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Introduction: Electromagnetically controlled small-scale robots show great
potential in precise diagnosis, targeted delivery, and minimally invasive surgery.
The automatic navigation of such robots could reduce human intervention, as
well as the risk and difficulty of surgery. However, it is challenging to build a
precise kinematics model for automatic robotic control because the controlling
process is affected by various delays and complex environments.

Method: Here, we propose a learning-based intelligent trajectory planning
strategy for automatic navigation of magnetic robots without kinematics
modeling. The Long Short-Term Memory (LSTM) neural network is employed
to establish a global mapping relationship between the current sequence in the
electromagnetic actuation system and the trajectory coordinates.

Result: We manually control the robot to move on a curved path 50 times to
form the training database to train the LSTM network. The trained LSTM network
is validated to output the current sequence for automatically controlling the
magnetic robot tomove on the same curved path and the tortuous and branched
new paths in simulated vascular tracks.

Discussion: The proposed trajectory planning strategy is expected to impact the
clinical applications of robots.

KEYWORDS

precise surgery, small-scale robot, electromagnetic control, learning-based trajectory
planning, long short-term memory neural network

1 Introduction

Untethered robots with the capacity to swim in narrow and winding environments
due to their small size and high flexibility have gained great promise in precision
medicine, such as drug delivery, minimally invasive surgery, and precise diagnosis.
In recent years, many actuation methods for untethered robots have been developed,
mainly including optical (Liu et al., 2010; Dai et al., 2016; Palagi et al., 2016; Muiños-
Landin et al., 2021), acoustic (Nadal and Lauga, 2014), biological (Magdanz et al., 2014;
Hosseinidoust et al., 2016; Zhang et al., 2023), chemical (Solovev et al., 2009; Mei et al.,
2011; Sánchez et al., 2015), andmagnetic actuationmethods (Li et al., 2018; Kim et al., 2019;
Wang et al., 2020a; Culha et al., 2020; Yang and Zhang, 2020; Schaff et al., 2022; Li et al.,
2023).
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For example, microrobots consisting of photoactive liquid-
crystal elastomers can be driven by structured monochromatic
light (Palagi et al., 2016); small metallic devices were self-propelled
by catalytic reactions in fluids for chemical actuation (Mei et al.,
2011). Moreover, micro/nanorobots can be integrated with motile
organisms to realize biological powered motion.

Magnetic actuation of medical robots has great potential in
the diagnosing, precise drug delivery and minimally invasive
surgery due to its unprecedented properties including fast response,
remote control, and safe manipulation. Therefore, the actuation
technology is intensively investigated to achieve effective and
precise control. The common magnetic control methods involve
permanent magnets (Son et al., 2021), Helmholtz coils (Maxwell
coils) (Yu et al., 2010; Zhang et al., 2010; Basar and Ahmad, 2016;
Wang et al., 2020b; Jiang et al., 2021), systems consisting multiple
electromagnets (Kummer and Abbott, 2010; Niu et al., 2017;
Yang et al., 2019; Go et al., 2020), and magnetic resonance (Le et al.,
2016; Mutlu et al., 2021; Tiryaki and Sitti, 2021).

In the future, automatic control is hoped to complement or
replace the manual operation in the field of minimally invasive
surgery, because the manual operation requires long-term training
to achieve technique and proficiency, which raises the high threshold
and inevitable mistakes. Although fully learning the complex 3D
endovascular environments, whether through physical modeling,
control algorithms or neural networks, is complex and need a great
deal of work, still many automatic control methods have been
investigated in 2D environments to lay the groundwork for control
in real medical scenarios in the future (Belharet et al., 2012; Qing
and Gao, 2016). Present automatic control methods are mainly
based on the path-planning algorithm to find a short path or
path with less collision between the start and the end (Sabra et al.,
2006; Lim et al., 2020), the model-based trajectory planning to
design the motion in detail, and the visual feedback system for
error calibration in real-time. For example, Meng et al. (2019),
found a simple, low-energy path based on a breadth-first search
and genetic algorithm and combined sliding mode control, back
stepping control, and disturbance compensation to the navigation
control system for detailed planning, adding a feedback system

for error calibration. In the common detailed and time-related
trajectory planning process, it is necessary to model the relationship
between the driven current of the electromagnetic actuation system
and the motion generated by the magnetic field (Long et al., 2015;
Li et al., 2019; Yuan et al., 2019). However, the precise modeling
between the magnetic actuation system and the resulting motion
is challenging because the magnetically controlled motion always
involves many delays including motion inertia (Fruchard et al.,
2019; Meng et al., 2019), hardware delay, and software delay. The
inertia delay is defined as the motion of the motile robot being
affected by the previous moving status (Tabak, 2018; Tabak, 2019).
Therefore, it will affect the modeling because the robotic motion
is affected by the previous states. The hardware delay is defined
as the current switching rate of the current source equipment that
can cause the delay of the generated force on the robot during
the movement. Furthermore, software delay always exists between
the software and the controller, which is the delay in real-time
information transmission. Moreover, because the whole process
from planning to navigation needs to be wholly completed when the
robots need to navigate under the new paths, the present automatic
control process lacks extensibility.

