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Identifying an accurate dynamics model remains challenging for humanoid
robots. The difficulty is mainly due to the following two points. First, a good
initial model is required to evaluate the feasibility of motions for data acquisition.
Second, a highly nonlinear optimization problem needs to be solved to design
movements to acquire the identification data. To cope with the first point, in this
paper, we propose a curriculum of identification to gradually learn an accurate
dynamics model from an unreliable initial model. For the second point, we
propose using a large-scale human motion database to efficiently design the
humanoid movements for the parameter identification. The contribution of our
study is developing a humanoid identification method that does not require the
good initial model and does not need to solve the highly nonlinear optimization
problem. We showed that our curriculum-based approach was able to more
efficiently identify humanoidmodel parameters than amethod that just randomly
picked reference motions for identification. We evaluated our proposed method
in a simulation experiment and demonstrated that our curriculum was led
to obtain a wide variety of motion data for efficient parameter estimation.
Consequently, our approach successfully identified an accurate model of an
18-DoF, simulated upper-body humanoid robot.

KEYWORDS

human motion database, humanoid robots, motion retargeting, system identification,
dynamics model

1 Introduction

Due to the nonlinear nature of robotic systems, leveraging accurate models of their
dynamics is crucial for fast and precise motion control.

System identification is a methodology that estimates parameters of a dynamical
model. For robot systems, the inertial parameters of each link (mass, center of mass
position, and inertia matrix) can be estimated from the measurement data of motion
trajectories (e.g., joint angles, angular velocities, and torques). Identification methods for
robot manipulators have been studied for decades (Mayeda et al., 1984; Atkeson et al., 1986)
and applied to complicatedmulti-degree-of-freedom (DoF) robots, such as humanoid robots
(Ayusawa et al., 2008; Mistry et al., 2009). However, identifying reliable inertial parameters
remains challenging for humanoid robots.
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To estimate reliable inertial parameters, a wide variety of
measurement data is required to excite the robot’s dynamics. For
robot manipulators, such measurement data can be sampled by
designing appropriate reference trajectories by optimization and
generating them on the robots (Gautier and Khalil, 1992; Presse
and Gautier, 1993). For humanoid robots, however, designing
reference trajectories is difficult. Although some strategies have been
developed to design robot reference trajectories (Bonnet et al., 2016;
Ayusawa et al., 2017), a good model is necessary to consider the
constraints of balance of a humanoid robot to generate reference
trajectorieswithout falling over.Optimization can also be intractable
since the balance constraints are imposed by nonlinear inequality
constraints.

To avoid the balance problem, Bonnet et al. (2018) proposed
to use a rigid harness to restrain a humanoid robot’s body. Since
the harness obviated the risk of falling over, the balance constraints
were not necessary. However, the above approach was not able to
identify some inertial parameters since the link was fixed by the
harness and could not freely move. Therefore, a good initial model
remains necessary, and the highly nonlinear optimization problem
must be solved to estimate reliable inertial parameters for all
links.

Alternatively reference trajectories which ensure the stability of
the robots could be chosen from a list of preparedmotion candidates
(Venture et al., 2009; Jovic et al., 2015). Recently, Aller et al. (2021)
proposed to use a large set of static poses for precise estimation of
the mass and the center of mass position of each link. Since such
static motions are less sensitive to acceleration, it is easy to control
balance and the method does not require a highly accurate model.
However, the above approachwas not able to estimate themoment of
inertia due to the lack of dynamic motions.Therefore, it is necessary
to derive an accurate initial model so that the robots can perform
not only static but also dynamic motions.

To overcome this problem, we propose a curriculum-based
identification approach. Our curriculum first provides conservative
reference motions that can be generated with an unreliable model.
As identification progresses, the curriculum offers more aggressive
reference motions so that the robot’s dynamics are fully excited.The
initial unreliable model is iteratively updated with the measurement
data obtained by generating reference motions. Therefore, since
an accurate dynamics model can be learned gradually from an
unreliable initial model, a good initial model is unnecessary. Here,
a curriculum is represented as a sequence of reference motions for
efficient humanoid model identification.

In our proposed method, the curriculum needs to provide a
wide variety of reference trajectories, including not only static but
also dynamic motions. We utilized captured human motions to
obtain such data. Due to the recent development of large human
motion databases (Mandery et al., 2015; 2016; Krebs et al., 2021),
they now contain a wide variety of motion trajectories. By selecting
appropriate human motions from databases and transforming the
motion data into the robot’s data, we can easily obtain various
reference trajectories. Therefore, our method does not need to solve
the highly nonlinear optimization problem to design references.
We especially use a recently available database that includes a wide
variety of upper-body behaviors of humans (Krebs et al., 2021)
to obtain the reference trajectories for an upper-limb humanoid
robot.

