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Hidden Markov models for
presence detection based on
CO2 fluctuations

Christos Karasoulas*, Christoforos Keroglou, Eleftheria Katsiri
and Georgios Ch. Sirakoulis

Department of Electrical Computer Engineering, Democritus University of Thrace, Xanthi, Greece

Presence sensing systems are gaining importance and are utilized in various
contexts such as smart homes, Ambient Assisted Living (AAL) and surveillance
technology. Typically, these systems utilize motion sensors or cameras that
have a limited field of view, leading to potential monitoring gaps within a
room. However, humans release carbon dioxide (CO2) through respiration which
spreads within an enclosed space. Consequently, an observable rise in CO2

concentration is noted when one or more individuals are present in a room. This
study examines an approach to detect the presence or absence of individuals
indoors by analyzing the ambient air’s CO2 concentration using simple Markov
Chain Models. The proposed scheme achieved an accuracy of up to 97% in both
experimental and real data demonstrating its efficacy in practical scenarios.
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1 Introduction

The ability to locate individuals within their own residence has a multitude of
applications, including the automation of tasks, securing doors when no one is home,
detecting unauthorized presences,monitoring human activity, and identifying potential help
situations, particularly for the elderly (Wilhelm et al., 2020). The conventional method for
detecting individual’s presence in a room is through infrared motion sensors and image-
processing systems such as surveillance cameras. However, these systems have limitations,
as they can only detect active movement and are often expensive, computationally intensive
and have a restricted field of view, resulting in monitoring gaps within a room. On the other
hand, carbon dioxide (CO2) is a byproduct of respiration and is released into the ambient
air. By monitoring the concentration of CO2, individuals’ presence or absence in a room can
be determined with simple, low-cost CO2 sensors.

Multiple sensors can be used for detecting the human presence in indoor
environments, including passive infrared (PIR) sensors (Dodier et al., 2006), video cameras
(Yoshinaga et al., 2010; Di Lascio et al., 2013), infrared cameras, light beams placed in door
frames and device-free localization that is based on radio signals (Vance et al., 2010).

The literature on occupancy patterns includes several studies that have used different
approaches to simulate and estimate occupancy in single-office rooms and multi-tenant
office buildings including those that have implemented this paper’s methods implementing
Markov Chains. For instance, in (Sandels et al., 2015), the transition probabilities of the
Markov chain were calculated using data obtained from occupancy sensors installed in
24 single office rooms within a Swedish building. To assess the model’s performance,
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the simulation results were compared to actual occupancy data from
23 other rooms in the same building. The analysis revealed that
the model successfully replicated crucial features of the observed
occupancy patterns. One study (Page et al., 2008) presents a non-
homogeneous Markov chain model that simulates the times of
arrivals and departures and the duration of intermediate absence
and presence for individuals in single office rooms. Another study
(Yu, 2010) uses a genetic programming algorithm to estimate similar
behaviors with comparable accuracy to the previous study (around
80%–83%). A statistical approach to simulate the occupancy in
single office rooms is presented in yet another study (Wang et al.,
2005) where the authors show that the time duration of vacancies
follows an exponential distribution, though this cannot be verified
for time durations of occupancies. Another approach, a stochastic
agent-based simulation model, is introduced in (Liao and Barooah,
2010) which simulates individual occupancy patterns between
different zones of an office buildingwith an error rate of 1% achieved
in validation for one office room. A study (Duarte et al., 2013)
applies a data mining approach to derive aggregated occupancy
diversity factors from sensor data located in different room types of
a large multi-tenant office building. In a research study (Wang et al.,
2018), the use of WiFi probe technology was explored to collect and
analyze connection requests and responses in order to monitor and
evaluate the occupancy information of a building in real-time using
feedback recurrent neural network (M-FRNN).

CO2 concentration-based methods have been frequently
employed as a popular approach for estimating occupancy in
various studies (Wang and Jin, 1998; Wang et al., 1999; Ansanay-
Alex, 2013). However, these methods have certain drawbacks
such as low sensitivity to larger areas, prediction latency and high
initial installation costs without requiring additional infrastructure
(Wang and Shao, 2016; Wang et al., 2017). Another widely applied
indirect occupancy estimation approach uses carbon dioxide (CO2)
concentration in indoor spaces (Wang and Jin, 1998; Wang et al.,
1999; Jiang et al., 2016). For example, Wang et al. developed several
dynamic CO2-based models for commercial buildings (Wang
and Jin, 1998; Shan et al., 2012). Diaz and Jimenez conducted an
experiment on the power usage of computers under occupancy
variation estimated by CO2 and the results suggested that CO2
concentration is informative and expected to be a good indicator of
occupancy [11].

