
TYPE Original Research
PUBLISHED 07 November 2023
DOI 10.3389/frobt.2023.1285412

OPEN ACCESS

EDITED BY

Junyan Hu,
Durham University, United Kingdom

REVIEWED BY

Andrea Testa,
University of Bologna, Italy
Boli Chen,
University College London, United
Kingdom

*CORRESPONDENCE

Chao Jiang,
cjiang1@uwyo.edu

RECEIVED 29 August 2023
ACCEPTED 09 October 2023
PUBLISHED 07 November 2023

CITATION

Jiang C, Huang X and Guo Y (2023),
End-to-end decentralized formation
control using a graph neural
network-based learning method.
Front. Robot. AI 10:1285412.
doi: 10.3389/frobt.2023.1285412

COPYRIGHT

© 2023 Jiang, Huang and Guo. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

End-to-end decentralized
formation control using a graph
neural network-based learning
method

Chao Jiang1*, Xinchi Huang2 and Yi Guo2

1Department of Electrical Engineering and Computer Science, University of Wyoming, Laramie, WY,
United States, 2Department of Electrical and Computer Engineering, Stevens Institute of Technology,
Hoboken, NJ, United States

Multi-robot cooperative control has been extensively studied usingmodel-based
distributed control methods. However, such control methods rely on sensing
and perception modules in a sequential pipeline design, and the separation
of perception and controls may cause processing latencies and compounding
errors that affect control performance. End-to-end learning overcomes this
limitation by implementing direct learning from onboard sensing data, with
control commands output to the robots. Challenges exist in end-to-end learning
for multi-robot cooperative control, and previous results are not scalable.
We propose in this article a novel decentralized cooperative control method
for multi-robot formations using deep neural networks, in which inter-robot
communication is modeled by a graph neural network (GNN). Our method takes
LiDAR sensor data as input, and the control policy is learned fromdemonstrations
that are provided by an expert controller for decentralized formation control.
Although it is trained with a fixed number of robots, the learned control policy is
scalable. Evaluation in a robot simulator demonstrates the triangular formation
behavior of multi-robot teams of different sizes under the learned control policy.

KEYWORDS

distributed multi-robot control, multi-robot learning, graph neural network, formation
control and coordination, autonomous robots

1 Introduction

The last decade has witnessed substantial technological advances inmulti-robot systems,
which have enabled a vast range of applications including autonomous transportation
systems, multi-robot exploration, rescue, and security patrols. Multi-robot systems have
demonstrated notable advantages over single-robot systems, such as enhanced efficiency
in task execution, reconfigurability, and fault tolerance. In particular, the capacity of multi-
robot systems to self-organize via local interaction gives rise to variousmulti-robot collective
behaviors (e.g., flocking, formation, area coverage) that can be implemented to achieve
team-level objectives (Guo, 2017).

A plethora of control methods have contributed to the development of multi-robot
autonomy, which enables complex collective behaviors in multi-robot systems. One major
control design paradigm focuses on decentralized feedback control methods (Panagou et al.,
2015; Cortés and Egerstedt, 2017; Bechlioulis et al., 2019), which provide provable control
and coordination protocols that can be executed efficiently at runtime. Control protocols
are designed to compute robot actions analytically using the robot's kinematic/dynamic

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1285412
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1285412&domain=pdf&date_stamp=2023-11-01
mailto:cjiang1@uwyo.edu
mailto:cjiang1@uwyo.edu
https://doi.org/10.3389/frobt.2023.1285412
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1285412/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1285412/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1285412/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1285412/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

model and communication graph, which specifies the interaction
connectivity for local information exchange. Such hand-engineered
control and coordination protocols separate the problem into a
set of sequentially executed stages, including perception, state
measurement/estimation, and control. However, this pipeline of
stages may suffer from perception and state estimation errors that
compound through the individual stages in the sequence (Zhang and
Scaramuzza, 2018; Loquercio et al., 2021).Moreover, such a pipeline
introduces latency between perception and actuation, as the time
needed to process perceptual data and compute control commands
accumulates (Falanga et al., 2019). Both compounding errors and
latency are well-known issues that impact task performance
and success in robotics. Learning-based methods, as another
control design paradigm, have proven to be successful in learning
control policies from data (Kahn et al., 2018; Devo et al., 2020;
Li et al., 2020; Li et al., 2022). In particular, owing to the feature
representation capability of deep neural networks (DNNs), control
policies can be modeled to synthesize control commands directly
from a raw sensor observations. Such control policies are trained to
model an end-to-end computation that encompasses the traditional
pipeline of stages and their underlying interactions (Loquercio et al.,
2021).

Multi-robot learning has long been an active research area
(Stone andVeloso, 2000; Gronauer andDiepold, 2021). Nonetheless,
only in recent years, with the advancement of deep reinforcement
learning techniques, has it become possible to handle challenges
originating from real-world complexities. Breakthroughs have
been made in computational methods that address long-standing
challenges in multi-robot learning, such as non-stationarity
(Foerster et al., 2017; Lowe et al., 2017; Foerster et al., 2018),
learning to communicate (Foerster et al., 2016; Sukhbaatar and
Fergus, 2016; Jiang and Lu, 2018), and scalability (Gupta et al.,
2017). Various multi-robot control problems, such as path planning
(Wang et al., 2021; Blumenkamp et al., 2022) and coordinated
control (Zhou et al., 2019; Agarwal et al., 2020; Tolstaya et al., 2020a;
Tolstaya et al., 2020b; Jiang and Guo, 2020; Kabore and Güler, 2021;
Yan et al., 2022), have been tackled using learning-based methods.
Despite the remarkable progress that has been made in multi-robot
learning, the best approaches to architecture design and learning
for scalable computational models that accommodate emerging
information structures remain an open question. For example, it
has yet to be understood what information should be dynamically
gathered, and how this should be achieved, given a distributed
information structure that only allows local inter-robot interaction.
Recently, graph neural networks (GNNs) (Scarselli et al., 2008)
have been used to model the structure for information-sharing
between robots. A GNN can be trained to capture task-relevant
information to be propagated and shared within the robot team
via local inter-robot communication. GNNs have become an
appealing framework for modeling of distributed robot networks
(Agarwal et al., 2020; Zhou et al., 2019; Tolstaya et al., 2020a;
b; Wang and Gombolay, 2020; Blumenkamp et al., 2022) due
to their scalability and permutation-invariance (Gama et al.,
2020).