In this paper, we propose a machine learning-based trajectory
planning method. By such means, we could use the neural
network to directly establish the relationship between the driven
current sequence of the electromagnetic actuation system and the
trajectory of the robot to generate plans for navigation instead of
modeling. In contrast with the conventional kinematics modeling
which focuses on each motive state on the path, we aim to
establish a global relationship between the current sequence and
the consistent coordinates of the whole path. It focuses on the
overall process and involves the factors that cause errors such as
delays and the environment in the training process. Therefore, the
trajectory planning considering the error can directly realize error-
free automatic navigation. Since the operation of the magnetic
particles is a continuous process, where the state of each moment
is related to the previous moments, and the neural network used for
training needs to have a long-term memory function, we chose the
Long Short-TermMemory (LSTM) neural network (Liu et al., 2019;

FIGURE 1
(A) The mixture of NdFeB and SEBS is thermally drawn to the elastically magnetic fiber. (B) Stress-strain curve of the SEBS mixed with NdFeB. (C) The
magnetic fiber is magnetized and cut to pieces as the use of untethered robots.
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Yu et al., 2019; Sherstinsky, 2020), it can achieve good continuity and
learn the connection between different motion states in the time
series (Thuruthel et al., 2019; Truby and Santina, 2020). The detail
of LSTM is discussed in the Supplementary Material. The overall
structure of our design is shown in Figure 1A with the application
scenarios in the cardiovascular environment.

To investigate the above coordinate-current relationship, we
realize the learning-based trajectory planning in reference to
“learning from demonstration (Tsai et al., 2020)” on an established
track. We start from the repeated manual control of the robot to
LSTM network training. After training, the trajectory planning is
completed by inputting the desired coordinate sequence into the
neural network to predict the appropriate driven current sequence.
The current sequence is input into the electromagnetic actuation
system to realize automatic navigation.

Furthermore, we expand the training database by performing
rotating and symmetrical operations on the original track with
corresponding coordinate transformation to extend the prediction
to other different and more complicated trajectories without
new manual demonstration. When there is flow rate, diameter
changes, and bifurcations in the environment, we define the
current correction factor to adjust motion. The value of the factors
is determined by experiment. The proposed trajectory planning
method will improve the accuracy and intelligence of robotic
navigation and impact minimally invasive surgery.

2 Materials and methods

2.1 3D printing and robot fabrication

We used the semi-open orbit instead of the restrained soft
pipe to provide robots with more space for movement to show
controllability. To simulate real and complex vascular structures, we
drew the complicated path in “SolidWorks” and printed the track by
3D printing. The printing material we use is polylactic acid (PLA)
and the printingmachine we use is “RAISE 3DE2”.The “IdeaMaker”
is used for slicing.

The magnetic robot is fabricated by thermoplastically pulling
a preform which is made by 80 vol% styrene ethylene butylene
styrene (SEBS) and 20 vol% Fe3O4, because SEBS is soft and has
great elasticity. Such material is promising in the fabrication of
medically invasive robot. The preform is fed into a furnace where
materials soften ormelt (Figure 1A).The size of the thermally drawn
fiber can be controlled by the drawing temperature, the feeding
speed of the preform, and the drawing tension (Yan et al., 2020).
In order to demonstrate that the material mixed with magnetic
particles has low rigidity and good elasticity, which is promising
for applications in biomedical fields, we further measured its stress-
strain curve. By calculating the slope of the linear region, the
elastic modulus of the SEBS blended with ferromagnetic particles
obtained by thermal drawing is 12.6 kPa, shown in Figure 1B. The
elastic modulus (Young’s modulus) of human muscles, tissues is
generally around 1 kpa (Chen et al., 1996). In our future work, we
will further coat hydrogel on the surface of the robot tomake it more
biocompatible.

The minimum diameter of the fiber can be less than 100 μm, so
thermally drawn robots have great potential to enter narrow tissues

or blood vessels. In this paper, we aim to investigate the auto control
of the untethered robot.Therefore, we first magnetize the fiber along
the length direction shown in Figure 1C. Secondly, we cut the fiber
to pieces of little cylinders with 1 mm long. The diameter is also
controlled to 1 mmduring the drawing process.The cylinder is latter
used to analyze the auto navigation.