Although increasing number ofmodern buildings utilize CO2 as
reference in system control, CO2-based approaches have constraints,
such as low sensitivity to occupant mobility and slow response to
drastic occupancy changes (Yang et al., 2016). Wang et al. (Yang
and Becerik-Gerber, 2014) found a suitable algorithm with the
exhaust CO2 level as input. After implementing three versions of
the direct approach based on the CO2 level, the result showed high
accuracy. Similar studies were also presented in study of Mumma
(Yang et al., 2016), the CO2 levels were measured in the room
in the exhaust air, and the result showed fast estimations with
accuracies of ±2 people. Carbon dioxide (CO2) sensors have been
employed to estimate the number of occupants in the spaces for a
long time (Shan et al., 2012; Ekwevugbe et al., 2013). As discussed
earlier, occupancy is the CO2 generator and the occupancy presence
can be inferred through the CO2 concentrate level. However,
limitations such as the window or door positions, outdoor air
supply rate, and the proximity of the occupants to the sensor

have been reported. Uncertainties in the estimation errors, and
second, latency of the CO2 sensor responses (i.e., the aspect of time
delay) are also part of the limitation when applying CO2 sensor
for occupancy number calculation (Ekwevugbe et al., 2013). CO2
sensors provide concentration readings in parts per million (ppm),
which is indicative of the occupancy. However, reliably correlating
CO2 levels with the actual occupancy is difficult due to the high
variability and slow response time of CO2 sensors. Variability arises
due to fluctuations in ambient CO2 levels, HVAC system settings,
and door status (open/close). In addition, there are dynamics: CO2
measurements suffer from slow response time. For example, the
inevitable delay in CO2 concentration increase following an increase
in occupancy.

Other environmental sensors, such as temperature, humidity,
lighting, and acoustic sensors, also can help improve occupancy
prediction accuracy (Ekwevugbe et al., 2013; Yang and Becerik-
Gerber, 2014). Based on these sensory data sources, researches
proposed quantitative models to infer the number of occupants
in a given space. Yang and Becerik-Gerber formulated stochastic
processes that combining regression, time-series modeling, and
pattern recognition modeling approaches to improve accuracy in
occupancy prediction from a data analytic perspective (Yang and
Becerik-Gerber, 2014). Jiang et al. proposed a feature scaled extreme
learning machine (FS-ELM) approach on CO2 concentration to
predict occupancy (Jiang et al., 2016).

The use of carbon dioxide (CO2) concentration as an indirect
occupancy estimation approach in indoor spaces is widely applied.
CO2 sensors provide absolute concentration readings in parts
per million (ppm), which is indicative of the occupancy. CO2
sensors operate passively and do not require direct interaction with
individuals in the room. This non-intrusive nature ensures that
occupants are not disturbed or influenced by the sensing process
making it particularly suitable for environments where privacy or
comfort is a concern, something that vision sensors struggle with.
Vision sensors may encounter challenges in scenarios with visual
obstructions, such as curtains, furniture or may be affected by
variations in lighting conditions. CO2 sensors are not hindered
by physical barriers. Vision sensors may encounter challenges in
scenarios with visual obstructions, such as curtains, furniture, or
partitions. CO2 sensors, on the other hand, are not hindered by
physical barriers and thus can effectively gauge occupancy levels
regardless of visual obstructions.

The proposed setup holds significant potential for effective
deployment in manufacturing environments, particularly in
the context of Industry 4.0 advancements. CO2 sensors offers
a promising alternative to certain vision-based applications
commonly employed in industrial settings that can encounter
challenges related to visual obstructions, lighting conditions, and
privacy concerns. Their proficiency lies in their ability to gauge
occupancy levels based on the fundamental physiological process of
human respiration, rendering them unaffected by visual barriers or
lighting variations.

However, reliably correlating CO2 levels with the actual
occupancy is difficult due to the high variability and second, high
latency of the CO2 sensor responses while uncertainties in the
estimation errors have been reported in several cases. Some works
address the above issues by fusing CO2 sensors with RF tags,
IR sensors and more recently WiFi terminals and GPS. However
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although this approach generally increases the estimation accuracy,
it is not practical as not only it increases also the installation cost but
it is invasive on the user, who often needs to carry around additional
devices. This work addresses the above issues by implementing
a sensor-driven occupancy estimation approach based on a) data
point-level differences in CO2 concentrations, b) a reliable real-time
CO2 sensing device that uses low-cost sensor technology, c) a simple
HMMmodelling approach.