In this article, we study a multi-robot formation problem using
a learning-based method to find decentralized control policies that
operate on robot sensor observations. The formation problem is

defined for the multi-robot team to achieve triangular formations
that constitute a planar graph with prescribed equidistant edge
lengths. We use a GNN to model inter-robot communication
for learning of scalable control policies. The GNN is combined
with a convolutional neural network (CNN) to process sensor-
level robot observations. Utilizing a model-based decentralized
controller for a triangular formation as an expert control system,
we train the deep neural network (DNN) with a data aggregation
training scheme. We demonstrate in a robot simulator that the
learned decentralized control policy is scalable to different sizes
of multi-robot teams while being trained with a fixed number of
robots.

The main contribution of this article is the demonstration of
GNN-based end-to-end decentralized control for a multi-robot
triangular formation. Compared to our prior work (Jiang et al.,
2019) on learning-based end-to-end control of multi-robot
formations, the approach presented in this article achieves a
decentralized scalable control policy, while our prior work
(Jiang et al., 2019) adopts centralized training mechanisms;
additionally, the trained policy is not scalable and applies to a
three-robot formation only. Compared to the recent GNN-based
flocking control method (Tolstaya et al., 2020a), the triangular
formation studied in this paper imposes additional geometric
constraints for multi-robot coordinated motion as opposed to
flocking behavior. Furthermore, our decentralized control scheme
is end-to-end and takes robot LiDAR sensor data directly as
input, while the method described by Tolstaya et al. (2020a)
takes state values of robot positions as input. As mentioned
earlier, end-to-end learning facilitates direct learning from sensor
data, and can avoid the potential for compounding errors and
latency issues commonly found in conventional designs in which
perception and control are separated into sequential stages of a
pipeline.

The remainder of this article is organized as follows. Section 2
presents the model of differential-drive mobile robots and the
formulation of our multi-robot cooperative control problem. The
GNN-based training and online control methods are described
in Section 3. Robot simulation results are presented in Section 4.
Section 5 discusses the main differences in comparison to existing
learning-based methods. Finally, the article is concluded in
Section 6.

2 Problem statement

In this paper, we consider a multi-robot cooperative control
problem with N differential-drive mobile robots. The kinematic
model of each robot i ∈ {1,…,N} is given by the discrete-time
model:

[[[[

[

xi (t+ 1)

yi (t+ 1)

θi (t+ 1)

]]]]

]

=
[[[[

[

xi (t)

yi (t)

θi (t)

]]]]

]

+G (t) ⋅ [

[

uiL (t)

uiR (t)
]

]
, (1)

where [xi,yi,θi]
T ∈ ℝ3 is a robot state vector consisting of the

position pi ≜ [xi,yi]
T and the orientation θi, and ui ≜ [uiL,uiR]T ∈

ℝ2 is a control vector, with uiL and uiR representing left and

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

FIGURE 1
Gabriel graph: (A) robots i and j are not neighbors, as robot k exists in
the circle whose diameter is defined by the distance between robots i
and j; (B) robots i and j are valid neighbors, as there are no other
robots in the circle.

right motor control, respectively. The matrix G(t) is defined
as:

G (t) =
[[[[[

[

ΔT
2 cos θi (t)

ΔT
2 cos θi (t)

ΔT
2 sin θi (t)

ΔT
2 sin θi (t)

−ΔTl
ΔT
l

]]]]]

]

, (2)

where ΔT is the sampling period and l is the distance between the
robot's left and right wheels.

We assume that each robot is equipped with a LiDAR sensor to
detect neighboring robots. LiDAR measurements are transformed
to an occupancy map, denoted by oi(t), serving as a representation
of the robot's local observations. The proximity graph of the robot
team is defined as a Gabriel graph (Mesbahi and Egerstedt, 2010),
denoted as G = (V,E), where V = {v1,…,vN} is the set of vertices
corresponding to the robots located at p1,…,pN ∈ ℝ

2 and E is the
set of edges. The line connecting the vertices vi, vj ∈ V, i ≠ j, is said
to be an edge if and only if the circle of diameter ‖pi − pj‖ containing
both vertices vi and vj does not contain any vertex in its interior.
An example of a valid and an invalid edge of a Gabriel graph can
be seen in Figure 1. Robots i and j, associated with vertices vi and
vj, respectively, are said to be neighbors and can communicate if
{vi,vj} ∈ E. Note that the proximity graph G is time-varying, as a
robot's neighbors vary when they move around.

The objective of cooperative control is to find a decentralized
control protocol for each robot such that, starting from any
initial positions in which there is at least one robot within the
neighborhood of each other robot (i.e., the initial proximity graph
G is connected), the group of robots achieves triangular formations
with a prescribed inter-robot distance, d*, for all pairs of robots
{vi,vj} ∈ E. That is, ‖pi − pj‖→ d* as t→∞, ∀(vi,vj) ∈ E.

To address the multi-robot coordination problem as formulated
in this way, we propose a learning-based method to find a
decentralized and scalable control policy that can be deployed for
each robot. A GNN in conjunction with a CNN will be used
as the parameterized representation of the control policy. The
neural network policy is decentralized in the sense that only local
information obtained by each robot is used to compute a control
action. We show in simulation experiments that, owing to the
scalability of the GNN representation, the learned control policy
is scalable in that, once trained with a given number of robots,
the policy is applicable to different sizes of robot team if the team
size remains unchanged during operation. In the next section, we

introduce the architecture and training of the neural network control
policy.

3 Methods

3.1 Overview of learning-based
cooperative control

An overview of the proposed system for learning-based multi-
robot cooperative control is shown in Figure 2. The decentralized
control policy is parameterized by a DNN consisting of a CNN,
a GNN, a multi-layer perceptron (MLP) network, and a fully
connected (FC) network, as shown in the dashed box. The CNN
extracts task-relevant features from an occupancy map obtained
by the robot's own onboard LiDAR sensor. The features from the
robot's local observations are communicated via the GNN, which
models the underlying communication for information propagation
and aggregation in the robot network. Given the features aggregated
locally via the GNN, theMLP and FC layers compute a robot control
command as the final output. The DNN policy can be expressed by

ui = π (oi;G,Θ) , ∀i ∈ {1,…,N} . (3)

To compute a control action ui, the policy (3) uses each robot's own
observation oi and the local information aggregated from current
neighboring robots, determined by the proximity graph G, that the
GNN has access to. Θ is the tensor of parameters of the DNN,
which is tuned during policy training. During online control, the
DNN policy computes robot control end-to-end through a feed-
forward pass in a decentralized manner. It is worth noting that
the GNN block shown in Figure 2 represents data exchange within
the entire robot team through local communication and does not
signify a central communication unit. The computation of the GNN
is decentralized, as each robot aggregates local information from its
neighbors only. More details of the computation of the GNN are
presented in Section 3.2.

