AUTHOR=Piercy Thomas , Herrmann Guido , Cangelosi Angelo , Zoulias Ioannis Dimitrios , Lopez Erwin TITLE=Using skeletal position to estimate human error rates in telemanipulator operators JOURNAL=Frontiers in Robotics and AI VOLUME=10 YEAR=2024 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2023.1287417 DOI=10.3389/frobt.2023.1287417 ISSN=2296-9144 ABSTRACT=

In current telerobotics and telemanipulator applications, operators must perform a wide variety of tasks, often with a high risk associated with failure. A system designed to generate data-based behavioural estimations using observed operator features could be used to reduce risks in industrial teleoperation. This paper describes a non-invasive bio-mechanical feature capture method for teleoperators used to trial novel human-error rate estimators which, in future work, are intended to improve operational safety by providing behavioural and postural feedback to the operator. Operator monitoring studies were conducted in situ using the MASCOT teleoperation system at UKAEA RACE; the operators were given controlled tasks to complete during observation. Building upon existing works for vehicle-driver intention estimation and robotic surgery operator analysis, we used 3D point-cloud data capture using a commercially available depth camera to estimate an operator’s skeletal pose. A total of 14 operators were observed and recorded for a total of approximately 8 h, each completing a baseline task and a task designed to induce detectable but safe collisions. Skeletal pose was estimated, collision statistics were recorded, and questionnaire-based psychological assessments were made, providing a database of qualitative and quantitative data. We then trialled data-driven analysis by using statistical and machine learning regression techniques (SVR) to estimate collision rates. We further perform and present an input variable sensitivity analysis for our selected features.