This research paper focuses on the use of a CO2 sensor as
a cost-effective and reliable method for detecting the presence
or absence of individuals in a room. The proposed approach is
based on a simple Markov Chain model which can be easily and
inexpensively implemented and adapted to any environment.
Unlike previous studies, the present research demonstrates
that the CO2-based approach can achieve higher accuracy in
detecting occupancy without the need for additional PIR, image,
or environmental sensors (Wang et al., 2018). Moreover, the
proposed method was tested and validated using both real-world
and experimental data, demonstrating its potential for practical
applications. The primary motivation for this study was to explore
the feasibility and effectiveness of using a single CO2 sensor to
detect occupancy in situations where other sensing technologies
are not available. The results of this study offer promising insights
into the use of CO2-based sensing for occupancy detection in
various indoor environments. Given the sensor’s remarkable high-
response capabilities it presents significant potential for real-time
applications. In particular, by employing the following algorithms, it
becomes feasible to trigger specific indoor functions such as HVAC
and lighting bulbs. Consequently, the sensor can be powered down
after each use, effectively extending its operational lifespan. This
approach not only maximizes the sensor’s utility but also optimizes
its longevity.

The remaining of the paper is structured as follows: Data
collection methods are presented in Section 2. Section 3 presents
Hidden Markov modeling methodology, describing the algorithms
and the classification rules utilized for occupancy detection in
both experimental and real data. Section 4 presents the results
that both algorithms produce. Comparison of the algorithm’s
parameters are discussed in Section 5 and the paper concludes with
Section 6.

2 Materials and methods

2.1 CO2 measurements

The research was conducted in two stages: first, occupancy
detection of an office room was achieved by analyzing a dataset
that contained light, temperature, humidity, andCO2 measurements
using statistical learning models from a GitHub dataset (https://gith
ub.com/LuisM78/Occupancy-detection-data) that was successfully
implemented in the findings of (Candanedo and Feldheim, 2016)
and only CO2measurements were extracted for this paper’s purpose.
Subsequently, real-world data was collected from a public service
building in Athens, Greece, that was occupied during weekday
mornings and remained unoccupied on weekends.

A measuring device Siba C2O2O: CO, CO2 that was developed
in the auspices of the “Air-19” project formonitoring both air quality

and public health at the Decentralised Administration of Athens,
was employed to record the data. This method exploits low-cost
sensor technology and integrates pre-calibrated sensors that provide
certified measurement.The range of the CO2 sensor is 0–5000 ppm
and it has a response time < 30 s (from 0 to 10 ppm) and very
low noise (ppb equivalent). The C2O2O device was perfectly pre-
calibrated by its manufacturer and was mounted on a vertical wall
on the 3rd floor of the building which hosts an area with two cashier
booths, where visitors queue to pay their council tax. The tills are at
the center of an open-space office area with 20 desks. The device is
configured to connect to aWiFi network, dedicated for IoT traffic to
communicate the measurements to a cloud platform for storage and
visualisation.Themeasurements selected for this pilotwere collected
from November 1st to 31 November 2022. The area opens at 6:00
a.m. by the cleaners, receives visitors between 7a, and 3p.m. when it
closes for the public while around 4p.m. employees leave for the day.
More information about this experiment can be found in (Katsiri,
2023).

The Markov Chain model used in this paper is simple and
intuitive. The states directly correspond to meaningful conditions
(higher, lower, equal CO2 levels) which makes the algorithms easily
understandable. Markov Chains are also well-suited for modeling
sequences of events which is exactly what the CO2 sensor data
of this paper represents. The transitions between states capture
the temporal aspect of the data that may be harder to model
with a neural network which would also be overkill and more
computationally demanding for only 400 measurements per testing
set”.

2.2 Methodology

This research did not rely on CO2 concentrations to infer
occupancy status. Instead, the focus was on detecting CO2
fluctuations and their relationship with occupancy. We simplify the
problem expressing it as a Hypothesis testing problem. Specifically,
we have 1) H1: “at least one person is always present in the
room during the whole duration of the measurements,” and 2)
H2: “no person is present at any time during the whole duration
of the measurements” (H2 complements H1). To test H1, and
H2 hypotheses we construct two Hidden Markov Models (S1,
and S2) to capture CO2 behaviour regarding human presence
(S1), or absence (S2). The HMMs consist of three states—“Equal,”
“Plus,” and “Minus”—to analyze CO2 fluctuations over time.
Specifically:

• Equal state represents the case when the absolute difference
between the current CO2 value (i.e., vc) and its previous value
(i.e., vp) is within a certain threshold1 (i.e., |vc − vp| < dif).
• Plus state represents the case when the current CO2 value is
above a certain range and higher than the previous value (i.e.,
vc − vp > dif).
• Minus state represents the case when the previous CO2 value
is above the range and higher than the current value (i.e.,
vp − vc > dif).