We train the policy (3) via learning from demonstrations (LfD),
and a model-based controller is used as an expert controller to
provide demonstration data. The dataset is composed of pairs of
robot observation oi and expert control action u⋆i associated with
that observation. Policy training then amounts to identification of
the optimal parametersΘ that minimize the following loss function
(for a single data sample):

L (Θ) = 1
2
‖π (oi;G,Θ) − u⋆i ‖

2. (4)

The loss function measures the difference between the neural
network controller's output, given by π(oi;G,Θ), and the expert
controller's output u⋆i computed under the same system state under
which the observation oi is obtained. Minimizing the loss function
encourages the policy to imitate the control strategies of the model-
based decentralized controller.

3.2 Graph neural network

The feature vector xi ∈ ℝF extracted by the CNN for each robot
i will be communicated to the neighbors of that robot by one-
hop communication via the GNN. The GNN architecture adopted

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

FIGURE 2
An overall diagram of end-to-end GNN-based decentralized formation control.

in this article is the aggregation GNN (Gama et al., 2018). Each
layer of the GNN performs a graph convolution that aggregates
information fromneighboring robots. Information aggregationwith
k-hop communicationwithin the robot network at time step t creates
a signal:

Z (t) = [X (t) ,SX (t) ,S2X (t) ,…,SkX (t)] ∈ ℝN×F(k+1),

where X(t) = [x1(t),x2(t),…,xN(t)]T ∈ ℝN×F is the collection of
feature vectors of all robots and S(t) ∈ ℝN×N is the graph shift
operator (GSO) (Gama et al., 2018). The GSO is defined as a local
linear operation applied to graph signals (e.g., the feature vector
xi(t)) (Gama et al., 2018). Specifically, the f-th element of the feature
vector for robot i after application of the GSO with one-hop
communication (i.e., k = 1) is given by:

[SX (t)]i f =
N

∑
j=1
[S]ij[X (t)]j f . (5)

The GSO is associated with the graph structure, and in our problem
it is defined as the adjacency matrix, i.e., [S]ij = 1 if robot i and j are
neighbors, otherwise [S]ij = 0.

Each row i of Z(t), denoted by zi ∈ ℝF(k+1), is a local signal
representing the information vector aggregated on the ith robot.The
local signal zi is then convolved with a bank of FG filters, denoted by
h ∈ ℝF(k+1)×G, to produce an output feature vector yi = σgnn (hTzi) ∈
ℝG, where σgnn (⋅) is a point-wise non-linear activation function.The
elements of h represent the learnable filter weights, which are shared
by all robots. The local feature vector, yi, is fed into the MLP and FC
layers of each robot's local policy to compute a control command for
that robot. More details of the aggregation GNN used in this paper
can be found inGama et al. (2018). Note that we specifically use one-
hop communication (i.e., k = 1) and set the number ofGNN layers to
one (i.e., the graph convolution operation σgnn (⋅) is only performed
once per time step) to reduce the communication load at each time
step.

It is worth mentioning that our proposed policy model inherits
the scalability property of the GNN. The scalability of GNNs
stems from their permutation equivariance property and their
stability to changes in topology (Gama et al., 2020).These properties

allow GNNs to generalize signal processing protocols learned
at local nodes to every other node with a similar topological
neighborhood.

3.3 Policy training

3.3.1 Expert controller
A model-based controller (Mesbahi and Egerstedt, 2010) for

the multi-robot triangular formation problem was employed as the
expert controller to provide training data. The expert controller
achieves triangular formations byminimizing the potential function
associated with robots i and j, i.e.,

Uij =
1
2
(‖pi − pj‖− d

*)2, ∀{i, j} ∈ E. (6)

The potential function takes its minimum value at the
prescribed inter-robot distance, d*. Assuming single-integrator
dynamics of the robots, i.e., ṗi = vi, the control law is
given by

vi = −Kc ∑
j∈Ni

‖pi − pj‖− d
*

‖pi − pj‖
⋅ (pi − pj) , (7)

where robot j belongs to the neighbors of robot i, Ni (defined by
the Gabriel graph), and Kc is the control gain. When the inter-
robot distance is greater than d*, the controller exerts attractive force
through the positive weight

‖pi−pj‖−d
*

‖pi−pj‖
. When the inter-robot distance

is smaller than d*, the controller repels the robots from one another
as the weight becomes negative. At convergence, neighboring robots
form triangular formations with distance d*.

The control input vi, computed by the expert controller for
the single-integrator model, is converted to the motor control
of the differential-drive robot model, ui, using a coordinate
transformation method (Chen et al., 2019). The transformation is
given by

[

[

uiL
uiR
]

]
= [

[

sin θi +
l
2c cos θi sin θi −

l
2c cos θi

−sin θi +
l
2c cos θi sin θi +

l
2c cos θi
]

]
⋅ vi, (8)

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

where l is defined in (2) and c = l/2. The differential-drive
robot (1) can then be controlled by the expert controller after
transformation.

3.3.2 Policy training with DAgger

The DNN policy was trained via learning from demonstration,
and a model-based controller was used to provide expert
demonstration data. In order to obtain a model sufficiently
generalizable to unseen states at test time, we used a Data
Aggregation (DAgger) training framework (Ross et al., 2011). The
idea behind this is that an empty dataset is gradually “aggregated”
based on data samples with states visited by a learning policy and
actions given by the expert. To this end, we selected the learning
policy with a probability (1− β) to execute a control action at each
time step of data sample collection during training. The probability
β was initialized to 1 and decayed by a factor of 0.9 after every 50
episodes.

