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Model-free control for
autonomous prevention of
adverse events in robotics
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OH, United States, 2Human-Enabled Robotic Technology Lab, Department of Mechanical Engineering,
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Introduction: Preventive control is a critical feature in autonomous technology
to ensure safe systemoperations. One applicationwhere safety ismost important
is robot-assisted needle interventions. During incisions into a tissue, adverse
events such as mechanical buckling of the needle shaft and tissue displacements
can occur on encounter with stiff membranes causing potential damage to the
organ.

Methods: To prevent these events before they occur, we propose a new control
subroutine that autonomously chooses a) a reactive mechanism to stop the
insertion procedure when a needle buckling or a severe tissue displacement
event is predicted and b) an adaptive mechanism to continue the insertion
procedure through needle steering control when a mild tissue displacement is
detected. The subroutine is developed using a model-free control technique
due to the nonlinearities of the unknown needle-tissue dynamics. First, an
improved version of the model-free adaptive control (IMFAC) is developed by
computing a fast time-varying partial pseudo derivative analytically from the
dynamic linearization equation to enhance output convergence and robustness
against external disturbances.

Results and Discussion: Comparing IMFAC and MFAC algorithms on simulated
nonlinear systems in MATLAB, IMFAC shows 20% faster output convergence
against arbitrary disturbances. Next, IMFAC is integrated with event prediction
algorithms from prior work to prevent adverse events during needle insertions
in real time. Needle insertions in gelatin tissues with known environments show
successful prevention of needle buckling and tissue displacement events. Needle
insertions in biological tissues with unknown environments are performed
using live fluoroscopic imaging as ground truth to verify timely prevention of
adverse events. Finally, statistical ANOVA analysis on all insertion data shows
the robustness of the prevention algorithm to various needles and tissue
environments. Overall, the success rate of preventing adverse events in needle
insertions through adaptive and reactive control was 95%, which is important
toward achieving safety in robotic needle interventions.

KEYWORDS

model-free adaptive control, prevention of adverse events, minimally invasive surgery,
autonomous robots, robotic needle steering
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1 Introduction

Autonomous robots can perform complex tasks without
human intervention using sensing, estimation, and control
methodologies with the goal of improving the quality, efficiency,
and safety of a system. These systems have vast applications in
healthcare, commercial industries, transportation, aerospace, and
defense. However, achieving human-like capabilities of dealing
with high unpredictability, rapidly changing environments, and
predicting adverse scenarios in a timely and safe fashion has
been somewhat elusive for fully autonomous systems. Therefore,
developing a combined approach of predictive control with adverse
event prevention models, adaptive learning, decision making,
and human–robot interaction techniques is an important step
toward achieving smart and safe autonomy in various sectors of
manufacturing, aerospace, and healthcare (Schwarting et al., 2018;
Reis et al., 2021; Walter et al., 2022).

An application area where safety is of utmost importance during
autonomous behavior is in the field of robot-assisted minimally
invasive surgery (RMIS). In RMIS, incision tools are maneuvered
by a robot to assist surgeons in performing surgical operations
more accurately while maintaining smaller incision cuts and
improving patient outcomes (Poon et al., 2018; Khandalavala et al.,
2019). Despite many research efforts to develop robotic systems for
medicine, such as the da Vinci (Intuitive Surgical Inc., Sunnyvale,
CA), Senhance (TransEnterix, Morrisville, NC, United States), and
Flex® (Medrobotics Corp., Raynham, MA, United States) robotic
systems, an effective commercial system for deep-tissue needle
insertion has not yet been realized due to complex needle–tissue
interactions and the frequency of adverse events (Misra et al.,
2010a; Majewicz et al., 2012). One such event is the buckling of a
needle shaft that occurs due to rapid increase in frictional forces
when the needle encounters a hard membrane or an obstacle
(Narayan et al., 2018a). On further insertion, buckling could lead
to tissue ruptures (Gruijthuijsen et al., 2018). Another event that
could prevent surgeons from reaching desired targets within the
tissue is the tissue deformation and displacements caused by the
insertion forces of the needle (Oldfield et al., 2015). To address
these difficulties, several steering control methods and novel needle
designs have been proposed that accurately control the needle
tip to reach desired targets (Hadjerci et al., 2016; Sprang et al.,
2016; Li et al., 2017b; Fallahi et al., 2017). There have been efforts
to autonomously predict adverse situations and correct for faults
using sensor readings in unmanned vehicles (Huang et al., 2022;
Ryu et al., 2022); however, much work is still needed for safe
autonomous predictions of adverse events in robotic surgery. While
reducing targeting errors is almost a solved problem, preventing
and controlling adverse events such as needle buckling and tissue
displacements before occurrence still remain a significant challenge
to be addressed in real time (Leibinger et al., 2016; de Baere et al.,
2022). With appropriate prediction and control subroutines, these
adverse events can be prevented before they occur and damage to
the tissue could be reduced, as demonstrated in Figure 1.