1 Different results were obtained based on the range used for concluding that
the CO2 values were in an “equal” state.
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2.2.1 Hidden Markov models description

Definition 1: (HMM Model). An HMM is described by a five-tuple
S = (Q,E,Δ,Λ,π0), where Q = {q1,q2,…,q|Q|} is the finite set of states;
E = {e1,e2,…,e|E|} is the finite set of outputs;Δ:Q×Q→ [0 1] captures
the state transition probabilities; Λ:Q×E×Q→ [0 1] captures the
output probabilities associated with transitions; and π0 is the initial
state probability distribution vector. Specifically, for q, q′ ∈ Q and
σ ∈ E, the output probabilities associated with transitions are given
by

Λ(q,σ,q′) ≡ Pr(q [t+ 1] = q′,E [t+ 1] = σ ∣ q [t] = q), (1)

and the state transition probabilities are given by

Δ(q,q′) ≡ Pr(q [t+ 1] = q′ ∣ q [t] = q), (2)

where q[t] (E[t]) is the state (output) of the HMM at time step (or
epoch) t. The output function Λ(q,σ,q′) describes the conditional
probability of observing the output σ associated with the transition
to state q′ from state q. The state transition function needs to
satisfy

Δ(q,q′) = ∑
σ∈E

Λ(q,σ,q′) , ∀q,q′ ∈ Q (3)

and also
|Q|

∑
i=1

Δ(q,qi) = 1, ∀q ∈ Q. (4)

We also define A(j)ei the transition matrix for S(j), j = {1,2}, under
the output symbol ei ∈ E. The matrix A(j)ei , is associated with output
ei ∈ E(j), as follows: the (k, l)th entry of A(j)ei captures the probability
of a transition from state ql to state qk that produces output ei, i.e.,
A(j)ei (k, l) = Λ

(j)(ql,ei,qk). We set A(j)ei tozero ifei ∈ E\E
(j).

We can calculate P(j)i = Pr(ω(i)|S
(j)) with an iterative algorithm,

a detailed description of which can be found in Athanasopoulou
and Hadjicostis (2008); Fu (1982). Specifically, given sequence
ω = ω[1]ω[2],…,ω[n] we calculate

ρ(j)n = A
(j)
ω[n]A
(j)
ω[n−1]…A

(j)
ω[1]π
(j)
0 ,

which is essentially a vector whose kth entry captures the probability
of reaching state qk ∈ Q(j) while generating the sequence of outputs
ω (i.e., ρ(j)n (k) = Pr(q[n] = qk,ω|S

(j))). If we sum up the entries of ρ(j)n
we obtain P(j)ω = Pr(ω ∣ S(j)) = ∑

|Q(j)|
k=1 ρ
(j)
n (k).

In the following example, we construct S1, and S2 hiddenMarkov
models using a method that is commonly used in simple Markov
chains (i.e., we estimate the transition probabilities counting the
frequency of occurrences of each transition), due to the fact that in
our example, the models are designed to capture observable states
and their transitions without involving hidden or unobservable
states. This approach allows us to focus on the direct dependencies
and transitions between the states themselves, making the modeling
process more straightforward and easier to interpret.

The simplicity of the method lends itself well to scenarios where
the underlying system can be adequately represented using only
observable information, and where the goal is to analyze and predict
patterns based on the observed data. However, for more complex
real-life scenarios, where unobservable transitions can occur, amore
elaborate learning process should be used such as Baum-Welch

algorithm Rabiner and Juang (1986). In our case, we have simple
Markov chains with only 3 states. However, in a more general case,
we could possibly need to answer to the question of how many
states our model should have in order to decide correctly the human
absence/or presence. This is in general a difficult problem, which is
described in detail in Rabiner and Juang (1986).
Example 1: We construct two HMMs (S1, and S2) as drawn in
Figure 1 using appropriate training datasets from real-life scenarios
(see Section 4), where S1 = (Q,E,Δ1,Λ1,π10 = [100]

T), and S2 =
(Q,E,Δ2,Λ2,π20 = [100]