The process of policy training with DAgger is outlined in
Algorithm 1. As training progressed, the dataset D was aggregated
with data samples in the form (oi(t),S(t),u⋆i (t)). Since computation
of a control input by the model at time t requires the robot's local
observation oi(t) and the information aggregated through the GSO,
we recorded S(t) along with the observation–action pair oi(t) and
u⋆i (t) to create each data sample. In each training episode, mini-
batches of sizeBwere sampled from the datasetD to train ourmodel
by backpropagation of the mini-batch gradient of the loss calculated
using (4).

3.4 Online cooperative control

At test time (i.e., online formation control), a local copy
of the learned policy π(oi;G,Θ) was deployed to each robot as
a decentralized controller. At each time step, the local policy
received an occupancy map and a control action was calculated
in a feed-forward pass. One-hop communication was performed
between neighboring robots i and j, for which {vi,vj} ∈ E, to
aggregate information in a decentralized manner. Note that the
communication graph is defined in Section 2 as a Gabriel graph
and shown in Figure 1. The online cooperative control is outlined
in Algorithm 2.

4 Experimental results

4.1 Simulation environment

The robot control simulation was conducted using the robot
simulator CoppeliaSim (from the creators of V-REP). We chose
a team of P3-DX mobile robots, each of which had a Velodyne
VLP 16 LiDAR sensor used to obtain LiDAR data, which were
then converted to occupancy maps. The LiDAR sensors were set
to a sensing range of 10 m. The size of the occupancy map created
from the sensor readings was 100 pixels ×100 pixels, making the
granularity of the occupancy maps 0.1 m/pixel. The robot simulator

Require: Observation oi(t), graph shift operator

S(t), expert control action u*
i
(t) at each time step

t

Ensure: DNN policy π(oi;G,Θ)
 1:  Initialize dataset D← ∅
 2:  Initialize policy parameters Θ← Θ0

 3:  Initialize β← 1

 4:  for episode e = 1 to E do

 5:   Initialize robot state [xi,yi,θi],∀i ∈ {1,…,N}

 6:   for time step t = 1 to Tdo

 7:    for robot i = 1 to Ndo

 8:     Query an expert control u*
i
(t) ← π* (si(t))

 9:     Get sample (oi(t),S(t),u*i(t))

 10:     Choose a policy πi← βπ*+ (1−β)π

 11:    end for

 12:    D←D ∪ {(oi(t),S(t),u*i(t))}
N

i=1

 13:    Execute policy πi,∀i ∈ {1,…,N} to advance the

environment

 14:   end for

 15:   for n = 1 to Kdo

 16:    Draw mini-batch samples of size B from D
 17:    Update policy parameters Θ by mini-batch

gradient descent with loss (4)

 18:   end for

 19:   Update β← 0.9β if mod(e,50) = 0

 20:  end for

 21:  return learned policy π(oi;G,Θ)

Algorithm 1. Policy trainingwith DAgger.

Require: Occupancy map oi(t)

Ensure: Robot control action ui(t)

 1:  Initialize robot state [xi,yi,θi],∀i ∈ {1,…,N}

 2:  for time step t = 1 to Tdo

 3:   for robot i = 1 to Ndo

 4:    Obtain an occupancy map oi(t)

 5:    Aggregate information locally by applying

(5) via one-hop communication

 6:    Compute a control action ui(t) ← π(oi;G,Θ)
 7:   end for

 8:   Execute the control action ui,∀i ∈ {1,…,N} to

advance the environment

 9:  end for

Algorithm 2. Online cooperative control.

was controlled via various Python scripts, as the simulator API can
be accessed via local data communication to and from the client
Python program.

The results were simulated using a computer with an Intel
i7 12900K, 12-core CPU that ran at 3.6 GHz. The GPU used
for rendering and neural network training and testing was an
NVIDIA Titan Xp GPU. The PyTorch framework handled the GNN

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

TABLE 1 Blocks and parameters of the DNN.

Layer block Input size Output size

Convolutional Max Pool Block 1 (1,100,100) (32,50,50)

Convolutional Block 2 (32,50,50) (32,50,50)

Convolutional Max Pool Block 3 (32,50,50) (64,25,25)

Convolutional Block 4 (64,24,24) (128,12,12)

Convolutional Max Pool Block 5 (128,12,12) (128,12,12)

Feature Compression Block 1 (1,18432) (1,128)

GNN Block 1 (1,128) (1,128)

MLP Block 1 (1,128) (1,128)

MLP Block 2 (1,128) (1,128)

Output MLP Block 3 (1,128) (1,2)

implementation as well as computations for training and testing of
the neural network.

4.2 DNN implementation

The implementation details of the neural network architecture
shown in Figure 2 are given in Table 1. The CNN layers were
composed of multiple convolutional blocks. The input size of the
first convolutional block was set to (1,100,100) to fit the size of the
occupancy map. The features extracted from the input by the CNN
were flattened into a vector of size (1,18432), which was further
compressed by the compression block into a feature vector of size
(1,128).That is, the dimension F of xi was set to 128.The compressed
feature vector was fed to the GNN block and communicated to
neighboring robots.TheGNNconsisted of 1 graph convolution layer
that produced a new feature vector of the same size as the input.That
is, the dimensionG of yi was also set to 128.MulipleMLPblocks took
the feature vector as input and output the robot control action, with
dimensions (1,2).

4.3 System parameters and performance
metrics

The desired triangular formation was set to d* = 2 m. We set
k = 1 for the k-hop communication. The initial conditions in terms
of robot positions were randomly generated in a circle of radius 5m,
and the initial orientation of each robot was randomly chosen from
the range [0,2π]. The distance l between the robot's left and right
wheels was 0.331 m.

We trained the DNN on a team of five robots. To evaluate the
performance of the trained model, we tested it on different numbers
of robots ranging from N = 4 to N = 9. We defined the formation
error between neighboring robots i and j at time t as Ei,j(t) = |‖pi(t) −
pj(t)‖− d

*|. The group formation error at any time t was defined as
Eg(t) =

1
N
∑j∈Ni

Ei,j(t).

TABLE 2 Success rates over 100 runs.