In prior work, we developed novel sensor forecasting algorithms
based on which needle buckling events were predicted before
occurrence (Narayan and Fey, 2020). Furthermore, with unknown
needle–tissue interaction dynamics and computation complexities,
implementing model-based or learning-based controllers would be

challenging (Li et al., 2017a). Therefore, we implement a model-
free adaptive control (MFAC) technique (Hou and Jin, 2011)
for steering control of needles and minimizing adverse events.
This technique relies on the principle of linearizing a nonlinear
system with a single parameter called the pseudo partial derivative
(PPD) parameter which is slowly time varying in nature. However,
this technique is not robust to changes in system parameters
which affect real-time stability and output convergence. Two key
contributions of this paper are: 1) developing an improved version
of MFAC called improved model-free adaptive control (IMFAC) for
general nonlinear systems by introducing fast time-varying PPD
to guarantee continuous real-time stability, output convergence,
and robustness against any external disturbance and 2) developing
an action subroutine that integrates IMFAC with prior adverse
event predictionmethods (Narayan and Fey, 2020) to autonomously
prevent needle buckling and tissue displacement events during
robotic needle interventions.

This paper is structured as follows: Section 2 discusses the
literature for adverse event prevention methods and data-driven
control models related to robot-assisted needle insertions. Section 3
discusses the theoretical development of IMFAC, stability analysis,
and simulation tests on a general class of nonlinear systems.
Section 4 summarizes control algorithms to prevent adverse events.
Section 5 discusses experimental methods. Section 6 discusses
adverse event prevention results during needle insertions in gelatin
and biological tissues. Finally, Section 7 concludes the paper.

2 Related work

This section discusses existing methods to prevent adverse
events specific to robotic needle interventions, as well as state-of-
the-art data-driven control methods.

2.1 Prevention and control of adverse
events

Over the years, several strategies have been implemented to
avoid adverse events within the tissue, such as needle buckling
and target displacements (Rossa and Tavakoli, 2017). For example,
to prevent needle buckling events as a result of increases in the
needle–tissue interaction forces, novel designs for steerable needles
were developed. The designs increase the critical buckling force
of the needle shaft and eventually reduce insertion forces on the
needle during insertions (Webster et al., 2006; Van De Berg et al.,
2017). However, these methods do not provide real-time buckling
control. It is more important to track the difference between
insertion force and critical buckling force relative to the needle
position in the tissue, rather than just the critical buckling
force (Van De Berg et al., 2017; Hulburt et al., 2019). For this
purpose, needle–tissue biomechanics models are used to derive
a relationship between insertion forces and needle displacements
(Tang et al., 2007; Misra et al., 2010b; Sakes et al., 2016). However,
biomechanics models require prior information of tissue properties,
which is challenging for intra-operative procedures when tissue
environments are unknown. Similarly, imaging techniques
(Abolhassani et al., 2006; Hadjerci et al., 2016; Li et al., 2017b),
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FIGURE 1
Importance of control for timely prevention of adverse events in robotic needle interventions. (A) When the tissue is stationary and the needle is
inserted at time, t1. (B) On further insertion, when the needle encounters an obstacle or the tissue starts displacing by l1 at time, t2 > t1. (C) With no
control, the needle either buckles or the tissue displaces further by l2 > l1, causing severe displacements of the tissue. However, with preventive control,
needle buckling or tissue displacement is prevented.

mechanical devices and probes as tissue constraints (Brown et al.,
2010; Kobayashi et al., 2012), and path planners (Vrooijink and
Abayazid, 2014; Li et al., 2017b; de Baere et al., 2022) have been
implemented to control the deformations and displacements of the
tissue. Though these methods have shown success in achieving
accurate target placement of the needle tip, they rely on finite
element and biomehanics models. Accurate characterization of
needle–tissue dynamics can be time consuming, and thus, it can
be challenging to implement real-time control (Rossa and Tavakoli,
2017; Barnoy et al., 2022).