A schematic diagram of our identification curriculum is shown
in Figure 1. We first convert the trajectories in the human database
into those of the robot to construct a dataset of robot reference
motions (Figure 1A). We next search for a generable and effective
reference motion for parameter identification through the dataset
(Figure 1B). The selected reference is provided to the robot and
generated to obtain measurement data (Figure 1C). Finally, the
new inertial parameters are estimated with the measured motion
trajectories (Figure 1D). The robot can generate more aggressive
motions from the next iteration since the model has become
more reliable. Thus, in the next iteration such an aggressive
motion is selected and provided from the dataset (Figure 1E). This
iterative process is repeated until an accurate dynamics model is
identified.

The following are the contributions of this study:

• We proposed a curriculum-based humanoid robot
identification method that can be adopted even without
access to a good initial robot model. Although quasi-static
motions are selected with the inaccurate initial model in
the first identification step, more aggressive motions become
generable from the next step of the iterative identification since
the model’s accuracy is gradually improved by the previous
iterations.
• In our proposed method, by using large-scale human motion
data, the optimization process was greatly simplified for
deriving appropriate movement data for system identification
than conventional humanoid identification methods. We
derived reference data by simply selecting themost suitable data
for efficient parameter identification from a large-scale dataset.
Note that the most suitable data means one of the candidate
motions which can estimate the most reliable parameters.
The optimization process to select the suitable data is, in
fact, much less computationally intensive than directly solving
complex optimization problems considered in the conventional
approaches.
• We empirically showed that our identification method can
efficiently find the parameters of a humanoid robot model.
To identify an accurate model, the data sampling order is
significantly important since it affects the sensitivity of the
identification results to torque output errors. Through our
simulated experiments, we confirmed that ourmethod properly
derived the suitable identification sequence and showed that
our curriculum-based method achieved efficient parameter
estimation.

The paper is organized as follows. Section 2 introduces related
studies. Section 3 gives preliminaries on system identification. In
Section 4, we describe our curriculum-based identification method
for a humanoid robot, and Section 5 shows the results of curriculum-
based learning. In Section 6, we summarize and discuss future
works.

2 Related works

Identification methods for humanoid robots have been
developed for over a decade, demonstrating that the inertial
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FIGURE 1
Schematic diagram of proposed identification method: Our method constructs identification curriculum using large-scale human motion database
(Krebs et al., 2021) to estimate a dynamics model of humanoid robot from unreliable initial model without solving complex optimization problems: (A)
Transform human motion database into robot data. (B) Search for generable and effective reference motions. (C) Provide selected reference and
generation to obtain measurement data. (D) Estimate new inertial parameters with measurement data. (E) Proceed to next iteration and search for new
reference motion.

parameters can be identified with limited sensor measurements
(Ayusawa et al., 2008; Mistry et al., 2009). The physical consistency
of inertial parameters can be maintained by an optimization
approach (Jovic et al., 2016).

However, the identification of reliable inertial parameters
remains challenging for humanoid robots. The strategies that
design robot reference trajectories require good initial models
to incorporate balance constraints (Baelemans et al., 2013;
Bonnet et al., 2016). Although initial models can be obtained
from computer-aided-design (CAD) software, the models are often
insufficient since a CAD model cannot capture every dynamical
effect of the robot (Swevers et al., 2007). Our proposed approach,
on the other hand, can estimate reliable inertial parameters without
a good initial model using the identification’s curriculum.

A human motion capture database was used for system
identification to estimate a human dynamics model (Venture et al.,
2009). Human motion data can be utilized to identify a humanoid
robot by converting humanmotion trajectories into those of a robot
(Yamane, 2011). However, if the database is small-scale and contains
a limited range of motion data, selecting reference trajectories that
fully excite the system is difficult (Bonnet et al., 2016).Therefore, we
leveraged a large-scale human motion database and show that the
dynamics of a humanoid robot are successfully excited since various
reference trajectories can be provided from such databases.

To the best of our knowledge, ours is the first work that
creates a curriculum of system identification for a humanoid robot.
Curriculum-based learning has been used to learn control policies
for humanoid robots (e.g. (Karpathy and Van De Panne, 2012;
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Rodriguez and Behnke, 2021)). We demonstrate that curriculum-
based learning is also useful for the identification of a humanoid
robot.

Recently, neural-network-based identification methods have
been explored for legged robots (Hwangbo et al., 2019; Yu et al.,
2019). The robot’s dynamics were modeled with neural networks,
and networks parameters were estimated. These studies focused on
identifying task-specific dynamics models that did not generalize
acrossmultiplemotions. Our proposed approach, on the other hand,
can identify a non-task-specific model by estimating the physical
parameters from a wide variety of measurement data. In the last part
of the experiment (Section 5), we demonstrate that our method can
obtain more reliable model than the task-specific models.