T) with

• Q = {1,2,3}, where state 1 represents the “Equal” state, state 2
represents the “Plus” state, and state 3 represents the “Minus”
state,
• E = {“ = ”,“+ ”,“− ”}, where event “ = ” means that the state 1
will be the next state, event “+ ” means that stste 2 will be the
next state, and event “− ” means that state 3 will be the next
state2.
• We define below all matrices Aj

e for j ∈ {1,2}, and e ∈ E:

A(1)“=” =
[[

[

0.6732 0.3932 0.4363
0 0 0
0 0 0

]]

]

,

A(1)“+” =
[[

[

0 0 0
0.1648 0.0146 0.5425

0 0 0

]]

]

A(1)“−” =
[[

[

0 0 0
0 0 0

0.162 0.5922 0.0212

]]

]

,

A(2)“=” =
[[

[

0.7451 0.4326 0.466
0 0 0
0 0 0

]]

]

A(2)“+” =
[[

[

0 0 0
0.1338 0.001 0.533

0 0 0

]]

]

,

A(2)“−” =
[[

[

0 0 0
0 0 0

0.1211 0.5664 0.001

]]

]

.

Our analysis aims to classify between the two HMMs to identify
which of the two Hypotheses is correct (H1 or H2). For that reason
we use two classification methods developed in Section 3.2.

2.2.2 Classification rules

Definition 2: Optimal Decision Rule (MAP Rule). If we observe a
sequence of n outputs ω = ω[1]ω[2],…,ω[n], with ω[t] ∈ E, that is
generated by one of the twounderlyingHMMs,we decide in favor of Sj,
where j ∈ {1,2} if PjP

j
ω =max{P1P1ω,P2P2ω}. Moreover, the probability

of error in a classical hypothesis testing problem (Neyman, 1992) is
given as Perror(ω) =min{P1P

(1)
ω ,P2P

(2)
ω }. We subsequently normalize

2 The careful reader can notice that the next state is completely determined
by the current event and the current state.
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FIGURE 1
Occupied and Unoccupied Markov Chain models.

the probability of error for any sequence introducing α(ω) which is
given below3:

α (ω) =min{
P1P
(1)
ω

P1P
(1)
ω + P2P

(2)
ω

,
P2P
(2)
ω

P1P
(1)
ω + P2P

(2)
ω

}. (5)

We prefer to use α(ω) because it provides information on how
good is our decision in terms of probabilistic ambiguity (i.e., if α(ω)
is close to zero then we know that our decision is good. On the other
hand, if α(ω) is close to 0.5 it means that we have large ambiguity in
our decision).

Reducing the computational complexity of the optimal decision
rule, we revisit an empirical sub-optimal decision rule which is
described in Keroglou and Hadjicostis (2018). Roughly, the sub-
optimal rule allows us to decide correctly the appropriateHMMonly
by counting the number of times that one/or more state(s) is/are
visited.

Formally the suboptimal rule is described below. We define two
metrics that are required for the definition of the suboptimal rule.
Specifically, i) Fraction of times a state appears, and ii) distance in
variation between two probability vectors.

3 P1(P2) are the a priori probabilities for HMMs S1(S2). We assume in our case
that P1 = P2 = 0.5.

• (Fraction of times state i appears (mn(i))). As an example,
we define first mn(1). Suppose we are given an observation
sequence of length n (ωn

1 = ω[1]⋯ω[n]). We define mn(1) =
1
n

n
∑
t=1

g1(ω[t]), where

g1(ω[t]) = {
1, ifω[t] is“=″,
0, otherwise.

In other words, mn(1) is the fraction of times state 1 appears in
observation sequence ωn

1 . Similarly, we definemn(2), andmn(3), for
states 2, and 3 respectively.

• (Distance in variation dV(v,v′) between two probability vectors
v,v′). The distance in variation (Dembo and Zeitouni, 1998)
between two |Q|-dimensional probability vectors v,v′ is defined
as

dV (v,v′) =
1
2

|Q|

∑
j=1
|v (j) − v′ (j) | ≥ 0, (6)

where v(j) (v′(j)) is the jth entry of vector v (v′).

Definition 3: (Sub-optimal Empirical rule). Given two HMMs S(1)

and S(2) and a sequence of observations ωn
1 = ω[1]ω[2]⋯ω[n], we

perform classification using the following suboptimal rule:
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FIGURE 2
Dif graph using a threshold between two consecutive CO2 measurements.

• We first compute mn = [mn(1),mn(2),mn(3)]T

• We then set θ = 1
2
dV(π
(1)
ss ,π
(2)
ss ), where π

(j)
ss , j ∈ {1,2}, is the steady-

state probability vector for Sj, and compare dV(mn,π
(1)
ss )
>
<θ. We

decide in favor of S1 (S2) if the right (left) quantity is larger4.