Recently, research groups have taken inspiration from parasitic
invertebrates such as wasp ovipositor and mosquito to design
needles that can penetrate solid substrates easily. Inspired by the
mechanism of the ovipositor, a thin needle composed of several
wires sliding alongside the other was developed tomaneuver needles
with high curvatures while minimizing impact on the surrounding
tissues (Sprang et al., 2016; Scali et al., 2017). Similarly, Li et al.
(2020) developed a needle-cannula system thatmimics themosquito
proboscis mechanism of incremental motions to reduce tissue
deformations and displacements during insertion. They also used
harpoon notches at the needle tip to reduce needle–tissue frictional
forces (Li et al., 2020). These bio-inspired mechanisms of needle
insertions can generally improve maneuverability, while reducing
critical needle–tissue interaction events such as needle buckling,
tissue deformations, target displacement, and needle deflections.
However, they have complicated designs and require several fixtures
to prevent buckling of individual wires. Furthermore, a systematic
study to select design parameters is required, which usually change
due to varying heterogeneous tissue substrate (Leibinger et al., 2016;
Matheson and Rodriguez y Baena, 2020).

These limitations call for alternative solutions that do not
depend on needle designs and unknown tissue structures, such as
model-free techniques. Thus, optimizing on needle insertions while

minimizing adverse events in real time using data-driven control
techniques would be the focus of this work.

2.2 Data-driven control methods

In the last decade, much attention has been given to the
application of data-driven control techniques for modeling complex
nonlinear processes (Abouaïssa andChouraqui, 2019).The common
classical technique being the proportional, integral, and derivative
(PID) controller has shown to be generalizable to many systems
and finds applications in most regulatory-based process control
industries (Åström andHägglund, 1995;McMillan, 2012). However,
tuning of the gains is performed offline and is affected by process
disturbances and the time-varying behavior of the system. This
makes PID less robust and challenging to implement in real
time. To address these issues, intelligent PID was proposed to
predict dynamic system behavior through estimation techniques
and online numerical differentiator, eliminating offline tuning and
prior identification procedure (Fliess and Join, 2009). Yet, its
performance is limited by issues of sensor noise, sampling rates, and
computation power as the size of data increases (Hou and Jin, 2011).

There has been increasing interest in unconventional control
strategies such as neural networks, fuzzy logic, and genetic
algorithms (Thomas and Poongodi, 2009; Heidari et al., 2013;
He et al., 2015; Bing et al., 2018; Glida et al., 2021). Neural network
control is based on learning from the mapping between system
input–output data, whereas fuzzy control is based on learning from
past experience and expert knowledge to predict and control system
behavior (Abouaïssa and Chouraqui, 2019). Genetic algorithms
tune control models based on stochastic optimization techniques
that mimic biological evolution (Rodríguez-Abreo et al., 2020). The
advantage is that these methods do not require any mathematical
model of the system; however, determining parameters that
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accurately satisfy systembehavior can be computationally expensive.
Moreover, methods to identify system stability with learningmodels
are still yet to be developed and fully analyzed (Singh and
Sukavanam, 2012). Efforts have been made to develop learning-
based control techniques with low computation complexity, to
optimize needle insertions in tissue while minimizing undesired
needle deflections and tissue displacements (Buzurovic et al., 2010;
Rossa et al., 2017; Pratt and Petruska, 2022). Yet, their methods do
not entail prevention of these events before occurrence.

An alternative technique to control any complex nonlinear
systemwithout using learningmodels isMFAC (Hou and Jin, 2011).
This technique uses the dynamic linearization principle to simplify
the system nonlinearities and requires only system input–output
data.Due to the ability to perform stability analysis online, simplified
mathematical models, and robustness against external disturbances,
MFAC finds applications in unmanned aerial vehicles, automated
manufacturing, and mobile robots (Hou and Jin, 2019). Recently,
Li et al. (2017a) derived a model-free adaptive control from Kalman
filter techniques to predict needle buckling and control positions
of a flexible robot. However, they have not provided a mechanism
yet to minimize an adverse event when it occurs. To the best
of our knowledge, model-free adaptive control has not yet been
implemented on robotic systems that could control needle–tissue
interactions while preventing or minimizing adverse events in real
time.

3 Improved model-free adaptive
control

In the original MFAC framework, the online stability of a
system depends on the choice of system and control parameters
(Hou and Jin, 2011). Since these parameters are tuned offline,
real-time robustness against system uncertainties and output
convergence cannot be guaranteed. Therefore, online tuning of
control parameters is implemented with MFAC to improve real-
time output convergence and stability in the presence of unexpected
disturbances, and we name this technique as IMFAC. This section
focuses on the formulation of IMFAC and parametric selection
methods through theoretical analysis of stability and output
convergence.