3 Preliminaries on system
identification

3.1 Dynamics model

In this paper, we address the following dynamics model of a
robot system:

M (θ) θ̈ + c (θ, θ̇) + g (θ) + v (θ̇) = τ, (1)

where θ, θ̇, θ̈, and τ are respectively the vectors of the joint angles, the
angular velocities, the angular accelerations, and the joint torques.
The inertia matrix is denoted as M, and c is the centrifugal and
Coriolis forces. g is the gravitational force, and v is the friction.

3.2 Identification process

An identification method estimates the so-called base
parameters, which are the minimal identifiable set of the robot’s
inertial parameters. They comprise the mass, the CoM position,
and the independent inertia tensor coefficients of each link. These
parameters are estimated using the fact that the equation of motion
1) can be written in a linear form with respect to base parameter
vector w ∈ RD (Kawasaki et al., 1991):

ϕ(θ, θ̇, θ̈)w = τ, (2)

where ϕ is called the regressor matrix for the base parameter. If
we obtain T time-step measurement data of angle trajectories, their
velocities and accelerations Q ≡ {θ1→T, θ̇1→T, θ̈1→T} and torques
f ≡ τ1→T where

θ1→T =
[[[[

[

θ1
⋮

θT

]]]]

]

, θ̇1→T =
[[[[

[

θ̇1
⋮

θ̇T

]]]]

]

,

θ̈1→T =
[[[[

[

θ̈1
⋮

θ̈T

]]]]

]

, τ1→T =
[[[[

[

τ1
⋮

τT

]]]]

]

,

and the regressor matrix becomes

Φ (Q) =
[[[[

[

ϕ(θ1, θ̇1, θ̈1)

⋮

ϕ(θT, θ̇T, θ̈T)

]]]]

]

and (2) can be rewritten:

Φ (Q)w = f . (3)

Thus, the base parameters can be identified as the least-squares
solution w⋆:

w⋆ = argmin
w
‖Φw − f ‖2 = (ΦTΦ)−1ΦTf . (4)

3.3 Optimization of robot reference
trajectory

In practical applications, estimation w⋆ is perturbed by
errors due to noise-contaminated measurements. For example, the
accuracy of the parameters is affected by the torque output errors δf,
including the external disturbances.

The sensitivity of estimated parameters w⋆ to the measurement
errors can be evaluated by the condition number of the regressor
matrix (Gautier and Khalil, 1992), which can be defined:

cond (Φ) =
σmax (Φ)
σmin (Φ) ,

(5)

where σmax(Φ) and σmin(Φ) denote the maximum and minimum
singular values of the regressor matrix. If the condition number
is small, the solution is insensitive to the errors. Therefore, it is
important to obtain a wide variety of measurement data to reduce
the condition number to reliably estimate the base parameters.

A conventional strategy to collect such measurement data is to
first design a reference trajectory of robot Qr ≡ {θr1→T, θ̇

r
1→T, θ̈

r
1→T}

by highly nonlinear optimization and generate its trajectory. The
optimization problem can be formulated as:

Q⋆ = argmin
Qr

cond (Φ) . (6)

The derived movement Q⋆ ≡ {θ⋆1→T, θ̇
⋆
1→T, θ̈

⋆
1→T} is called the

optimal robot excitation trajectory (Swevers et al., 1997).
To derive the optimal excitation trajectory for a humanoid robot,

the constraints of balance must be considered so that the reference
trajectory is generable by a humanoid robot without falling over.
Even for an upper-limb humanoid robot, the balance constraints is
important since the robot can fall over if the supporting base is not
fixed to the ground.

The balance constraints are imposed on (6) by nonlinear
inequality constraints:

h (Qr,w) ≤ 0. (7)

The calculation of the balance constraints requires base parameters
w. For example, the constraints of the Zero Moment Point (ZMP)
are imposed to guarantee the robot’s balance (Bonnet et al., 2016).
The ZMP can be represented:

pZMP (θ, θ̇, θ̈,w) =
[[[[

[

x− (
z− lz) ̈x
̈z+ g

y−
(z− lz) ̈y
̈z+ g

]]]]

]

, (8)

where (x,y,z) denotes the center of the mass position of the
humanoid robot, and lz and g are the height of the floor and the
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gravitational acceleration. The support polygon is a convex hull
formedby the floor contact points. If the ZMP lieswithin the support
polygon, the floor contact points do not change.Then, the robot can
maintain the balance by using the ground reaction force from the
contact points:

p−ZMP ≤ pZMP ≤ p
+
ZMP, (9)

where we denote ZMP’s upper and lower boundaries as p+,−ZMP.
Therefore, the left hand side of the inequality constraints in (7) can
be formulated:

h (Qr,w) =
[[[[

[

hZMP (θ1, θ̇1, θ̈1,w)

⋮

hZMP (θT, θ̇T, θ̈T,w)

]]]]

]

,

where

hZMP (θ, θ̇, θ̈,w) = [

[

p−ZMP − pZMP

pZMP − p
+
ZMP

]

]
.