2.2 Actuation system

We built an electromagnetic system that can control the magnet
with 5 degrees of freedom in space. This actuation system contains
eight electromagnets, which consist of four coils in the plane and
four in the upper dimension. The iron cores within the coils ensure
that they can generate a stronger magnetic field and gradient under
a relatively low current (10 A corresponds to a gradient of 1 T/m)
by focusing the field lines; therefore, locally increasing the field
density. This system can configure different operation modes and
parameters by the software. The first operation mode is the manual
control using the handle and the second is directly entering the
current sequence with time intervals to realize auto control. The
magnetic field and gradient are generated by the eight current
sources through the electromagnetic induction of the coils. Tomake
sure that the state of the coils and their influence on the magnetic
particles is the same for every experiment, we need to calibrate it
beforehand. First, it is obvious that the current value needs to be
reset to zero before the experiment. Secondly, since the change of
current is not instantaneous, the inductive effect produced during
the change of current will affect the magnetic field, thus affecting
the motion. So, we need to make sure that the inductive effect is
the same for each experiment, and we calibrate this by setting the
current changing rate to the same value for each experiment. The
effect of the calibration is evaluated in the Supplementary Figure S2.
Before our auto-control work, we model the relation between the
current and the magnetic field shown in Supplementary Material.
In our work, we utilize the auto control mode to realize automatic
navigation by directly inputting the driven current sequence into the
electromagnetic system.

2.3 Experimental design

2.3.1 Path planning
Figure 2A, the first block shows a hierarchical vascular structure

with multiple bifurcations. The complete motion planning process
can be divided into two steps, path planning, and trajectory
planning, according to the flow chart in Figure 2B. Path planning
is the global-scale planning method in the whole motion planning
process. It establishes an overall direction for the microrobot. Such
overall planning remains blank space between two adjacent track
points, which need detailed time-based planning and combinedwith
a controlling system. Therefore, after determining the general path,
the specific details in the blank space are determined by trajectory
planning. In our work, we use the A* algorithm (Dolgov et al., 2008;
Wang et al., 2019) to achieve path planning. The A* algorithm is a
widely used basic path planning algorithm that describes each path
point with the sum of two functions, the cost of moving from the
starting point to that point, and the predicted cost of traveling from
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FIGURE 2
The basic procedure of the learning-based automatic control. (A) The overall structure of our work. Automatic control of magnetic microrobots in the
cerebrovascular environment based on the magnetic field control system and LSTM neural network. The auto control will start from simple tracks and
will be further extended to complex paths and paths with bifurcations. (B) The flow chart of our motion planning method compared with the common
motion planning process. We proposed a learning-based trajectory planning refer to as “learning from demonstration,” using the manual
demonstration and network learning to replace the model-based trajectory planning process.

that point to the end point. The point that minimizes the sum at
each step is the suitable path point found. We extract the boundary
information of our track and define the starting and ending points
of the path. Input the information above into the A* algorithm; then,
generate a path consisting of many path points.

2.3.2 Trajectory planning
Path planning provides a global direction for path navigation.

When considering the movement of robots, to further smoothen
the trajectory and avoid collision between robots and the vessel
wall, we need the trajectory planning process to design the
detailed path in complex vessel sections such as bifurcations
and shut turns (Gasparetto et al., 2012; Fruchard et al., 2019;
Madridano et al., 2021). Trajectory planning adds a time dimension

to the planned path, which is always coordinated with the motion
controlling system (e.g., electromagnetic actuation system). For
the common navigation method, the controlling process is always
accompanied by different kinds of delays we mentioned before and
the complicated environment.These delays are not considered in the
modeling or controlling process, therefore, the error generated by
it needs to be fed back to the input through the feedback system
for further error correction. Figure 3A shows the influence of the
current source delay. Here, the current delay is defined as a slow
current switching rate. The first procedure controls the robot with
the lowest current source delay (e.g., 5 A/s). The controlling current
sequence is then recorded and applied to different delays. After the
current sequence controlling process is completed, the current value
remains at the last moment. The trajectories under the larger delays
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FIGURE 3
(A) Electromagnetically controlled path of microrobot under different current delays. The lower current changing rate corresponds to a larger delay. (B)
The physical map of the control system consists of 8 coils. We use the 4 coils in the platform to accomplish 2-dimensional control. (C) The gradient
force and torque exerted on the magnet.

show an obvious mismatch with the original one. When the current
switching rate declines to 4 A/s and 3 A/s, the robot experiences
irregular loss of direction and deviates from the original trajectory.
When the rate further declines to 2 A/s, the original trajectory, and
themoving process have completelymismatched because of the high
delay, causing the robot not to reach the ending point, as detailed in
Supplementary Video S1.