Number of robots 4 5 6 7 8 9

Success rate % (5% tolerance) 100 100 98 90 78 64

Success rate % (10% tolerance) 100 100 100 100 100 100

During training with N = 5, the data collection period of each
training episode (i.e., lines 6–14 of Algorithm 1) ran for at most
200 s, and a data point was collected every 0.05 s. We terminated the
simulation if the temporal average of Eg(t)/d* over the most recent
20 s was smaller than 5%. Note that when we selected the speed
control gain Kc in the expert control system (7), there was a tradeoff
between convergence speed and steady-state error. A largeKc means
that the system converges to the triangular formation more quickly,
but may cause the system to oscillate around the equilibrium. We
chose an adaptive control gain Kc in (7): the value was set to 1
initially, and then after Eg(t)/d* < 0.05, Kc was decreased to slow
down the robots as they approached one another.

During testing, we considered the multi-robot system to be
converged if the group formation error (i.e., the temporal average of
the group formation error Eg(t)/d* over the most recent 20 s) was
smaller than 5% or 10%. We defined three performance metrics, as
follows.

1. Success rate: Rate = nsuccess/n is the number of successful cases as
a proportion of the total number of tested cases n. A simulation
run is considered successful if it converges before the end of the
simulation. We present success rates with 5% and 10% tolerance
in Table 2.

2. Convergence time: Tconverge is the time at which a simulation run
converges. Specifically, this is the first time point at which the
temporal average of the group formation error over the most
recent 20 s reaches the 5% threshold and then continues to
decrease.

3. Group formation error defined in percentage form: Eg/d*, where
Eg is defined as the temporal average of Eg(t) over the last 20 s
prior to the end of the simulation.

4.4 Training

We trained the DNN with a five-robot team by running
Algorithm 1. The data collection period of each training episode
(i.e., lines 6–14) ran for at most 200 s, with a data point being
collected every 0.05 s. The value of β, representing the probability
of picking the neural network controller vs. the expert controller at
every time step, started at β = 1 in episode e = 1, and was updated
every episode with the formula for episode e as βe = 0.9

⌊ e
50
⌋ where

⌊⋅⌋ represents the floor operator. Thus, β decayed by a factor of 0.9
every 50 training episodes. The loss function used was the mean
squared error between the stored expert control command and the
control command that was returned by the learned model. During
training, the RMSprop optimizer (Mustapha et al., 2020) was used.
The learning rate was set to 0.0001 and the size of the mini-batch B,
used to calculate the gradient, was set to 16. After 200 episodes of
training, the weights were saved for testing.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

FIGURE 3
Snapshots showing online formation control of nine robots in the CoppeliaSim simulator. The colored arcs represent visualizations of LiDAR scanning.

FIGURE 4
Testing results for (A) a five-robot team (N = 5), (B) a six-robot team (N = 6), (C) a seven-robot team (N = 7), (D) an eight-robot team (N = 8), and (E) a
nine-robot team (N = 9). Top row: histories of inter-robot distance over time, dij(t), i = 1,…,N, j ∈Ni. Bottom row: robot trajectories with robot
positions (denoted by small colored triangles) sampled every 10 s; black solid lines indicate the final formation achieved.

4.5 Testing results

After training the neural network model with a five-robot team,
we tested our system for end-to-end decentralized formation control
for robot teams of varying sizes by running Algorithm 2. Random
initial conditions were used for robot starting positions. We present
the empirical and statistical results below.

Snapshots of nine robots achieving triangular formations in the
CoppeliaSim simulator are shown in Figure 3. The solid black lines
represent the formations achieved at different time steps.The testing
results for different robot team sizes (N = 5,6,7,8,9) are shown
in Figure 4, panels (a) to (e), respectively. The histories of inter-
robot distance over time (i.e., dij(t), i = 1,…,N, j ∈Ni) and the
trajectory of each robot are shown at the top and bottom of the
figures, respectively. We can see that the robot team achieves the
desired triangular formation and maintains the desired neighboring
distance d* = 2 m. More simulation results for various robot team
sizes can be found in the supplementary video file included with this
article.

To evaluate scalability, we ran testing experiments with 100
different sets of initial conditions for each of the robot team sizes
from 4 to 9.The success rates for different robot team sizes are shown
in Table 2. We can see that the success rate reached 100% for any

team size with 10% tolerance (i.e., the group formation error Eg/d*

is smaller than 10% as defined in Section 4.3).With the 5% tolerance
threshold, the success rate decreased as the number of robots
increased. This is due to the fact that when the robots approach the
desired formation, small motion uncertainties cause oscillations in
their trajectories, and these oscillations persist to a greater extent
when the number of robots is higher. This phenomenon can be
mitigated by reducing the speed control gain Kc further after the
robots reach approximately the desired formation. However, tuning
of this control parameter is tedious and must be achieved by trial
and error. The success rates reported in this table were obtained
using one set of Kc. Thus, we can see that our method has good
scalability: that is, although the model was trained with a five-robot
team, the DNN policy can be applied to different sizes of robot
team.

To further evaluate performance, we tested 100 sets of initial
conditions for each of the multi-robot teams of sizes 4 to 9. In
Figure 5A, we present a box plot showing the group formation
error Eg as defined in Section 4.3. We can see that the median
formation errors are between 2% and 6% for robot team sizes
ranging from 4 to 9. Figure 5B shows a box plot of the convergence
time Tconverge. We can see that the median convergence time is
around 15 s. Based on Figure 5, we can see that although the DNN

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

FIGURE 5
Box plots showing results for (A) group formation error and (B) convergence time for multi-robot teams of size 4 to 9, over 100 sets of initial conditions
in multi-robot testing. The central mark in each box is the median; the edges of the boxes represent the 25th and 75th percentiles; the whiskers extend
to the maximum/minimum; and the circles represent outliers.

FIGURE 6
Comparison between the expert control system and our trained DNN
model for the five-robot case under 100 sets of initial conditions.

model was trained with a five-robot team, the learned controller
is scalable to other sizes of multi-robot team, and performance
is satisfactory under the metrics of group formation error and
convergence time.