However, the ZMP cannot be computed precisely if the initial
model is unreliable. To account for inaccuracies, the conservative
lower and upper bounds of the support polygon are considered
instead of (9) in practice:

(1− α)p−ZMP ≤ pZMP ≤ (1− α)p
+
ZMP, (10)

where α is the reduction coefficient of the support polygon
(0 < α ≤ 1). As the reduction coefficient increases, the size of the
support polygon is reduced. This restricts the variations of the
reference trajectories, and the dynamics may not be fully excited.
Therefore, a good initial model is necessary to estimate an accurate
dynamics model.

The optimization (6) becomes more complex by enforcing
the nonlinear inequality constraints (7). Deriving the
reference trajectories can be intractable due to the large
number of optimization variables and the nonlinear balance
constraints.

4 Proposed method

Our identification method, on the other hand, requires
neither preparing a good initial model nor solving the complex
optimization problem. We construct a curriculum for system
identification so that an accurate dynamics model is iteratively
learned from an unreliable initial model. We select the reference
trajectories from a robot motion dataset which is constructed
using a large-scale human motion database. Our curriculum-
based identification method is summarized in Algorithm 1.
The details of our proposed method are described in this
section.

4.1 Iterative identification

We define a curriculum as a series of robot reference
trajectories. By sequentially generating the reference trajectories

 1: Given

 2:   Human motion dataset (Ph
1
,Ph

2
,…,Ph

K
)

 3:   Initial base parameters w1

 4:   Initial inequality constraints h1

 5: Run Motion_retargeting(Ph
1
,…,Ph

K
):

 6:   for k = 1 to K do

 7:    Transfer Ph
k
into robot motions Qr

k
by (15)

and (16)

 8:   end for

 9:   return robot motion dataset (Qr
1
,…,Qr

K
)

 10: Run Iterative_identification(w1,h1,Qr
1
,…,Qr

K
):

 11:   for i = 1 to I do

 12:    Select reference Q⋆ from (Qr
1
,…,Qr

K
) by (11)

 13:    Sample measurement data Qi and fi by using

Q⋆

 14:    Compute new base parameters wi+1 by (4)

 15:    Construct new inequality constraints hi+1

 16:   end for

 17:   return estimated parameters wI+1

Algorithm 1. Curriculum-Based Identification Algorithm.

by the robot, a wider variety of measurement data can be
sampled. Consequently, an accurate model can be learned
gradually without a good initial model. To perform this process,
we developed an iterative identification method (lines 10 to
17 of Algorithm 1). Our method repeats an identification
process until the iteration reaches the maximum number of
iterations: I.

At each iteration, we obtain reference trajectory Q⋆ (line 12 of
Algorithm 1). In i-th iteration, the reference trajectory is selected
from a dataset of K robot motions (Qr

1,Q
r
2,…,Q

r
K):

Q⋆ = argmin
Qr∈(Qr

1,…,Q
r
K)

cond (Φ) , (11)

such that

hi (Qr,wi) ≤ 0. (12)

Since this simple optimization avoids solving the complex
optimization problem (6, 7), a wide variety of reference trajectories
can be easily obtained.

Note that in our proposed method, the robot motion dataset for
iterative identification was constructed by converting the captured
human data into robot motion, i.e., motion retargeting. Due to
the similarity of the structure to humans, the motion data for a
humanoid robot can be acquired by capturing a human movement
(Yamane, 2011; Ayusawa and Yoshida, 2017). Thus, we are able to
obtain a sufficient amount of motion data for robots from a large-
scale human motion dataset. The retargeting process is described in
Section 4.2.

In the optimization (11), we consider a concatenated regressor
matrix with all the measurement data that were sampled in the
previous iterations from 1 to i− 1 and the newly selected reference
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FIGURE 2
Data sampling process: Each data point of reference trajectories
(θ⋆, θ̇⋆, θ̈⋆)is generated by robot to obtain data (θ, θ̇, θ̈,τ)for
identification. Noise input was added to torque command to simulate
torque output errors.

trajectory in current iteration i:

Φ←

[[[[[[[[[[

[

Φ(Q1)

Φ(Q2)

⋮

Φ(Qi−1)

Φ (Qr)

]]]]]]]]]]

]

.

This enables us to find an effective reference trajectory to estimate
the unreliable base parameters that were not excited by the
previously obtained measurement data.