The empirical rule is a suboptimal rule, which means that even
if we compute exactly the probability of error using the empirical
rule, this remains an upper bound on the probability of error using
the optimal rule. Using empirical rule has some advantages over
the optimal rule. There are necessary and sufficient conditions for
a bound on the probability of error using the empirical rule to be
asymptotically tight (see Keroglou andHadjicostis, 2018).Moreover,
these conditions can be verified with low computational complexity
(polynomial complexity). Another advantage is that the system
needs to keep only the number of events that are observed and not
the whole observation sequence. This can lead to lower memory
requirements for the system.

In the suboptimal rule, we count the number of visits for all states
(1, 2, and 3). However, for simplicity in the following results we apply
the empirical rule only to one state. The most suitable state out of
the three states for this purpose was identified as the state j ∈ {1,2,3}
which maximizes the following quantity |π(1)ss,j − π

(2)
ss,j|. The lower this

difference is the sturdier the results are.

3 Results

The results section initiates with an empirical examination of
data sourced from the meticulously calibrated sensors as detailed
in the associated Github repository and the same methodology is
applied to the CO2 sensor installed in Athens. The predominant
focus revolves around the application of the Optimal Rule with the
supplementary incorporation of the sub-optimal rule to augment the
insights derived from the primary approach.The way and reasoning
behind the splitting of the training and testing sets is analyzed

4 Let the steady-state probabilities for HMM S1(S2) be denoted by

the |Q|-dimensional vector π(1)ss = [π
(1)
ss,1,π
(1)
ss,2,π
(1)
ss,3]

T
(respectively by π(2)ss =

[π(2)ss,1,π
(2)
ss,2,π
(2)
ss,3]

T
). Then, we have dV(π

(1)
ss ,π
(2)
ss ) =

1
2

|Q|
∑
j=1
|π(1)ss,j − π

(2)
ss,j|.

and the upcoming results and benefits of having the identical time
window training and testing sets are presented in the sub-sections
below.

3.1 Optimal rule results

3.1.1 Experimental data
Firstly, experiments are conducted using the experimental data

and that is achieved through a straightforward procedure since the
Github data points are less compared to the real sensor data taken
in Athens and the time period between two data points is much
higher. The main parameters that need to be taken into account and
will result in different outcomes are the hours that will be utilized as
training sets and the threshold that will determine if two consecutive
measurements belong in the “equal” state (referred to as threshold
“dif ” [see Section 3)].

Some strict assumptions are necessary to be made in order
for the experiment to make sense. When a day is referred to as
“occupied” it means that there is at least one person present in
the workspace at all times whereas “unoccupied” means there is
nobody present. When CO2 measurements are analyzed only these
2 variables are taken into account and the number of occupants is
unimportant for this research.

The best training hours of the GitHub dataset were identified
as the work hours of 2015-02-16 for creating the occupied Markov
Model and thework hours of 2015-02-15 for the unoccupiedMarkov
Model. After using multiple thresholds (dif) for naming a state
transition as “equal” some Markov Models yield better results than
others.

In Figure 2, classifying a state transition as “equal” when two
consecutive CO2 measurements have less than a 3.1 difference
provided the best results for the specific testing set.

Markov Chainmodels usingmultiple thresholds categorizing an
equal state had 100% success in accurately concluding the occupied
state of all days in the testing sets provided.

3.1.2 Real data
Real data was obtained by installing a CO2 sensor in a bank

located in Athens, Greece. This sensor gathered data every 5 s
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throughout 1 month, from the 1st to the 30th of November 2022.
During this time, the weekdays were deemed “occupied” and the
weekends were considered “unoccupied”.

To create the occupied and unoccupied Markov Chain models,
2 days were selected as a training set, while the remaining days were
allocated for testing purposes. A range of hours was implemented
for the training sets, primarily consisting of 2-h windows that were
tested against 1-h window testing sets, starting from 8 a.m. until 4
p.m. For example, the 10:00 to 12:00 timeframe on November 30th
could be utilized as a training set and then tested against eight hourly
testing sets on November 29th.

If we aggregate the results on a daily basis by dividing each
day into six testing sets spanning from 8 a.m. to 2 p.m., we can
generate a graph to evaluate the accuracy and assess probability

errors. For instance, on 2022-11-03, as illustrated in Figure 3, certain
probability errors exhibit significantly smaller magnitudes than
others. The lower range of these errors enhances the robustness of
our prediction accuracy.