To further compare the performance of the expert control
system and that of our trained DNN models, we show a box plot
representing results under 100 sets of initial conditions for the five-
robot case in Figure 6. We can see that the expert control system
achieved 1.76% for themedian formation error and 12.9 s inmedian
convergence time, while our DNNmodel achieved 3.12% and 18.2 s,
respectively, indicating that the expert policy outperformed the
end-to-end policy slightly. This is expected given that the expert
policy, as defined in (7) and 8, uses the global position of the
robots, which is assumed to be observable with perfect accuracy.The
end-to-end policy, in contrast, uses LiDAR observations as input,
which are noisy. It should be noted that the goal of the proposed
methodwas not to outperform the expert controller given ideal state
measurements. The main advantages of our method over the expert
controller are that 1) the end-to-end computational model obtained
by our method mitigates accumulation of error and latency in the
traditional pipeline of computational modules used by the expert
control method; and 2) our method does not need a localization
system to obtain global robot positions, reducing overall system
complexity.

4.6 Other formation shapes

The triangular formation control system that we designed
can be extended to other formation shapes, such as line and
circle formations. To examine such cases, we used additional
landmarks (i.e., stationary robots positioned at pre-selected
reference positions enabling other robots to achieve formation
objectives) and modified the expert controller to achieve the desired
formations.

Line formation: The objective of the line formation is for
the robots to position themselves in a line, at equal distances
from one another, between two landmarks. We simulated a seven-
robot team with two stationary robots serving as landmarks;
these were positioned 14 m apart at each end of the desired
line. The remaining five robots were controlled by the same
expert controller (7) and (8) that we used for the triangular
formation. We ran the same training algorithm (i.e., Algorithm 1)
with the same hyperparameters as before. Figure 7A shows the
results of testing, in which the robots achieved the desired line
formation.

Circle formation: The objective of the circle formation is for
M robots to position themselves in an M-sided regular polygonal
formation with a landmark at the center. We simulated this using
M = 6 robots, with one additional robot remaining stationary at the
desired center position. We modified the expert controller (7) to the
following:

vi =−Kc ∑
j∈Ni

‖pi − pj‖− d
*

‖pi − pj‖
⋅ (pi − pj)

−Kl
‖pi − pl‖− d

*

‖pi − pl‖
⋅ (pi − pl) ,

(9)

where d* = 2 is the radius of the circle, pl = (0,0) is the
position of the center robot, and the control gains were set
to Kl = 10,Kc = 1. We ran the same training algorithm (i.e.,
Algorithm 1) with the above modified expert control system, with
the same hyperparameters as before. Figure 7B shows the results
of testing, in which the six robots achieved the desired circle
formation.

Comparison with other work. To empirically compare our
method with other learning-based methods for formation control,

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

FIGURE 7
Other formation shapes: (A) line formation; (B) circle formation. Robot positions (denoted by small colored triangles) are sampled every 10 s. The black
solid lines indicate the final formation achieved.

TABLE 3 Summary of publications on learning-basedmulti-robot control.

Reference Tasks Method/
architecture

Robot
model

Policy
input

of robots
trained
(tested)

Scalability Needs
localization

Agarwal et al.
(2020)

Coverage, line,
Formation

RL/GNN Point mass Absolute pose 5 (2–10) Yes Yes

Li et al. (2022) Path planning RL + LfD/CNN
+ FC

Holonomic LiDAR velocity,
position

3–5 (3–5) No Yes

Yan et al. (2022) Formation +
path planning

RL/RNN Ackermann
steering

Distance angle 3–5 (3–5) No No

Blumenkamp et
al. (2022)

Path planning RL/GNN Holonomic Absolute pose 5 (5) − Yes

Li et al. (2020) Path planning LfD/CNN +
GNN

Point mass Binary map 4–12 (4–14) Yes No

Tolstaya et al.
(2020a)

Flocking LfD/GNN Point mass Absolute pose 100 (50–150) Yes Yes

This paper Triangular
formation

LfD/CNN +
GNN

Nonholonomic LiDAR 5 (3–9) Yes No

“−” represents a case in which no result was presented.

we used the publicly available implementation of the work described
by Agarwal et al. (2020) to evaluate performance for both line
formation and circle formation over 100 trials. In the case of
line formation, the mean group formation error Eg/d* (as defined
in Section 4.3) obtained by Agarwal et al. (2020) was 7.4% with
standard deviation (SD) 2.9%; and using our method, the mean was
1.8% with SD 1.1%. In the case of circle formation, the formation
error obtained by Agarwal et al. (2020) was 4.2% with SD 1.2%,
and ours was 3.4% with SD 1.4%. Note that our simulation was
implemented with realistic robot models in a robot simulator, while
Agarwal et al. (2020) used a point mass robot model. Thus, our
method achieved comparable or better formation error with more
complicated robot models.

5 Discussion

To further compare our proposed method with recent work on
learning-based multi-robot control, we summarize the main points
of distinction in Table 3. Existing methods can be categorized as
reinforcement learning (RL) (such as Agarwal et al. (2020); Li et al.
(2022); Yan et al. (2022); Blumenkamp et al. (2022)) or learning
from demonstration (LfD) (such as Li et al. (2020); Tolstaya et al.
(2020a) and our work), depending on the training paradigm. The
RL method does not require an expert policy, but its trial-and-error
nature could make training intractable for multi-robot systems.
The intractability issue is exacerbated when a realistic environment
is considered, in which the dimensionalities of the robot state

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

and observation spaces increase dramatically. As shown in the
table, the RL-based methods (Blumenkamp et al., 2022; Li et al.,
2022; Yan et al., 2022) were only validated for up to five robots
when a realistic robot model was considered. It is noteworthy that
Li et al. (2022) incorporated LfD into RL to mitigate the training
intractability issue. Agarwal et al. (2020) used up to 10 robots for
validation; however, the robot model was simplified as a point mass
model. In contrast, our method employs an LfD paradigm that
exploits expert demonstrations to guide the control policy search,
thus considerably reducing the policy search space. Our method
was validated for up to 9 robots with a realistic robot model and a
high-dimensional observation space. Indeed, formation control of
multi-robot systems has been well studied under the control regime
using analytical model-based methods (Cortés and Egerstedt, 2017;
Guo, 2017); the dynamic model-based expert controller used in this
paper is mathematically provably correct and guarantees formation
convergence of multi-robot systems (Mesbahi and Egerstedt,
2010).