By reproducing the reference trajectory on the robot, the
measurement data of Qi ≡ {θi1→T, θ̇

i
1→T, θ̈

i
1→T}, and f i ≡ τ i1→T are

obtained (line 13 of Algorithm 1). In this paper, we utilized a
computed torque controller to generate reference motion (Khosla
and Kanade, 1989):

τt = ϕ(θ⋆t , θ̇
⋆
t , θ̈
⋆
t )w +Kp (θ⋆t − θt) +Kd (θ̇

⋆
t − θ̇t) , (13)

whereKp andKd denote the position and velocity gains.These gains
can be small in the computed torque controller since we use an
inverse dynamics controller. Figure 2 shows a block diagram of the
data sampling. We investigate the noise perturbation of the joint
torques.

After sampling the new measurements, we stack the regressor
matrix and the torque sequence with the previously obtained
measurements:

Φ←

[[[[[[[[[[

[

Φ(Q1)

Φ(Q2)

⋮

Φ(Qi−1)

Φ(Qi)

]]]]]]]]]]

]

, f ←

[[[[[[[[[[

[

f 1

f 2

⋮

f i−1

f i

]]]]]]]]]]

]

,

and new parameters wi+1 are estimated using (4) (line 14 of
Algorithm 1).

Finally, we construct new inequality constraints hi+1 for next
iteration i+ 1 (line 15 of Algorithm 1). At the first iteration, initial
parameters w1 are unreliable. Thus, initial inequality constraints
h1 restrict the reference trajectories to be generable with the
unreliable dynamics model. In many instances, quasi-static motions
are selected in the first iteration. But, as the iteration proceeds, the
robot might generate more aggressive motions than the previous

iterations since the parameters are iteratively updated. Therefore,
we relax the inequality constraints at each iteration so that more
dynamic reference trajectories can be selected in the optimization
(11).

4.2 Motion retargeting

Before initiating the iterative identification process, we
transformed the human motion data into those of the robot (lines 5
to 9 of Algorithm 1) in a process calledmotion retargeting (Gleicher,
1998).

We denote a sequence of three-dimensional positions ofmarkers
measured by a motion capture system as pm. We define the human
motion data with T time steps as Pm ≡ {pm1 ,p

m
2 ,…,p

m
T }. In a human

motion database, multiple human motion data are contained. The
first process’s goal is to transform each humanmotion bit of data Pm

into robot motion data Qr.
We achieve this by first defining the kinematics model for

representing the human motion data. Next we compute geometric
parameters ξh and angle trajectories θh1→T of the human model
so that the sequence of the marker positions of human model
Ph ≡ {ph1(ξ

h,θh1),p
h
2(ξ

h,θh2),…,p
h
T(ξ

h,θhT)} is close to that of the
captured data. Moreover, we compute robot angle trajectories
θr1→T so that the sequence of the marker positions of robot Pr ≡
{pr1(θ

r
1),p

r
2(θ

r
2),…,p

r
T(θ

r
T)} is close to that of the human model.

This can be done by a motion retargeting method (Ayusawa and
Yoshida, 2017) that directly optimizes geometric parameters ξh and
joint angles θh1→T and θr1→T. However, such a choice entails huge
computation cost since a large amount of motion data must be
retargeted in our approach. To avoid this problem, we used the
B-spline function to reduce the size of the optimization problem
(Rackl et al., 2012).

We respectively define the N control points equally spaced
between t = 1 to T (assuming N < T) and their corresponding basis
functions of the B-spline function:

θs,h1→N ≡
[[[[

[

θs,h1
⋮

θs,hN

]]]]

]

, θs,r1→N ≡
[[[[

[

θs,r1
⋮

θs,rN

]]]]

]

, bs1→N ≡
[[[[

[

bs1
⋮

bsN

]]]]

]

,

where θs,h1→N denotes the series of angle trajectories of the human
model corresponding to N control points and θs,r1→N denotes the
series of robot angle trajectories corresponding to the control points.

Then joint angles θh1→T and θr1→T can be computed:

θht =
N

∑
j=1

θs,hj bsj (t) , θ
r
t =

N

∑
j=1

θs,rj b
s
j (t) . (14)

By using (14), we formulate motion retargeting as the following
optimization problem:

min
(ξh,θs,h1→T,θ

s,r
1→T)
{‖Ph (ξh,θs,h1→N) −P

m‖2 +wg‖Pr (θs,r1→N)

−Ph (ξh,θs,h1→N)‖
2 +wηη(θ

s,r
1→N)} , (15)

where η is a penalty function and wη is its weight. In this paper, η
was used to constrain the joint angles so that they do not exceed their
limitations. Moreover, wg is a weight corresponding to the series of
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TABLE 1 Motion dataset (Krebs et al., 2021) used for system identification
and validation.

Motion name Amount of data Duration

Close 8 5.29–9.25 s

Cut 7 7.65–11.41 s

Mix 6 7.41–8.33 s

Open 6 5.89–7.65 s

Peel 6 7.81–12.13 s

Pour 14 5.41–9.85 s

Rollout 8 7.69–11.21 s

Scoop 16 5.93–8.33 s

Stir 16 3.81–10.69 s

Sweep 7 10.29–13.17 s

Transfer 8 5.53–6.81 s

Wipe 8 5.69–8.73 s

relative position errors of the markers between the human model
and the robot.