3.1 Derivation

If a discrete-time nonlinear system with output y and input uc
satisfies the Lipschitz condition

|y(ki) − y(kj) | ≤ ̃b|uc (ki) − uc (kj) | (1)

for timestamps ki ≠ kj and i, j > 0, then the nonlinear system can be
approximated as a dynamic linearization model,

y (k+ 1) = y (k) +Θc (k)Δuc (k) , (2)

where Θc is a slow time-varying parameter called PPD that
compresses system nonlinearity. This approximation is useful in
predicting the output of a nonlinear system without using dynamic
models. PPD is a scalar for single-input single-output (SISO) systems

and a vector for multi-input multi-output (MIMO) systems. For
tracking and regulation-based control, the following quadratic cost
function is employed to obtain control effort, Δuc(k), as a function
of prediction errors, y*− y(k+ 1):

Jc (uc (k)) = |y
* − y (k+ 1)|2 + λc |uc (k) − uc (k− 1)| , (3)

where y* is the desired output of the system. The weighting factor
λc > 0 restricts Δuc(k) and, thus, is an important tuning parameter
for output convergence and system stability. Substituting y(k+ 1)
from Eq. 2 and minimizing Eq. 3 with respect to uc, the optimal
input for tracking is computed as

uc (k) = uc (k− 1) +
Θc (k)

λc +Θc (k) .Θc(k)T
(y* − y (k)) , (4)

where Θc(k) is determined using numerical approximationmethods
due to unknown system dynamics. The following cost function
is used to obtain an approximate Θc(k) by minimizing the error
between the modeled output from Eq. 2 and observed output, y(k):

Jc (Θc (k)) = |y (k) − y (k− 1) −Θc (k)Δuc (k− 1)|
2 + |Θc (k) −Θ (k− 1)|

2.
(5)

The second term in the cost function ensures robustness against
system nonlinearity. Minimizing this cost with respect to Θc(k)
yields

ΔΘc (k) =
Δuc(k− 1)T. (Δy (k) −Θc (k− 1) .Δuc (k− 1))

1+Δuc(k− 1)T.Δuc (k− 1)
, (6)

where Δuc(k) = uc(k) − uc(k− 1). However, Eq. 6 is not robust to
process errors such as arbitrary initialization of system parameters,
which affect output convergence. This issue is resolved when Θc(k)
is assigned as a rapid time-varying parameter

If |Δy (k+ 1) | > ̃b|Δuc (k) |

Θc (k) =
|Δuc (k) |
|Δy (k+ 1) |

. (7)

The Lipschitz constant, ̃b, is chosen from the theoretical
analysis of system stability and output convergence. Finally,
Eqs 2–7 are computed iteratively. This technique is similar to the
existing framework (Hou and Jin, 2011); however, the novelty
lies in the introduction of the rapid varying PPD and the
methods of initializing control parameters, (λc,Θc(0)), and system
parameters, (uc(0),y(0)), for continuous real-time stability discussed
in Section 3.2.

3.2 Stability analysis and parameter
initialization

In the traditional MFAC scheme, Θc(0), y(0), uc(0), and λc are
hand-tuned using trial and error methods which can be tedious.
This issue can be resolved if a systematic approach to parametric
initialization is followed under certain assumptions of the system
stated below.

Assumption 1: The nonlinear system (1) satisfies a special case of
Lipschitz condition for all k > 0:

|y (k+ 1) − y (k)| ≤ ̃b |uc (k) − uc (k− 1)| , (8)

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1271748
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Narayan and Majewicz Fey 10.3389/frobt.2023.1271748

where uc(k) ≠ uc(k− 1) and ̃b ∈ (0,1). Therefore, |Θc| ∈ (0,1).
This assumption holds for a class of systems that cannot

move beyond the commanded external force, unless affected by
disturbance factors. For example, in robotic needle steering, a tissue
cannot displace beyond the needle insertion velocity unless affected
by other factors such as patient breathing. This condition resembles
the bounded-input bounded-output stability where energy in the
system output cannot increase beyond the energy levels in the
system inputs according to energy conservation law. Hence, the
absolute values of Θc from Eq. 2 are also bounded between 0
and 1 according to Eq. 8.

Next, the sign of Θc depends on the system response to inputs,
which is stated in the following assumption.

Assumption 2: If system output changes in the same direction as the
inputs, then Θc ∈ (0,1). Otherwise, Θc ∈ (−1,0).

This assumption holds for systems whose outputs are affected
by multiple inputs. For example, if two inputs (say, uc1 and uc2)
influence an output such that an increase in uc1 and decrease in uc2
drive the system to desired outputs, then 0 < Θc(0) < 1 for uc1 and
−1 < Θc(0) < 0 for uc2.