The scalability of a control policy can be evaluated by testing
it with different numbers of robots than used in training. Among
RL-based work, Yan et al. (2022) and Li et al. (2022) did not
demonstrate the scalability of their methods. Agarwal et al. (2020)
used a GNN architecture, but zero-shot generalizability (i.e., the
results when a policy trained with a fixed number of robots
is directly tested with a different number of robots) was low,
as the success rate of the learned policy decreased when the
number of robots in testing differed from that used in training.
However, they showed that the scalability of this method can be
improved when curriculum learning is exploited. In Li et al. (2020),
Tolstaya et al. (2020a), and our work, GNN architectures with an
LfD training paradigm are adopted; these have demonstrated a
high level of scalability. Another advantage of our approach is that
it does not need localization to obtain global information on the
positions of the robots in order to compute control actions, as
required in other work (Agarwal et al., 2020; Tolstaya et al., 2020a;
Blumenkamp et al., 2022; Li et al., 2022).

6 Conclusion

In this article, we have presented a novel end-to-end
decentralized multi-robot control system for triangular formation.
Utilizing the capacity of a GNN to model inter-robot
communication, we designed GNN-based algorithms for learning
of scalable control policies. Experimental validation was performed
in the robot simulator CoppeliaSim, demonstrating satisfactory
performance for varying sizes of multi-robot teams. Future work
will include implementation and testing on real robot platforms.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

CJ: Writing–original draft. XH: Writing–original draft. YG:
Writing–original draft.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. XH and YG
were partially supported by the US National Science Foundation
under Grants CMMI-1825709 and IIS-1838799.

Acknowledgments

The authors would like to thank Suhaas Yerapathi, a former
graduate student, for his work on coding an early version of the
algorithm.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2023.
1285412/full#supplementary-material

References

Agarwal, A., Kumar, S., Sycara, K., and Lewis, M. (2020). “Learning transferable
cooperative behavior in multi-agent teams,” in Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, 1741–1743.

Bechlioulis, C. P., Giagkas, F., Karras, G. C., and Kyriakopoulos, K. J. (2019). Robust
formation control for multiple underwater vehicles. Front. Robotics AI 6, 90. doi:10.
3389/frobt.2019.00090

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://www.frontiersin.org/articles/10.3389/frobt.2023.1285412/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.1285412/full#supplementary-material
https://doi.org/10.3389/frobt.2019.00090
https://doi.org/10.3389/frobt.2019.00090
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Jiang et al. 10.3389/frobt.2023.1285412

Blumenkamp, J., Morad, S., Gielis, J., Li, Q., and Prorok, A. (2022). “A framework
for real-world multi-robot systems running decentralized gnn-based policies,” in IEEE
International Conference on Robotics and Automation, 8772–8778.

Chen, Z., Jiang, C., and Guo, Y. (2019). “Distance-based formation control of a
three-robot system,” in Chinese control and decision conference, 5501–5507.

Cortés, J., and Egerstedt, M. (2017). Coordinated control of multi-robot systems: a
survey. SICE J. Control, Meas. Syst. Integration 10, 495–503. doi:10.9746/jcmsi.10.495

Devo, A., Mezzetti, G., Costante, G., Fravolini, M. L., and Valigi, P. (2020).
Towards generalization in target-driven visual navigation by using deep
reinforcement learning. IEEE Trans. Robotics 36, 1546–1561. doi:10.1109/tro.2020.
2994002

Falanga, D., Kim, S., and Scaramuzza, D. (2019). How fast is too fast? the role of
perception latency in high-speed sense and avoid. IEEE Robotics Automation Lett. 4,
1884–1891. doi:10.1109/lra.2019.2898117

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018).
“Counterfactual multi-agent policy gradients,” in Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 32. doi:10.1609/aaai.v32i1.11794

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H., Kohli, P., et al.
(2017). “Stabilising experience replay for deep multi-agent reinforcement learning,” in
International Conference on Machine Learning, 1146–1155.

Foerster, J. N., Assael, Y. M., De Freitas, N., and Whiteson, S. (2016). “Learning to
communicate with deep multi-agent reinforcement learning,” in Advances in neural
information processing systems, 2137–2145.

Gama, F., Isufi, E., Leus, G., and Ribeiro, A. (2020). Graphs, convolutions, and neural
networks: from graph filters to graph neural networks. IEEE Signal Process. Mag. 37,
128–138. doi:10.1109/msp.2020.3016143

Gama, F., Marques, A. G., Leus, G., and Ribeiro, A. (2018). Convolutional neural
network architectures for signals supported on graphs. IEEE Trans. Signal Process. 67,
1034–1049. doi:10.1109/tsp.2018.2887403

Gronauer, S., and Diepold, K. (2021). Multi-agent deep reinforcement learning: a
survey. Artif. Intell. Rev. 1–49, 895–943. doi:10.1007/s10462-021-09996-w

Guo, Y. (2017). Distributed cooperative control: emerging applications. Wiley.

Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017). “Cooperative multi-
agent control using deep reinforcement learning,” in International Conference on
Autonomous Agents and Multiagent Systems (Springer), 66–83.

Jiang, C., Chen, Z., and Guo, Y. (2019). “Learning decentralized control policies
for multi-robot formation,” in IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), Hong Kong, China, 8-12 July 2019, 758–765. doi:10.
1109/AIM.2019.8868898

Jiang, C., and Guo, Y. (2020). Multi-robot guided policy search for learning
decentralized swarm control. IEEE Control Syst. Lett. 5, 743–748. doi:10.1109/lcsys.
2020.3005441

Jiang, J., and Lu, Z. (2018). “Learning attentional communication for multi-agent
cooperation,” in Proceedings of the International Conference on Neural Information
Processing Systems, 7265–7275.

Kabore, K. M., and Güler, S. (2021). Distributed formation control of drones
with onboard perception. IEEE/ASME Trans. Mechatronics 27, 3121–3131. doi:10.
1109/tmech.2021.3110660

Kahn, G., Villaflor, A., Ding, B., Abbeel, P., and Levine, S. (2018). “Self-
supervised deep reinforcement learning with generalized computation graphs for robot
navigation,” in IEEE International Conference on Robotics and Automation (IEEE),
5129–5136.