The computational cost of Algorithm 1 is dominated by the
optimization process for motion retargeting. We adopted the quasi-
Newton algorithm implemented as aMatlab function for solving the
retargeting problem in (15), where the computational complexity
of the quasi-Newton method is known as O(n2). Since we used
the B-spline functions to represent the movements, knot points
were variables to be optimized. The number of optimized variables
for each iterative computation was n = nξ + 2Nnθ, where nξ is the
number of geometric parameters ξh, and nθ denotes the number of
joint angles θh or θr.

The derivatives of the angle trajectories are calculated using the
finite difference method:

(θ̇rt , θ̈
r
t) =
{{{
{{{
{

(0,0) if t = 1

(
θrt − θ

r
t−1

Δt
,
θ̇rt − θ̇

r
t−1

Δt
) otherwise,

(16)

where Δt denotes the time step of motion retargeting.

5 Experiments

We conducted experiments on the simulated environment to
evaluate our curriculum-based identification approach. The details
of the experimental setups and results are provided in this section.

5.1 Evaluation setups

We first verified that our method could identify a robot’s
accurate dynamical model without a good initial model. We did

200 identification experiments. For each identification, different
sequences of zero-mean Gaussian noise δf were added to the
computed torque (Figure 2) to simulate torque output errors in the
identification results. The standard deviation of the noise was set to
5% of the torque limits (Presse and Gautier, 1993). The maximum
number of iterations of our iterative identificationmethod was set to
I = 5 so that the identification process might not be finished before
the accurate model was obtained.

We prepared an unreliable initial model and examined whether
the estimation error of the base parameters was gradually reduced as
the learning iterations proceeded. The estimation error is measured
by

RMSEw = √
1
D
‖wtrue −w‖2, (17)

wherewtrue is the true base parameter vector andD is the dimension
of the base parameter vector, i.e., the number of parameters. (The
relevant results are shown in Figure 6.)

The reliability of the parameters was evaluated using the relative
standard deviation of each estimated parameter:

dwj% = 100
de,j
|ŵj|
, (18)

where ŵj denotes the j-th element of themean value of 200 estimated
base parameters and de,j is the standard deviation of its estimation
error. A parameter is regarded as well estimated if dwj% is within 10%
or ŵj is small (< 0.02) (Ayusawa et al., 2009).

The reliability was also evaluated by validation. We prepared
reference motion trajectories for validation and obtained
measurement data (θct , θ̇

c
t , θ̈

c
t ,τ

c
t) using the reference motion

trajectories and the true base parameters by (13). The root-
mean square errors (RMSE) of joint torques (Ogawa et al., 2014)
for the initial and estimated base parameters w were calculated
by

RMSEτ = √
1
T

T

∑
t=1
‖τct −ϕ(θ

c
t , θ̇

c
t , θ̈

c
t)w‖2. (19)

(The relevant results is shown in Figure 8.)
We next evaluated our simple optimization (11). Our proposed

method created a curriculum by selecting appropriate reference
trajectories from the robot motion dataset. We compared our
proposed method with a non-curriculum-based approach that did
not solve the optimization problem (11). This approach randomly
picked a reference trajectory under the constraints (12). We
examined whether the base parameters can be learned efficiently if
the sampling process was guided by the curriculum (The relevant
results are shown in Figure 7).

In addition, we also evaluated our curriculum by comparing
the obtained model with the other models which were identified
by using single motions. Here, we called the former “the non-
task-specific model” and the latter “the task-specific models.” At
first, we identified the task-specific models by using each of
the two groups of motions (Open and Scoop), which could be
selected in the first iteration of the identification curriculum in
Figure 4. After identifying each model, we evaluated the reliability
of the model by using (19). (The relevant results are shown in
Figure 8).

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1282299
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kang et al. 10.3389/frobt.2023.1282299

FIGURE 3
Reference motion dataset for upper-limb humanoid robot: Each block represents reference motion trajectory. Trajectories were sorted according to
labels of motion names. By retargeting large-scale human motion database, we contained a wide variety of motion trajectories. Snapshots of some
motions are shown as examples.

FIGURE 4
Identification curriculum for upper-limb humanoid robot: Each rectangle enclosed by thick black line represents generable reference motion dataset
for each iteration. Color of each block represents relative magnitude of condition number for each iteration. Here, darker color represents smaller
condition number than lighter color. Black arrows represent curriculum which connects motion with smallest condition number (red dots) at each
iteration.
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FIGURE 5
Relaxation of balance constraints for each iteration of representative curriculum: Red dot (pZMP) represents ZMP, computed using reference trajectory.
Yellow rectangle (p+,−ZMP) represents upper and lower boundaries of support polygon. Green rectangle ((1− α)p+,−ZMP) represents reduced lower and upper
bounds of support polygon by (20). Reduction coefficient α was taken as 0.74 at first iteration and reached 0.3 at fifth iteration. Therefore, size of
support polygon (green rectangle) becomes larger as iterations proceeded.