Most results in all hours of each separate day are accurate but
some wrong predictions occur in our testing dataset. In Figure 4,
while most hours were accurately predicted the algorithm failed to
correctly predict the occupancy profile during the 8 a.m.–9 a.m. time
window.

Furthermore, as described in the experimental data section,
different values in absolute differences were considered to identify
themost effective approach. After exploring various combinations, it
was determined that utilizing a 2-h window between 8:00 and 10:00
on November 1st and 2nd to create the occupied Markov Chain

FIGURE 3
Error graph in a day with correct predictions.

FIGURE 4
Error graph in a day with some wrong predictions.
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Model was the most successful in predicting occupancy profiles,
with an accuracy rate of 97,22%.

3.2 Sub-optimal rule results

3.2.1 Real data
The “equal” state was determined to provide the most favorable

conditions for producing optimal outcomes using the principles
described in Definition 3. By applying various absolute differences
between consecutive points for generating the Markov Model’s
steady-state matrices, the most effective 2-h training period was
identified as 8–10a.m. on 1stNovember, producing a 13.84 threshold
and a 97.22% accuracy rate which was also attained using the first
algorithm.

In order to achieve optimal results, it is desirable to minimize
the difference between the steady-state probability of the training
data and that of the selected testing data set. However, it has been
observed that this difference tends to be much higher when the 2-h
testing window differs from the training set’s time window, which is
8:00a.m. to 10:00a.m. For instance, in the case where the probability
of the occupied state in the training set is 96.73%, and the probability
of the occupied state in one of the testing sets within the 8:00 a.m.
to 10:00 a.m. time window is 97.24%, the resulting difference is
1.77%. Conversely, when a different 2-h testing window, such as
12:00p.m. to 2:00p.m., is chosen for the same day, the probability
of the occupied state is 88.4%, resulting in a difference of 10.6%
compared to the training set.These experimental results suggest that
the difference could be reduced if each testing set was evaluated
using an algorithm trained on the same 2-h window, rather than
relying on a fixed training set for all occasions.

As a result, a distinct approach for dividing training sets was
utilized in this algorithm. Instead of adopting a 2-h window for
training, a specific hour was employed for both training and testing
sets. To elaborate, the optimal day (1 November) was selected to
train the model from 8:00–9:00a.m., followed by testing against

the 8:00–9:00a.m. timeframe for all other days of the month. This
procedure was repeated for every working hour, resulting in an
accuracy rate of approximately 100%, with certain hours reaching
98% accuracy.

As an illustration, consider dividing the testing data into 30
subsets of 1-h time windows between 12:00 p.m. and 1:00 p.m.
In this case, our algorithm will be trained using data from the
12:00 p.m.–1:00 p.m. time window on November 1st. This approach
yields perfect classification accuracy, with all 30 subsets correctly
identified, and an average difference of 4.44% between the steady-
state probabilities of the training and testing sets.

Alternatively, we may choose to use testing data from a fixed
time window of 8:00 a.m. to 9:00 a.m. for the entire month. In
this scenario, the algorithm trained using data from the same time
window of the training set correctly identifies occupancy profiles for
29 out of 30 subsets, with an average difference of 1.8% between the
steady-state probabilities of the training and testing sets.

When identifying occupancy profiles on a testing set using a
different time window, accuracy may be correctly assessed using the
general method but the difference between steady state probabilities
can vary between 10% and 20% as shown in Figure 5. The hourly
approach reduces these errors by a substantial margin.

3.2.2 Experimental data
Notwithstanding the potential efficacy of the technique of

splitting hourly data, it cannot be appropriately implemented on
the GitHub dataset due to the limitation in the granularity of time
sampling, which was at 1-min intervals. The resulting dataset has
only 60 data points which are insufficient to adequately evaluate
occupancy patterns. Additionally, the dataset captures the presence
of only one individual in the room at a time and the absence of
this individual can cause further inaccuracies in estimating true
occupancy profiles within the limited 60 data points.

A similar splittingmethod to the procedure of the first algorithm
was adopted. We utilized the occupied Markov Model trained on
a normal Monday of 16th February 2015 from 09:00 to 16:00,

FIGURE 5
General and Hourly Methods comparison.
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and the unoccupied Markov Model trained on Sunday of 15th
February 07:30–16:00. For testing, each of the 15 remaining days
was considered, with the time range of 09:00 to 16:00 for each
day.

We found that the steady-state algorithm yielded 100% accuracy
on all 15 testing sets when 0.8 was set as the threshold for the equal
state representing the best difference between two consecutive CO2
values.The average difference between the steady-state probabilities
of the training and testing sets was 3.4%.

