-MVAE

No No 0.219 0.001 0.002 13.20 16.53

No ✓ 0.782 0.012 0.011 2.45 3.64

✓ ✓ 0.869 0.414 0.402 1.58 2.89

Inter-GMM + weighted-β-PoE-MVAE

No No 0.215 0.010 0.002 20.49 10.58

No ✓ 0.883 0.026 0.028 0.12 0.26

✓ ✓ 0.894 0.570 0.570 0.14 0.58

Inter-GMM + weighted-β-MoPoE-MVAE

No No 0.211 0.001 0.002 25.31 23.50

No ✓ 0.856 0.009 0.014 3.52 3.58

✓ ✓ 0.874 0.315 0.430 1.94 2.68

6.3 Experimental results

Table 4 compares the results of the three models. Key findings
include the following:

• Kappa values validate the first hypothesis for the Inter-GMM
+ MVAE with a real-world three-modality (vision, audio, and
haptic) object dataset. This outcome demonstrates that the
integrated MH naming game with MVAE allows agents to form
perceptual categories and devise communication signs derived
from multimodal data.
• The dynamic strategic adjustment of hyperparameters, based

on the calculated means of all data points in the latent space,
substantially enhances Kappa and DBS. This hyperparameter
tuning strategy optimizes data distribution of data in the
latent space, aligning it better with the Gaussian Mixture
Model (GMM), and improves agreement among agents and
clustering quality in the MH naming game. Despite this,
consistently low ARI values suggest that these adjustments
have not significantly enhanced clustering agreement with
true labels.
• Concentrating on the best-organized modality led to a

notable increase in ARI. Therefore, these results have
validated hypothesis (3) that amplifying the weight ratio to
emphasize a more differentiated modality leads to better agent
communication.
• The findings further indicates that the Inter-GMM +

MVAE model utilizing the PoE achieved the best results
overall.

In general, this experiment demonstrated that the Inter-
GMM + weighted-β-MVAE model is suitable for real-life object
datasets, especially the model with the PoE implementation.
With further improvements, these models can become even
more accurate.

7 Conclusion

The study explored the implementation of multimodal deep
generative models in EmCom systems within environments that
focus on joint attention where both speaker and listener are
aware of the same object. Our primary objective was to enable
agents to process multimodal data from various sources, such
as images, text, and audio, and to integrate this information
into a cohesive representation. Building on the foundation
of Inter-GMM + VAE (Taniguchi et al., 2023), we obtain the
following results:

(1) We successfully extended the Inter-GMM + VAE model by
integrating a multimodal DGM for symbol emergence based
on multimodal data. Our novel model, Inter-GMM + MVAE,
demonstrates that integrating the MH naming game with
multimodal VAE can aid agents in constructing perceptual
categories and communicating signs derived from multimodal
sensory inputs.

(2) Our proposed model maintains the categorization function of
each agent via semiotic communication, even when specific
modalities are absent.
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(3) Improving the weight ratio to highlight a modality more
readily learned and categorized by the agent can improve
EmCom. This approach mirrors human communication
dynamics, where emphasis on more readily understood
concepts enhances comprehension by listeners.

This study examined three multimodal techniques, MoE, PoE,
and MoPoE, refining these models by factoring in the weight of
each modality in the multimodal VAE and adjusting the β value to
disentangle the latent space. Furthermore, the experiments showed
that theMHnaming game primarily influenced information sharing
and knowledge formationwithout significantly affecting the training
model, leading to high-quality generated images across all scenarios.
However, the combination of multimodal VAE methods, such as
MoE, PoE, and MoPoE, significantly affects the creation of latent
spaces. Whereas MoE performed best in terms of image generation
quality, PoE generated the highest overall ARI values in creating
meaningful latent spaces.

In addition, our experiments with real-life datasets highlight
a limitation in the current model’s ability to represent real-world
objects accurately. To address this issue, we implemented a latent
space coordinate refinement strategy. This approach optimizes the
positioning of coordinates in the latent space by calculating the
means of all data points. This hyperparameter tuning strategy
considerably enhanced the sign-sharing agreement by adjusting the
latent space coordinator, improving agent agreement and clustering
quality within the MH naming game.

In conclusion, the integration of the MH naming game with
a multimodal VAE offers considerable advancement in the field of
EmCom. By employing PoE, MoE or MoPoE for MVAE, along with
weight ratio and β adjustments, the experiments showed that Inter-
GMM+weighted-β-MVAEwith PoE could create better results than
the model with MoE and MoPoE.

Additionally, this study includes experiments to evaluate
the Inter-GMM + VAE when the vocabulary size exceeds the
actual number of data categories, an aspect not explored in the
original work (Taniguchi et al., 2023). The findings presented in
Supplementary Appendix S1 reveal that the performance of the
Inter-GMM + VAE model is sustained even with a vocabulary size
greater than the number of categories in the dataset. This condition
permits the assignment of several signs or words to a single category,
indicative of the potential for synonyms in the communication
system of the agents.

In the future, it is possible to advance the field of EmCom
systems further. The first initiative would involve expanding the
Inter-GMM + MVAE framework from a two-agent naming game to
scenarios involving three or more agents by applying the method
proposed in (Inukai et al., 2023). Moreover, the exploration of
alternative DGM within the Inter-GMM + MVAE could present
valuable options besides the currently utilized multimodal VAE.
There is also consideration of transitioning from using the Gaussian
Mixture Model to implementing neural networks for the learning of
internal representations and word formation within the Inter-GMM
+ MVAE model. Such an adaptation could lead to the development
of more versatile communication systems where agents are capable
of conveying compositional messages, thereby enhancing the
efficacy of information exchange, knowledge construction, and data
reconstruction inEmCom contexts.
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