Third, if initial values of the system input and output are
assigned close to the operating points, then output convergence is
guaranteed.

Assumption 3: Output convergence, lim
k→∞
|y(k+ 1)| → y*, is

guaranteed if −a < y(0) < a and ̃a < uc(0) < ̃a such that
|y*− y(0)|→ 0 for some a > 0, ̃a > 0.

The operating points (a, ̃a) are usually identified during prior
simulations. For physical systems, they are easily identified as safe
operating limits provided by the system manufacturer.

Finally, output convergence also depends on the range of the
input weighting factor, λc, stated as follows.

Assumption 4: If system (1) is controlled for a regulation
problem, then there exists a minimum value, λmin

c =
1
4
such that

|y*− y(k+ 1)|→ 0 for all k and λc > λmin
c . There also exists a

maximum value, λmax
c , above which the system settles but with

steady-state errors.
Proof. The proof is straightforward where the boundedness

property of ̃b from Assumption 1 is used to maintain both system
stability and convergence. If the steady-state error is defined as

e (k+ 1) = y* − y (k+ 1) , (9)

then substituting y(k+ 1) in Eq. 9 from Eq. 1, we have

e (k+ 1) = y* − y (k) − ̃bΔuc (k) . (10)

Substituting Δuc(k) from Eq. 4 in Eq. 10 and from the absolute
value theorem,

|e (k+ 1) | ≤ |1−
̃bΘT
c

λc +ΘcΘT
c
| |e (k) |. (11)

Now, using the boundedness of Θc fromAssumption 2, we know
that

0 < |1−
̃bΘT
c

λc +ΘcΘT
c
| < 1. (12)

Since ̃b cannot exceed 1 fromEqs 11, 12, we assume | 1.ΘT
c

λc+ΘcΘ
T
c
| < 1

as the maximum limit to find λmin
c . Then, using the general concept

of quadratic equation, (√λc)
2
+ΘcΘT

c ≥ 2(√λc)Θc, we have

|e (k+ 1) | ≤ |1−
ΘT

c

λc +ΘcΘT
c
| |e (k) | ≤ ||

|

1− 1

2√λc

||

|

< 1. (13)

Hence, λmin
c = 0.25 using the relation, 1

2√λc
= 1 in Eq. 13. Finding

an exact maximum value, λmax
c , is not important, as λc > 1 leads to

lower rising times and larger steady-state errors for many systems
(Hou and Jin, 2011). Since many real-time applications require
fast rising time and low steady-state errors, λmax

c = 1 is considered.
Furthermore, Δuc(k) needs to be constrained as most actuators have
finite excitation. Thus, λc can be chosen arbitrarily in the range
(λmin

c ,1) to balance between constrained inputs and tracking errors.

3.3 Simulation tests

The improved framework (IMFAC) is validated on two test
nonlinear systems to compare performance with MFAC (Hou and
Jin, 2011). All equations are coded in the MATLAB® 2018Rb
environment and tested on simulated SISO and MIMO nonlinear
systems. The algorithms are compared using the same initial
conditions and control parameters.

For a SISO system with some nonlinear input–output model,

y (k+ 1)

=

{{{{{
{{{{{
{

y (k)

1+ y(k)2
+ u3

c (k) ; k ≤ 500

y (k)y (k− 1)y (k− 2)uc (k− 1) (y (k− 2) − 1) + β (k)uc (k)

1+ y(k− 1)2 + y(k− 2)2
; k > 500,β (k) = round (k/500)

.

(14)

Let the initial conditions of the system be uc(1) = uc(2) = 0
and y(1) = y(2) = 0 with a constant reference output as y* = 0.5.
The output of the system is expected to change at k = 500,750
according to Eq. 14, and thus, some disturbances due to these
transitions are expected. Simulation results of SISO are shown
in Figures 2A, B, where solid green plots correspond to IMFAC,
dashed red plots correspond to original MFAC, and the dash–dot
blue plot is the reference signal. For λc = 0.1 < λmin

c , IMFAC
converged to the desired value within k = 790 after disturbance
at k = 750, while MFAC showed lack of output convergence due
to sustained oscillations (upper plot of Figure 2A). When |Θc| > 1,
IMFAC showed faster convergence at the disturbances, whereas
MFAC showed slower convergence at k = 830 after disturbance at
k = 750 (upper plot of Figure 2B). For the same control parameters
and initial conditions, IMFAC showed better stability and faster
convergence due to the corrective action of the rapid time-varying
PPD, compared to MFAC with slow time-varying PPD (lower plots
of Figures 2A, B).