4 Discussion

The first and second algorithms demonstrated significant
potential in accurately predicting occupancy profiles in both
experimental and real case scenarios. Both algorithms easily
predicted everything in the experimental data so no further
discussion should bemade as the experimental data wasmostly used
to create the algorithms and assess their efficacy. As the real data in
the bank of Athens is concerned, both algorithms achieved a 97%
accuracy rate. The conditions under which both algorithms were
trained were very similar, suggesting that the choice of algorithm
can be adapted based on the specifics of the dataset being analyzed,
such as sampling data.

An intriguing observation is that out of the five errors that
occurred in the real data, some of them took place during similar
hours. For instance, three errors occurred on the same day at
8:00 a.m. where the absence of people was incorrectly predicted.
Additionally, one false prediction took place onNovember 19th at 11
a.m. in both algorithms. A possible hypothesis is that the algorithms
accurately assessed the unoccupancy of the space at the time, despite
it being a working day. One assumption is that the employees did not
arrive at that particular time.

For the optimal algorithm, the probability of a faulty
classification is computed according to the methodology delineated
in Definition 2. The preponderance of accurate predictions is
associated with a negligible risk of misclassifying the occupancy
profile, given that such an outcome typically registers below the
0.00001% threshold. However, out of the five incorrect predictions
the average probability of misclassification equates to approximately
30% which indicates that there was a high chance that the
algorithm may have done a mistake which may had been the
case.

In the case of the sub-optimal algorithm, the probability of
misclassification is deduced by measuring the distance between
the probabilities of the steady state as elucidated upon in the
sub-optimal rule. By leveraging the Hourly approach, almost all
correct predictions manifest only a negligible disparity between the
steady-state probability of the testing set and that of the Markov
Model.

It is concluded that aside from approximately identical results,
the above algorithms also provide similar error profiles for the
classification process which further compliments their efficacy. The
classification algorithms in Markov chains presented in this paper
can be very promising for further research in complex and general
situations because of the simplicity, the relatively low computational
complexity, and the small state-space of the proposed models (i.e.,
only 3 states to capture the CO2 variability).

FIGURE 6
Example of Confusion Matrix using Optimal Rule.

This is the confusion matrix is shown in Figure 6 for one of the
two algorithms, which had three true positives (TP) and two false
negatives (FN) given a difference of 10.6 between two consecutive
CO2 values. One of the two false positives is also common among
both algorithms, indicating possible commotion on Saturday, even
though it was not a working day.

When comparing the General and Hourly methods of creating
Markov models, both approaches produced excellent results. The
first approach trained the algorithm on 8:00–10:00 a.m. and
achieved 97% accuracy even in testing sets with different working
hours and presence dynamics. However, the Hourly approach
produced slightly better results when the training and testing
hours were identical. Specifically, every training and testing hour
had 100% accuracy, except for 8:00 a.m. and 2:00 p.m., which
had 99% accuracy. This may be due to the fact that people
either arrive or leave their workplace and the occupancy profile
is not constant throughout the hour. Unfortunately, there is
no absolute ground truth available about the total occupancy
profile for every hour of each day. The assumptions made in the
Introduction section provide a slight solution to this problem since
monitoring every single worker or customer in the building was not
possible.

The primary emphasis of our current methodology revolves
around a data-driven approach which does not encompass
factors such as ventilation, varying room characteristics and
scalability in more complex scenarios. In our forthcoming work,
we aim to develop a more advanced algorithm that incorporates
these environmental considerations, providing a comprehensive
comparison to the original methodology presented in this paper.We
believe that this endeavor will significantly enrich the applicability
of our approach.
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5 Conclusion

In this paper, a model for reproducing presence or absence
in a single office or building was used utilizing CO2 as the
single factor. Both experimental and real data were extracted to
create 3 × 3 Markov Chain models and assess the occupancy
profile. The algorithms developed in this study demonstrated
nearly identical results, exhibiting exceptional accuracy. Further
refinement is possible, including the incorporation of parameters
not within the scope of this paper such as ventilation and room
architecture.TheMarkov Chainmodels presented a straightforward
yet robust approach for evaluating occupancy profiles. They can
be compared or integrated with other algorithms in research
endeavors to formulate an even better comprehensive presence
detection algorithm. In terms of real-time application, this method
proves exceptionally valuable for promptly identifying abrupt shifts
in occupancy profiles due to its rapid response time and high-
frequency sampling rate.While this paper focused on employing 1-h
window testing sets, there exists significant potential for accurately
assessing occupancy profiles within shorter minute intervals. In
future work, we plan to delve into real-time scenarios leveraging the
strengths of this method.
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