Therefore, according to the red dotted box in Figure 2B,
we propose a learning-based trajectory planning method with
neural network training that can replace classic model-based
trajectory planning to eliminate the controlling error caused by
various delays without complicated feedback. In essence, trajectory
planning involves inserting detailed intermediate points with time
dimensions between the planned path points to navigate the robot
along with it. In our work, we complete this process by manually
controlling the robot under the desired planned path and use
the neural network to learn the current-coordinate relationship
from the manual controlling process referring to the idea of
“learning from demonstration”. Since the training database based
on manual operation includes the delays and environmental factors
in the control process, the trained neural network can take
the error factors into account and realize low-error trajectory
planning.

To control the robot under the actuation system, there are
two main types of forces on a magnetic body in the magnetic
field: magnetic torque, and magnetic gradient force. When the
direction of the magnetic moment of the magnet in the magnetic
field is inconsistent with the direction of the magnetic field, the
magnetic field will exert a torque on the object so that the magnetic
moment is arranged according to the direction of the magnetic
induction intensity, as shown in Figure 3C. When the amplitude
of the magnetic field is not uniform, the magnet is subjected to a
magnetic gradient force in the direction of the increasing gradient.

The magnitude of the magnetic gradient force is determined by the
magnetic field distribution and the internal magnetic moment of the
object, as shown in Eq. 1. We control the robot by the gradient force
in this paper.

f = (m ∙∇)B (1)

The training process of the neural network is shown in
Figure 2A, the second block. We first obtain the network training
database from manual control by using the handle to navigate the
robot in detail between the adjacent path planning points, which
is implemented by the manual control mode of the system with 8
electromagnets. Figure 3B shows the physicalmap of our controlling
system. The control current will be recorded by the software and
the path coordinates of the robot will be abstracted by MATLAB
(Supplementary Figure S4). Because our controlling process is a
time sequence in which the state of each time step is affected by
the previous time steps, we chose the Long Short-Term Memory
Neural Network (LSTM) which can learn long-term dependence to
deal with the database by time sequence. Therefore, to eliminate
the comprehensive delays we mentioned before and the human
uncertainty during the manual demonstration, we next input the
prepared training database into the LSTM network. The whole
training and prediction process is completed by the Neural Network
Training Tool (nntraintool) in MATLAB. Figure 2A, the second
block shows the hierarchical structure of the neural network. After
the procession of the dropout layer to prevent overfitting. In the
LSTM layer, the input sequence is used to train the network.After the
LSTM layer, the fully connected layer connects the source eigenspace
and the target eigenspace by weighted sum.

In conclusion, the manual demonstration and machine learning
(neural network) part are equal to the trajectory planning process
which determines the detailed path and controlling method as
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shown in Figure 2B. The LSTM training replaces the process
of kinematics modeling, repeated trajectory planning-feedback-
adjustment in the orange square in Figure 2B. The error correction
part is integrated with themachine learning process duringmultiple
rounds of training, eliminating the need for real-time feedback
for motion calibration. Therefore, the neural network figures out
the relationship between the current and motion through repeated
training while considering all the inherent errors including the
comprehensive delays mentioned before, flow rate, bifurcations,
and other complexes. Under such an experimental process, we
made the trajectory planning and error correction automatic and
synchronous, simultaneously, making the path control continuous
and undisturbed, and reduce the image intervention.

3 Results

3.1 Manual demonstration and forward
training

In the abovementioned trajectory planning method, we aim
to use the long short-term memory (LSTM) neural network to
predict the current sequence required for automatically controlling
the robot stably and accurately. Next, we train the LSTM network
with multiple manually controlled processes. Through repeated
manual demonstration, the LSTMneural network learns the detailed
relationship between current values and position coordinates. To
allow the neural network to learn as much as possible about the
relationship between robotic movement and current sequence in
various positions and directions, and to avoid overmuch training
sets, we designed a noncentrosymmetric S-shaped orbit with small
curvature, as shown in Figure 4A.The basic training database of the
neural network is obtained by manipulating the magnetic robot by
the handle in the track.

We find the shortest path based on the path planning algorithm
(A* algorithm) according to the starting and ending points and
use the handle to manually control the robot along the prescribed
path. We turn on the current recording function in the system
controlling software, which can export the current values of each
current source at 100 ms intervals. The position of the magnetic
robot is recorded by the camera, and the position coordinates of the
robot are extracted by the motion identification algorithm which is
realized byMATLAB codes. Figure 4B shows the path of themanual
navigation process abstracted by the difference in greyscale value
(Supplementary Figure S5).