We consider a two-input (uc1,uc2) one-output (y)MIMO system
with some nonlinear model in Eq. 15.

y (k+ 1) =
5y (k) + 2uc1 (k) − 3uc2(k)2 + 2uc1(k)2

5+ uc1 (k) + 5uc2 (k)
, (15)
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FIGURE 2
Simulation results on test nonlinear systems: (A,B) SISO system showing stable response and faster convergence of improved MFAC (solid green, upper
plots) even when λc < λ

min
c or |Θc| > 1, due to the rapid time-varying behavior of Θc (solid blue, lower plots). (C) MIMO system response through the

directional control of inputs (uc1,uc2) and initial Θc, where the output is controlled by increasing uc1 with positive Θc and decreasing uc2 with negative
Θc. (D) Stability analysis comparing improved MFAC (blue diamond) and original MFAC (red cross) for different λc and initial Θc.

where uc = [uc1,uc2]T ∈ ℝ2×1. Arbitrary initial conditions of the
system are uc(1) = uc(2) = [0.5,0.6]T, y(1) = 0,y(2) = 0.9, and
Θc(1) = [0.5,−0.2]. Let λc1 = λc2 = λc = 0.5 for each input. We can
have λc1 ≠ λc2; however, for the ease of validating Assumption 2,
we choose λc1 = λc2. A constant reference trajectory close to zero
(y* = 0.01) is considered since ideal y* = 0 would cause control
inputs to be zero which cannot drive the system to desired outputs.
Therefore, near zero reference is used to simulate stationary or
minimum movement of the system. Simulation results show that
negative Θc2 = −0.2 decreases uc2 and positive Θc1 = 0.5 increases
uc1, which drive the system to the desired output (y* = 0.01), see
Figure 2C. It should be noted that initial Θc can be assigned to
control the system inputs in the desired direction only if there is
basic knowledge about system response to the inputs.

Finally, the performance of IMFAC is compared with original
MFAC in terms of frequency of unstable events computed as the
number of occurrences of |Δy(k+ 1)| > |Δuc(k)| per simulation time,
for different values of control parameters (λc and Θc) as shown

in Figure 2D. The blue diamond plot (IMFAC) for λ = 0.1 < λmin
c

shows that system stability was not affected by arbitrary initialization
of λc and other disturbances. Otherwise, these results show the
comparable performance of IMFAC with MFAC using a systematic
approach to parameter initialization. On average, the convergence
time of IMFAC was 20% faster than that of MFAC. This shows
that irrespective of the control parameters and initial conditions,
system stability and fast output convergence are always achieved
with IMFAC.

3.4 Application to robotic needle steering

The MIMO system in Section 3.3 is similar to the needle
intervention applications where tissue motion, y = l, is controlled
by two inputs: a) insertion velocity ν and b) duty-cycle factor as
a measure of the number of needle shaft rotations per insertion,
D. Tissue motion can be minimized with a decrease in insertion
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FIGURE 3
Model-free control to minimize tissue motion l.

velocity and increase in the duty-cycle factor. Therefore, stationary
tissue is desired (l*→ 0.01) during needle insertion procedures.
Through appropriate selection of parameters (λc,Θc), IMFAC can
minimize tissue motions during needle insertions as shown in
Figure 3. The input–output equations of the SISO and MIMO
systems from Section 3.3 are used only for simulation purpose to
validate the control algorithms and are not available in real time.
For real-time needle insertion experiments in unknown tissues,
l is obtained from position sensor measurements, and inputs are
the user-defined steering control inputs, ν and D. Based on the
previousMIMO simulation results, initial values of Θc = [0.5,−0.2]T

and same λc = 0.5 will be used for both the inputs (ν and D) for all
needle insertions. Initial values of the inputs are commanded by a
user. The range or operating points of these inputs is decided by the
maximum rating of the motors used to drive the needle following
Assumption 3. Since the output (tissue displacement) is zero when
excitation (insertion inputs) is zero for needle–tissue systems, we
will assume zero initial values, l(0) = 0, for all needle insertions. The
next section will discuss application of IMFAC to prevent adverse
events during needle insertions in a tissue.

4 Prevention of adverse events

In this section, we first summarize the methods to predict
adverse events using a previously developed sensor data forecasting
technique called compact-form dynamic linearization model-free
prediction (CFDL-MFP) (Narayan and Fey, 2020). We then develop
optimal needle steering algorithms using IMFAC and detection
algorithms from the work of Narayan et al. (2018b) for the overall
prevention of adverse events.