FIGURE 6
Estimation errors of base parameters: Blue line represents root mean
square error (RMSE) between true and initial parameters of robot
model. Each red box represents RMSEs between true and estimated
parameters of each iteration. The red crosses represent the outliers in
each iteration of the evaluation using the proposed method.

Moreover, we evaluated the efficiency of using B-spline
functions for motion retargeting (Section 4.2). To compare with
using B-spline functions, we prepared another strategy which
directly optimized the joint angles θh1→T and θr1→T without using
the B-spline function (14). We performed the motion retargeting
10 times with each strategy by using a sampled motion (T = 740).
After retargeting, for each strategy, we evaluated the computation
time and the optimization costs (The relevant results are shown in
Figures 9A, B).

5.2 Experimental setups

5.2.1 Robot model
We conducted simulated experiments using an upper-limb

humanoid robot model of Torobo (Tokyo Robotics Inc.) to evaluate

FIGURE 7
Comparison of curriculum-based and non-curriculum-based
approaches: Each red box represents condition numbers of our
curriculum-based approach. Each green box represents condition
numbers of non-curriculum-based approach which randomly picked
reference motions for each iteration. The red crosses represent the
outliers in each iteration of the evaluation using the proposed method.
The green crosses represent the outliers using non-curriculum-based
approach in each iteration.

our proposed method. Assuming a risk of falling over, we
investigated the balance constraints using ZMP.The robot has a total
18 DoFs; each arm has 7 DoFs, its torso has 2 DoFs, and its head has
2 DoFs.

A dynamic simulation was performed with a physics engine
MuJoCo (Todorov et al., 2012).The sensor information of each joint
angle (and its derivatives) and torque were measured at 10-ms
intervals. Gains Kp and Kd for the proportional derivative (PD)
controller in (13) weremanually designed. Note that the robot could
not follow the reference trajectories by the PD controller since we
only set the gains to be small.

The robot has a total of D = 132 identifiable base parameters.
In the experiment, we regarded the CAD parameters as the true
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FIGURE 8
Comparison of task-specific and non-task-specific models: Blue band
represents RMSEs between estimated joint torques using initial base
parameters and their measurements. Each box represents RMSEs
between estimated joint torques using identified parameters of each
iteration and their measurements. Each yellow box represents RMSEs
between measurements and estimations using identified base
parameters by leveraging only “Open” motions. Each violet box
represents RMSEs between measurements and estimations using
identified base parameters by leveraging only “Scoop” motions. Each
red box represents RMSEs between measurements and estimations
using base parameters of the non-task-specific model. The crosses
represent the outliers in each iteration of the evaluation.

inertial parameters w′true to derive true base parameters wtrue.
Inertial parameters w′1 for deriving initial base parameters w1 were
randomly generated from a uniform distribution. If the j-th element
ofw′true exceeds 0, the uniform distribution interval was [0,2w′truej ];
otherwise it was [2w′truej ,0].

5.2.2 Relaxation of inequality constraints
At each iteration of our identification method, we relaxed the

inequality constraints (12) by computing a reduction coefficient of
the support polygon at each iteration by

αiter = a {cond (Φ) − b} ,

where reduction coefficient α in (10) is decreased by the following
criteria:

α =
{
{
{

αiter (ifαiter < αmax)

αmax (otherwise) ,
(20)

where αmax, a, and b respectively denote the maximum reduction
coefficient, scaling, and bias factors. In the first iteration, α was
initialized with αmax. We set αmax = 0.74 so that only 5% of the
reference trajectories could be selected from the robot motion
dataset at the first iteration. We used a = 2.5× 10−4 and b = 1.0 so
that α did not become too small value in the initial iteration.

FIGURE 9
Comparison of the strategies of the motion retargeting. (A) The
calculation times which were taken for motion retargeting. (B) the
optimization costs. In both subfigures, blue boxes represent the results
when motion retargeting is performed without using the B-Spline
function. Red boxes represent the results when motion retargeting is
performed using the B-Spline function.

Since condition number cond(Φ) might decrease as the
iteration proceeds, reduction coefficient α was also decreased.
Therefore, the support polygon gradually expanded, and our
proposed method selected more aggressive motions as learning
progressed.