We first conform to the order of the manual operations, use
the driven current sequence as the input of the neural network,
and use the position coordinates of the robot as the output of
the neural network to train the network. This step evaluates the
accuracy of the prediction of the training network. The detailed
procedure and parameters of the LSTM network are shown in
the Supplementary Material. After completing the network training,
we input the current values in the test database to predict the
position coordinates and evaluate whether the trained network can
accurately predict the network output. As shown in Figures 4C, D,
the comparison between the predicted value of the x and y
coordinates and the actual coordinate values recorded by the
camera. Multiple cycles represent repeated experimental controls

and repeated predictions.We take the time average of the coordinate
error and obtain the average error of the x and y coordinates as
3.4% and 4.1%, respectively. The relatively large prediction errors
come from the beginning and end of each cycle. There is a sudden
change between the end of one round of control and the beginning
of the next round. However, such error can be eliminated in real
control, because in the actual navigation process when only one set
of accurate predictions is needed for a single round of experimental
navigation, only one roundof predictions is needed.Accordingly, the
predicted results match up with the practically recorded coordinates
in the experiments, indicating that the trained network can achieve
accurate prediction.

3.2 Reverse design and analysis

In the abovementioned text, we take the driven current values
as network input and position coordinates as output to verify
the accuracy of neural network predictions by data analysis. The
neural network learns the coordinate changes caused by different
current sequences in this way. Next, we need to obtain the current
prediction from the LSTM network and evaluate its performance
experimentally to verify how the learning-based trajectory planning
strategy works. Therefore, in the subsequent training of the neural
network, we reverse the input and output, taking the manually
controlled position coordinates as the input of the network and
the current as of the output. The trained neural network can learn
the specific current sequence corresponding to different coordinate
changes.

After training, we directly input the desired planned
path coordinates of the track to obtain the predicted current
sequence. The prediction current values are shown in
Supplementary Figure S6. The prediction would be evaluated in the
actual experimental navigation. We arrange the current sequence
of the prediction result in time series and load it into the control
software. The time interval is 200 ms between the adjacent current
value and the electromagnet will excite the magnetic field with the
driven current, so the robot in the magnetic field will move under
the magnetic gradient. We record the moving trajectory of the robot
through the camera and further compare it with the manual control
path and the standard path planned by the path planning code. The
contrasting result indicates that the auto-control is more precise and
stable, especially, showing great targeted delivery ability.

We define the width direction of the track as the X-axis and
the length direction as the Y-axis according to Figure 4A. The X-
Y position coordinates of auto control, manual control, and the
standard line are shown in Supplementary Figure S7. Figures 5A, B
show the x, and y coordinates of the path extracted by the MATLAB
code varying with time. According to the contrast between the
manual and auto path, the changing coordinates of auto-control
are smoother with time. Figure 5C evaluates the accuracy of the
auto-control and manual-control paths by calculating the spatial
deviation between controlled lines and the planned standard line.
We define the spatial deviation along the x-axis. At each point on
the path, the shortest distance between the point and the standard
line is defined as the deviation error. Overall, it shows greater
accuracy the average error of auto control is 0.76 mm while the
manual control is 0.82 mm. The difference between the two error
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FIGURE 4
Accuracy evaluation of the network prediction. (A) The non-centrosymmetric S-shaped orbit with small curvature. Train the network with the basic
path. (B) We use the MATLAB code to abstract the moving path of the microrobot. We recognize the microrobot according to the grayscale value
difference. (C) Predicted value of y coordinates compared with the actual coordinates abstracted by the movement identification code. (D) Predicted
value of x coordinates compared with the actual coordinates abstracted by the movement identification code.

curves reaches its maximum in the ending area of the whole path.
The error of the auto-control path at the destination is 1.03 mm
in the track width 13 mm, while it is 1.34 mm for the manual-
control path, indicating great targeted delivery ability. The specific
trajectory is shown in Supplementary Video S2.We further calculate
the standard deviation of error. Figure 5D depicts the standard
deviation of each control process.The red curve represents the auto-
control path, it shows a lower standard deviation compared with
the black curve, which indicates that the automatic control has
high stability, and each round of the navigation process has tiny
fluctuations and gains strong consistency. We also test the spatial
distribution of the velocity of the microrobot.