4.1 Prediction of adverse events from
sensor data forecasts

Let the time series data obtained from a sensor at current time
k be S(k). The steps to generate sensor data forecasts, ŜN(k+ 1), for
some future prediction horizon, N, using CFDL-MFP are

ŜN (k+ 1) = ŜN (k) + Φ̂NΔUN ∈ ℝN. (16)

The data vector S represents sensor data. For example,
previous N samples of force data measured from a force

sensor at time instant k are represented as SN(k), and ŜN(k+ 1)
represents N-step ahead forecasts of force data at the next
time instant k+ 1. The forecast parameters ΔUN(k) and Φ̂N(k)
are computed following the procedure in our previous work
(Narayan and Fey, 2020):

Φ̂N (k) = (ΔUN (k− 1) + 1⃗)
◦−1◦(Φ̂N (k− 1) +ΔUN (k− 1)◦ΔŜN (k))

ΔUN (k) =
Φ̂N (k)

(λ.1⃗+ 2Φ̂2
N (k))
◦(S*

N (k) + SN (k) − 2ŜN (k)) , (17)

where ◦ is array element-wise operation, 1⃗ is anN-dimension vector
of ones, and ΔŜ(k) = Ŝ(k) − Ŝ(k− 1). The sensor data SN(k) contain
previous N observed data points, and the reference vector S*

N(k) is
the running average of the observed data points.

Forecasts of force sensor data are generated when a slight
increase in force is detected, and if force forecasts show patterns
of rapid increase, then needle buckling is predicted (Narayan and
Fey, 2020). Similarly, tissue displacements can be predicted using
forecasts of tissue position data. Tissue displacement is characterized
based on the intensity of motion such as mild tissue displacement
(MTD) and severe tissue displacement (STD). STD occurs when the
needle tip stops moving relative to the tissue frame (Narayan et al.,
2018a). To predict STD before occurrence, N-step forecasts of
the tissue position relative to fixed frame ̂ltwN and the needle-tip
position relative to fixed frame ̂lnwN are generated using Eqs 16, 17.
It should be noted that ltw and lnw are the Euclidean norm of 3D
positions measured from position sensors p⃗tw and p⃗nw, respectively.
The norm of the needle-tip position relative to the tissue frame is
obtained as lnt = lnw − ltw, and ( ̂ltwN, ̂lnwN, ̂lntN) are the forecasts of
the corresponding position norms. STD events are then predicted
using these norm position forecasts with the sigmoid slope detection
methods in Eq. 18.

m̂t (k+ i) =
180
π
.
Δ ̂lN (k+ i)
Δ ̂s (k+ i)

; i = 1,2, .,N; ̂lN = ( ̂ltwN, ̂lnwN, ̂lntN)

̂g(m̂t (k+ i)) =
1

1+ e−m̂t(k+i)
; ̂g = ( ̂gnw, ̂gtw, ̂gnt)

, (18)

If ̂gtw (k+ i) >m2OR ̂gtw (k+ i) <m1

Then {
Ifm1 < ̂gnt (k+ i) <m2; STDpredicted
Else MTDpredicted

.

The needle insertion distance ̂s is linearly projected into the
prediction horizonN. The thresholdsm1 andm2 are experimentally
determined (Narayan et al., 2018b).
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FIGURE 4
Flowchart for the overall prevention of adverse events. Critical events such as STD and needle buckling are prevented using reactive control (e.g., robot
stop and retract needle). When mild events are detected, needle insertions continue through optimal steering control from IMFAC to prevent potential
severe events before occurrence.

4.2 Real-time prevention algorithm

To prevent critical events such as needle buckling and STD
before they occur, it is necessary for the robot to respond
immediately to the prediction algorithms. For this purpose, reactive
control is implementedwhere the robot stops and retracts the needle
when buckling is predicted, and the robot stops insertion when
STD is predicted to avoid potential damage to the tissue. However,
when a mild event such as MTD is detected, adaptive control
(IMFAC) computes optimal steering inputs (insertion velocity and
duty cycle) to steer needles such that the occurrence of mild events
is minimized and severe events are prevented. This strategy ensures
continuity of the insertion procedure which otherwise is disrupted
by reactive control. A complete event prevention algorithm
with a combination of reactive and adaptive control is shown
in Figure 4.