5.2.3 Human motion database and setups for
retargeting

We utilized for motion retargeting the KIT Bimanual
Manipulation Dataset(Krebs et al., 2021), which contains a large
number of capture data of a human’s bimanual daily household
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activities, e.g., opening and closing lids, wiping dishes, etc. Each
captured motion was stored in the Coordinate 3D (C3D) format,
which recorded the three-dimensional coordinates of each part of
the human body at 100 Hz sampling frequency (Δt = 10 ms period).
We took 110 motions from the dataset, 98 of which were used as
a reference motion dataset for identification, and 12 of which were
used for validation.

The motion retargeting was performed using the minFunc
function (Schmidt, 2005) (which had been made for solving
optimization problems) in aMatlab environment by an AMDEPYC
7742 CPU, 3.4-GHz computer. The weights of the penalty function
were set to wg = 100 and wη = 50. The angle trajectories were
generated by interpolating the via points, which were optimized at
200-ms intervals. After retargeting, each bit of data was labeled by
the motion names shown in Table 1, where the names were taken
from the used dataset.

5.3 Experimental result

Our proposed method selected a sequence of the reference
trajectories from the robot motion dataset to create a curriculum.
Figure 3 shows the robot motion dataset. Since we constructed it
using a large-scale human motion database, it contains various
motion trajectories (e.g., Figure 3).

By selecting appropriate trajectories from the dataset, 200
learning curricula were created in the experiments because we
performed identification experiments 200 times in different noise
settings. A representative curriculum is depicted in Figure 4. At
each iteration, the reference trajectory with the minimum condition
number was selected from the entire dataset. The varieties of
reference trajectories increased as iterations progressed since the
upper and lower boundaries of the ZMP were expanded with (20)
(Figure 5). For example, the sweep motions were unavailable in the
first and second iterations, although they became generable from the
third iteration and had the smallest condition numbers.

Figure 6 shows the RMSE between the true and estimated
parameters (17) for each iteration of the identification. The error
of the initial model is indicated with a solid line. The estimation
errors gradually reduced as iterations proceeded (Figure 6). Finally,
the error median was 0.243 at the fifth iteration. We evaluated the
reliability of the parameters by relative standard deviation (18). Our
proposed method successfully estimated 75.8% of the parameters
(100 of 132) at the fifth iteration. In the initial model, 57.6% of
the parameters (76 of 132) were reliable. Therefore, our method
learned an accurate dynamics model where a good initial model was
unavailable.

Figure 7 compares our curriculum-based and the non-
curriculum-based approaches. As shown in Figure 7, the condition
number was significantly large at each iteration if the reference
trajectories were selected randomly from the robotmotion database.
Our curriculum-based approach, on the other hand, efficiently
learned the accurate base parameters. Therefore, the results showed
the importance of guiding the sampling process by creating the
curriculum.

Figure 8 compare the non-task-specific model and the
task-specific models. As shown in Figure 8, in case of the

non-task-specific model, the errors became smaller than that of the
task-specific models for each iteration. Therefore, our curriculum
estimated more reliable model than the task-specific models.

Figures 9A, B compare the performances of the motion
retargeting: The blue boxes show the performance of retargeting
without B-spline and the red boxes show the performance of
retargeting with using B-spline. As shown in Figures 9A, B,
when optimization was performed using (14), we could obtain
results with lower optimization costs and less computation time
than when B-spline functions were not used. Therefore, motion
retargeting using the B-spline functions was shown to be more
efficient.

6 Conclusion

We proposed a curriculum-based approach for the system
identification of a humanoid robot. Since the curriculum helps
gradually learn accurate dynamics from an unreliable initial
model, our method does not require a good initial model.
Unlike the conventional approach, our method does not need
to solve the complex optimization problem. By using a large-
scale human motion database, various reference motions can
be provided by converting the human motion data into those
of the robot. By selecting an appropriate reference trajectory,
our curriculum successfully guided the robot’s sampling process.
Consequently, an accurate dynamics model was gradually learned
from an unreliable initial model by our iterative identification
method.

Future work will apply our curriculum-based identification
method to a physical robot. In addition, we will evaluate our
approach on a whole-body humanoid robot. In this case, we would
not only change the robot model, but also consider whether there
are other motion databases which would be suitable for identifying
the model. Once the accurate initial model is obtained, we would
try to identify more accurate model for the fast and precise control.
Then, it is necessary to considerwhether it ismore preferable to carry
out our identification curriculum using a database containing more
aggressive behaviors or to use a conventional method without using
a database.

Moreover, we will verify the end conditions of iterative
identifications in the future work. In this paper, the maximum
number of iterations was set in advance to demonstrate the
effectiveness of the identification curriculum. However, it should
be determined to ensure that a highly accurate model is obtained.
To do so, some criteria could be used as the end conditions of
identification [e.g., the condition number of the angle trajectories
(5) and the reliability of the model (19)]. Then, the tuning
of the hyperparameters for the relaxation of the inequality
constraint might also be discussed to avoid generating a redundant
curriculum.
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