Figure 5E shows the velocity distribution at different path points.
We fill the path with different colors to represent different velocities,
asmarked in the color bar.This shows that undermanual control, the
color changes irregularly, which means that the robot has unstable
acceleration. Under such circumstances, it is difficult for robots to
smoothly enter the sharp turn or accurately arrive at the destination.
In actual medical surgery, unstable shaking and navigation may
also affect the safety and success rate of the surgery. The auto
control path, on the contrary, shows a regular change of color. It
can be approximately treated as the uniformly accelerated motion,
indicating the automatic control generates a relatively average force

on the microrobot to ensure a more stable path. In more complex
environment, greater stability can ensure that the robot resists more
disturbance. The magnitude and direction of the force on the robot
can be qualitatively described by the magnetic gradient. To verify
the consistency between the force and robotic motion, we analyze
the gradient of the magnetic field along the path. We first establish a
model of the system consisting of eight electromagnets and simulate
the magnetic field. Figure 5F shows the magnetic field along the
path at different points marked on the trajectory. The direction
of the simulated magnetic gradient is consistent with the moving
direction along the trajectory. In the Supplementary Figure S8, we
show the field amplitude and gradient in the 10 cm2 plane and in
a sphere area with a diameter of 5 cm around the robot when it
reaches the destination. It depicts the magnetic field distribution in
the surrounding space during navigation.

3.3 Expansion of the training database

Moreover, to extend our prediction and auto navigation to more
complex paths without new and repeated manual demonstration,
we perform a series of symmetrical and rotating operations on the
initially placed track, see Supplementary Figure S9.
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FIGURE 5
The comparison between the auto and manual-controlled path. (A) X coordinates of the microrobot changing with time. The red and orange line
represents the auto-control path, and the purple and blue line represent the manual-control path. (B) Y coordinates of the microrobot changing with
time. (C) Mean error between the control path and the standard path. (D) Standard deviation of error of the auto-control path and manual-control
path. (E) Velocity distribution of the microrobot along the path. (F) Distribution of the magnetic field in the 10 cm × 10 cm × 10 cm space.

To ensure that the rotating track can completely transplant
the spatial magnetic gradient distribution through coordinate
transformation, the rotation angle is confined to 90° and multiplied.
Each rotating operation allows for further symmetry. When the
placement angle of the track changes, we need to transform the
manually controlled current data according to the changing position
coordinates to expand the position-current data of the training set.
Therefore, after enlarging the training database, the training will
almost cover the entire 100 cm2 plane, ensuring that the neural
network can learn the relationship between coordinate changes and
driven currents on a larger scale.

After completing more comprehensive training and learning
of motion control, we can predict the current sequence under
a more complex new path without new manual demonstration.
In Figure 6A, we design an S-shaped tortuous track to evaluate
the capacity of the LSTM network to extend the prediction
to a new, complicated track. We decompose the long complex
path into discrete path segments and predict the corresponding
current sequence separately to improve the accuracy of each part
of the predictions. We divide the “S” path into three segments
shown in Figure 6A and integrate the predicted currents of each
section to obtain a whole current sequence of the entire path.
In Figure 6A, the red dashed line represents the auto-control
path, and the robot gradually completes the entire path along the
preset segmented paths. The entire motive process is shown in
Supplementary Video S3. We also control the robot manually to
compare it with the automatically navigated results. Figures 6C, D
show the selected auto-control paths and the manual-control paths.
The navigating accuracy is evaluated by the destination reaching rate

while reaching the circle area is defined as an accomplishment. We
control the robot automatically and manually ten times each. The
results of the auto navigation show a great destination reaching rate
of 80%, while the manual-control result is only 66.6%. In Figure 6D,
some selected manual-control paths cannot reach the destination
and stop halfway. This is because the magnetic field in the corners
of the plane is relatively small and the magnetic gradient exhibits
greater inhomogeneity. When the robot goes close to the vessel wall,
the adhesive force of the wall on the robot will hinder themovement.
Figure 6E selects the recorded paths of auto-navigation and manual
control and presents the variation of robot speed with time. In
manual control, there will be zero-speed pauses due to the delay of
current value switching at the turning. The driven current obtained
by neural network trajectory planning makes the robot’s movement
consistent and fluent. In Figure 6F, we compare the completion
time of auto and manual control processes. The average completion
time and fluctuation show that auto navigation under the predicted
current gains high efficiency.

3.4 Prediction over paths with bifurcations
and diameter change

When considering the influences of the environment, it is
necessary to consider not only the tortuosity and complexity of
the path, but also the influence such as path diameter, bifurcations,
wall effect (Arcese et al., 2011; Peng et al., 2017), and flow rate.
Under multiple factors, relying only on current predictions of the
trained LSTM network may not ensure that the controlling system
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FIGURE 6
Auto control on complex paths with bifurcations. (A) Current prediction and auto navigation on an S-shaped new path without any other manual
demonstrations. (B) Current prediction and auto navigation on the path with diameter changes and bifurcations. (C) Auto control path in the S-shaped
track. (D) Manual control path in the S-shaped track. We mark the destination coordinate as (72 mm, 36 mm), and draw a circle area with a diameter of
5 mm. (E) The arrival rate to the destination of auto-control and manual-control paths. (F) Different completion times to reach the destination. (G) Auto
control path in the track with changes of vessel diameter and bifurcations. (H) Manual control path in the track with changes of vessel diameter and
bifurcations. (I) The velocity changes by time of auto and manual control. (J) Different completion times to reach the destination.

accurately controls the robot. In Figure 6B, we design a brunched
path with changing widths to simulate the diameter changes of the
path to further improve the capacity of our network prediction and
auto navigation in a more complex environment.