Li, M., Jie, Y., Kong, Y., and Cheng, H. (2022). “Decentralized global connectivity
maintenance for multi-robot navigation: a reinforcement learning approach,” in
IEEE International Conference on Robotics and Automation (ICRA), Philadelphia,
PA, USA, 23-27 May 2022 (IEEE), 8801–8807. doi:10.1109/ICRA46639.2022.
9812163

Li, Q., Gama, F., Ribeiro, A., and Prorok, A. (2020). “Graph neural networks for
decentralized multi-robot path planning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 Oct.-24 Jan. 2021
(IEEE), 11785–11792. doi:10.1109/IROS45743.2020.9341668

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., and Scaramuzza,
D. (2021). Learning high-speed flight in the wild. Sci. Robotics 6, eabg5810. doi:10.
1126/scirobotics.abg5810

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mordatch, I. (2017). “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in Proceedings of
the International Conference on Neural Information Processing Systems, 6382–6393.

Mesbahi, M., and Egerstedt, M. (2010). Graph theoretic methods in multiagent
networks. Princeton University Press.

Mustapha, A., Mohamed, L., and Ali, K. (2020). “An overview of gradient descent
algorithm optimization in machine learning: application in the ophthalmology field,”
in Smart applications and data analysis. Editors M. Hamlich, L. Bellatreche, A. Mondal,
and C. Ordonez (Cham: Springer International Publishing), 349–359.

Panagou,D., Stipanović,D.M., andVoulgaris, P.G. (2015).Dynamic coverage control
in unicycle multi-robot networks under anisotropic sensing. Front. Robotics AI 2, 3.
doi:10.3389/frobt.2015.00003

Ross, S., Gordon, G., and Bagnell, D. (2011). “A reduction of imitation learning and
structured prediction to no-regret online learning,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics (JMLR Workshop and
Conference Proceedings), 627–635.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008).
The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80. doi:10.1109/tnn.
2008.2005605

Stone, P., and Veloso, M. (2000). Multiagent systems: a survey from a machine
learning perspective. Aut. Robots 8, 345–383. doi:10.1023/a:1008942012299

Sukhbaatar, S., and Fergus, R. (2016). Learning multiagent communication with
backpropagation. Adv. Neural Inf. Process. Syst. 29, 2244–2252.

Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., and Ribeiro, A. (2020a).
“Learning decentralized controllers for robot swarms with graph neural networks,” in
Conference onRobot Learning (ICASSP), Toronto,ON,Canada, 6-11 June 2021 (IEEE),
671–682. doi:10.1109/ICASSP39728.2021.9414219

Tolstaya, E., Paulos, J., Kumar, V., and Ribeiro, A. (2020b). “Multi-robot coverage and
exploration using spatial graph neural networks,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 Sept.-1Oct. 2021
(IEEE), 8944–8950. doi:10.1109/IROS51168.2021.9636675

Wang, Y., Yue, Y., Shan, M., He, L., and Wang, D. (2021). Formation reconstruction
and trajectory replanning for multi-uav patrol. IEEE/ASME Trans. Mechatronics 26,
719–729. doi:10.1109/tmech.2021.3056099

Wang, Z., and Gombolay, M. (2020). Learning scheduling policies for multi-
robot coordination with graph attention networks. IEEE Robotics Automation Lett. 5,
4509–4516. doi:10.1109/lra.2020.3002198

Yan, Y., Li, X., Qiu, X., Qiu, J., Wang, J., Wang, Y., et al. (2022). “Relative distributed
formation and obstacle avoidance with multi-agent reinforcement learning,” in
IEEE International Conference on Robotics and Automation (ICRA), Philadelphia,
PA, USA, 23-27 May 2022 (IEEE), 1661–1667. doi:10.1109/ICRA46639.2022.
9812263

Zhang, Z., and Scaramuzza, D. (2018). “Perception-aware receding horizon
navigation for MAVs,” in IEEE International Conference on Robotics and Automation.
(ICRA), Brisbane, QLD, Australia, 21-25 May 2018 (IEEE), 2534–2541. doi:10.
1109/ICRA.2018.8461133

Zhou, S., Phielipp, M. J., Sefair, J. A., Walker, S. I., and Amor, H. B. (2019).
“Clone swarms: learning to predict and control multi-robot systems by imitation,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS),
Macau, China, 3-8 Nov. 2019 (IEEE), 4092–4099. doi:10.1109/IROS40897.2019.
8967824

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1285412
https://doi.org/10.9746/jcmsi.10.495
https://doi.org/10.1109/tro.2020.2994002
https://doi.org/10.1109/tro.2020.2994002
https://doi.org/10.1109/lra.2019.2898117
https://doi.org/10.1609/aaai.v32i1.11794
https://doi.org/10.1109/msp.2020.3016143
https://doi.org/10.1109/tsp.2018.2887403
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1109/AIM.2019.8868898
https://doi.org/10.1109/AIM.2019.8868898
https://doi.org/10.1109/lcsys.2020.3005441
https://doi.org/10.1109/lcsys.2020.3005441
https://doi.org/10.1109/tmech.2021.3110660
https://doi.org/10.1109/tmech.2021.3110660
https://doi.org/10.1109/ICRA46639.2022.9812163
https://doi.org/10.1109/ICRA46639.2022.9812163
https://doi.org/10.1109/IROS45743.2020.9341668
https://doi.org/10.1126/scirobotics.abg5810
https://doi.org/10.1126/scirobotics.abg5810
https://doi.org/10.3389/frobt.2015.00003
https://doi.org/10.1109/tnn.2008.2005605
https://doi.org/10.1109/tnn.2008.2005605
https://doi.org/10.1023/a:1008942012299
https://doi.org/10.1109/ICASSP39728.2021.9414219
https://doi.org/10.1109/IROS51168.2021.9636675
https://doi.org/10.1109/tmech.2021.3056099
https://doi.org/10.1109/lra.2020.3002198
https://doi.org/10.1109/ICRA46639.2022.9812263
https://doi.org/10.1109/ICRA46639.2022.9812263
https://doi.org/10.1109/ICRA.2018.8461133
https://doi.org/10.1109/ICRA.2018.8461133
https://doi.org/10.1109/IROS40897.2019.8967824
https://doi.org/10.1109/IROS40897.2019.8967824
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Problem statement
	3 Methods
	3.1 Overview of learning-based cooperative control
	3.2 Graph neural network
	3.3 Policy training
	3.3.1 Expert controller

	3.3.2 Policy training with DAgger
	3.4 Online cooperative control

	4 Experimental results
	4.1 Simulation environment
	4.2 DNN implementation
	4.3 System parameters and performance metrics
	4.4 Training
	4.5 Testing results
	4.6 Other formation shapes

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