We first discuss the influence of the diameter change of the
path. We attribute the bifurcation to the situation of diameter
change between themain path and the branches.When the diameter
changes, the drag force increases according to the drag coefficient
of variation. To solve the influence of the varying drag force on
the automatic navigation at different path diameters, we adapt the
predicted current to the change in the environment by increasing
or decreasing the current value according to the change of the path
diameter. The amplified current values will generate an amplified

magnetic gradient to overcome the resistance force. We define the
current correction coefficient, which is determined by the drag
coefficient of variation in paths of different diameters in Eq. 2
(Arcese et al., 2011).

̃Fd =
[[

[

1−λα0

1+( λ
λ0
)
α0
]]

]

2

∙ Fd (2)

Parameters α0 and λ0 are functions of the Reynolds number,
regularly, they are assigned as constants (α0 = 1.5 β0 = 0.29). ̃Fd
denotes the drag force considering the wall effect, the function of
λ denotes the drag coefficient of variation and λ is the function of
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the radius of the path (r) as shown in Eq. 3.

λ = 2r
D

(3)

D denotes the diameter of the path. Different diameter changing
ratios will correspond to different values of the current correction
coefficient. In the previous article, we mentioned that we can
divide the path into multiple sections and predict the driven
currents over them. On this basis, we could modify the predicted
current of each section of the path by multiplying the current
correction coefficient according to the specific path diameter.
We experimentally determine the value of the current correction
coefficient by designing a series of small tracks to simulate the
process of diameter changing from large to small, as detailed in
the Supplementary Figure S9. The diameter starts from 15 mm and
gradually shrinks. Correspondingly, we use the current that drives
the robot to move in the 15 mm diameter as the reference current.
We control the volume of the robot to be constant at 1 mm3. As
the diameter decreases, the control current gradually increases until
the robot can enter the narrow path. By recording the relationship
between diameter and current value, we can get a series of scattered
plots of current versus diameter. To obtain the basic form of the
fitting function, we refer to the theory of drag coefficient of variation
at different diameters shown in Eq. 2, using the true data ofmagnetic
particles (diameter 1.26 mm), calculating the theoretical coefficient
curve, andmultiply it by the reference current to form the theoretical
current value curve. In Supplementary Figure S9, the comparison
of the theoretical results with actual experimental measurements
shows that the trends of the current value are generally consistent,
and the coefficient curves can also be fitted well based on the
theoretical function of the coefficient in Eq. 2.

In the path diagram of Figure 6B, we segment the path before
each bifurcation.The whole path is separated into three parts for the
LSTM network to generate predictions. According to the numerical
relationship between the current correction coefficient and the
diameters, the second and third paths require a twofold and fourfold
magnification of the predicted current respectively. In the selected
auto-control path shown as the red dashed line, the robot reaches the
second bifurcation point at 4 s and finally reaches the ending point
at 6 s. Intuitively, the robot under automatic navigation has reached
the destination according to the path very accurately. To further
verify the superiority of automatic navigation, in Figures 6G, H, we
compare the completion of the automatic-navigation path and the
manual-control path. During manual control, we found that for
the path with bifurcations and smaller diameter, it is difficult for a
human to control the robot to enter the narrow path accurately and
timely at the bifurcation in the face of the delay of control current
and human response delay. As shown in Figure 6H, at the bifurcation
“two,” the manual path will deviate from the preset path because
of the delay of the current change and reaction time of the human.
In practical medical application scenarios, it requires technicians to
undergo long-term training to achieve precise operation. However,
under the automatic navigation in Figure 6G, the navigated path
of the robot is very accurate, there is no obvious fluctuation and
deviation, and each time the controlling process shows strong
consistency.Thedynamic and full controlling processes are recorded
in Supplementary Video S4. Figure 6I analyzes the distribution of
the velocity of each controlling mode. The maximum velocity of

the automatic control is approximately 82 mm/s and the velocity
changes with time in a continuous upward tendency. On the other
hand, the maximum velocity of manual control reaches 160 mm/s,
and the velocity fluctuates dynamically during its movement, often
switching between high and low speeds. Figure 6J further compares
the difference in completion time, showing that the auto navigation
method could save 65.6% of the time compared withmanual control
which can greatly improve the controlling efficiency.

3.5 Influence of the flow rate on robotic
navigation

Modeling the fluidic-flow environments is a very complex
task (Arcese et al., 2011; Peng et al., 2017; Li et al., 2023). Since
the flow velocity of the fluid in the limited vessel diameter
changes parabolically along the vessel diameter, the parabolic
distribution of the flow velocity will also be distorted and deformed
with the change in space when turning or passing through the
bifurcation, and finally be restored in the stable region as a
parabola. Therefore, when analyzing automatic control, complex
algorithms are usually used to analyze the influence of flow
velocity on motion, such as the model-free disturbance observer-
based controller (Sabra et al., 2006), which is specially designed for
environmental uncertainty.

In this paper, we treat the parabolic-distributed velocity of the
fluid as a whole for simplified analysis and use the velocity at the
center of the fluid to represent the integral flow rate. We define
the “additional current” to counteract the effect of the flow rate
by applying a certain current value. In the navigation with the
flow rate, we add additional current to the originally predicted
current, to counteract the influence of the current, and make the
robot move according to the planned trajectory. We experimentally
measure the specific values of the additional current at different
given flow rate values and adjust the current until the robot can
remain relatively stationary with the track in the flow.We performed
multiple sets of experiments to measure the value of the additional
current, and the relationship between different flow rates and
the additional current is shown in the Supplementary Material, as
shown in Supplementary Figure S9.

In conclusion, we test the current correction factors and
additional currents of many diameters and different values of flow
rate to obtain an accurate fitting curve. We chose points away from
the existing experimental points and reached the maximum current
of the current source, as shown in Supplementary Figure S9 for
verification. We see that the test points match up with the fitting
lines, indicating the good universality of the result.

In the future, we plan to further solve the influence of the
blood by replacing the fluid used for training in this article with
real blood and replacing the 3D-printed path with a specially
designed blood vessel model that is more biologically compatible.
In practical medical applications, the LSTM can be pre-trained in
classical vascular environments such as simulated carotid arteries,
thigh arteries, and cerebral blood vessels using the LSTM. A large
amount of pre-training can form a huge database, and when it is
necessary to control in a new environment, real-time information
can be added combined with the historical data, so that in the face
of new vascular paths or the same vascular paths of different people
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(e.g., two people need the medical robots to travel the path of the
carotid artery, but due to individual differences, the blood flow rate,
hematocrit rate are different), there can be an available database that
can be used as a reference at any time.

4 Discussion

In this paper, we propose a learning-based trajectory planning
method to realize the automatic navigation of magnetic robots and
solve the influence of various uncertain delays such as inertia delay,
hardware (current source) delay, and software delay. We realize
trajectory planning by training the neural network with manual
operations. The trained network is validated by numerical testing
and experimental testing. The first takes the current sequence as
the network input and the coordinates as the output, obtaining
the average predicting error of the coordinate of x and y for 3.4%
and 4.1%, respectively. The second sets the position coordinates as
network input and the current values as output. Since the current
sequences in the training database are not the sequences that can
perfectly control the robot, it is necessary to use the predicted output
current of the network to control the robot experimentally, and
the accuracy of the prediction and the feasibility of our trajectory
planning method are judged by the controlling results. For the
comparison between auto control and manual control, the path of
automatic navigation is closer to the standard path with an average
error of only 0.76 mm while the manual navigation is 0.82 mm, the
standard deviation is smaller, and the speed distribution is relatively
stable, which can be approximated as uniform acceleration along the
trajectory.

Further study extends our predictions to other more complex
tracks without other new manual demonstrations by performing
rotation and symmetry operations on the originally placed track to
expand the training database.Moreover, when there are bifurcations,
diameter changes, and flow rates in the tracks, we define the “current
correction coefficient” and “additional current” to optimize the
predicted current sequence to adapt tomore complex environments.
The effect is verified by auto navigation on the tortuous S-shaped
path and the branched path. In the ten automatic controls on the s-
shaped path, the robot’s arrival rate toward the ending point reached
80%. For comparison, we also manually control the robot with an
arrival rate of 66.7%. For the navigation in the branched path, the
velocity of the automatic control is relatively regular in a continuous
upward tendency and could save 65.6% of the time compared with
the manual control to reach the destination which can greatly
improve the controlling efficiency. Finally, the “additional current”
is measured to keep the robot relatively static in the flow-through
experiment. In actual control, the additional value of current can be
added to the original prediction current to offset the effect of the flow
rate.

Overall, the proposed learning-based trajectory planning
method can eliminate the effects of delays and can be applied to
predict arbitrary complex paths. In further investigation, we can
apply more environmental influences in the training procedure
to realize more complex robotic navigation in more complicated
environments.
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