The pseudo code for adverse event prevention is presented in
Algorithm 1. The code is an integration of the proposed methods
with the previous event detection, sensor forecasting (CFDL-MFP),
and prediction algorithms (Narayan et al., 2018a; Narayan and Fey,
2020). The inputs to the algorithm are the filtered sensor data at
current time k, CFDL-MFP prediction horizonN, user-commanded
initial needle insertion velocity ν, and duty-cycle factor D. Before
iteration, the IMFAC control parameters are initialized according
to Section 3.2, and the initial event prediction flag is set to zero,
see steps 3–4. The total insertion distance s is user-defined prior to
the insertion procedure. Encoder readings s(k) are used to check if
the measured insertion distance reached user-defined s, see step 5.
All sensor data are filtered in real time using the Kalman filtering
scheme from the work of Narayan et al. (2018b). For every iteration,
the Euclidean norm of 3D position sensors and optimal mean forces
f*p(k) are computed, since CFDL-MFP and detection algorithms

work on univariate time series data, see steps 6–7. The Optimal
Mean function is the running average of the observed sensor data
(Narayan et al., 2018a). Checks for needle buckling detection are
performed for every k, see step 8. If a force increase is alerted by
the detection algorithm, N-step forecasts of force data f̂aN(k) are
generated with CFDL-MFP and the buckling prediction algorithm
checks for any buckling event using the force sensor forecasts
(Narayan and Fey, 2020). If buckling is predicted, the robot stops
insertions and needle is retracted, see steps 9–16. Similarly, checks
for tissue displacement detection are performed, see step 17. IfMTD
is detected (k = km), the displacement prediction algorithm checks
for STD events. When STD is predicted, the robot stops insertions,
see steps 18–24. Otherwise, steering control inputs for the needle
are continuously updated until the end of insertion distance s to
minimize or prevent further displacements of the tissue, see steps
25–29. The algorithm is executed in a multi-threaded framework to
ensure simultaneous prediction and prevention of adverse events in
real time.

5 Experimental methods

This section describes in detail the robot hardware setup and
protocols used to validate the adverse event prevention algorithm
during needle insertions in artificial and biological tissues.

5.1 Robot and setup

The needle steering robot for needle insertion experiments
is shown in Figure 5A. The robot is controlled with a Dell
Inspiron 15 Gaming Laptop through custom C++ multi-threaded
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Require: Axial force sensor fa(k), 3D needle-tip

sensor p⃗nw(k), 3D tissue sensor p⃗tw(k), prediction

horizon N, total insertion distance s, commanded

insertion velocity ν, and commanded duty-cycle

factor D.

1:  k← 0

2:  Initialize IMFAC parameters

(λc,Θc(0),uc(0) = [ν,D]T,ltw(0))

3:  Initialize CFDL-MFP parameters

4:  PredictionFlag ← 0

5:  while s(k) < s do

6:  l(k) ← Norm(p⃗(k)); p⃗ = (p⃗nw, p⃗tw)

7:  f*p(k),l*(k) ← OptimalMean(fa(k),l(k)); l = (lnw,ltw)

8:  kf,kb← CheckBuckling(fa(k), f*p(k),lnw)

9:  if k = kf then

10:   Force increase alert

11:    f̂aN(k) =CFDL-MFP(fa(k), f*p(k),N)

12:   PredictionFlag ← CheckBuckling( f̂aN(k), f*p(k),lnw)

13:  end if

14:  if PredictionFlag OR k = kb then

15:   Buckling predicted/detected: Insertion

stopped and needle retracted

16:  end if

17:  (km,ks) ← CheckTD(ltw(k),lnw(k),s(k))

18:  if k = km then

19:   MTD detected

20:  l̂twN(k), l̂nwN(k) =CFDL-MFP(ltw(k),lnw(k),l*tw(k),l
*
nw(k),N)

21:  PredictionFlag ← CheckTD(l̂twN(k), l̂nwN(k), ŝ(k))

22: end if

23: if PredictionFlag OR k = ks then

24:   STD predicted/detected: Insertion stopped

25:  else

26:   (uc(k),Θc(k)) ← IMFAC(ltw(k),λc,Θc(k−1),uc(k−1))

27:  end if

28:  k← k+1

29:  end while

Algorithm 1. Adverse event prevention.

application (QT Creator 4.6.0) on Ubuntu Linux 16.04. The code
manages low-level PID motor control and the execution of duty-
cycled flipping algorithms to enable different needle steering
directions (Majewicz et al., 2014). The robot is equipped with a
6-axis force–torque sensor (Nano-17, ATI Inc.) at the needle
base to track axial forces due to needle–tissue interaction and an
electromagnetic (EM) tracker (trakSTAR, NDI Inc.) to track needle-
tip position.Data from these sensors are streamed at 50 Hz similar to
(Narayan et al., 2018b). Algorithm 1 is coded as modules in Python
3.5 and interfacedwith a low-levelmotor control code inQTCreator
C++ through pybind11, an open-source Python-C++ wrapper that
calls Python modules from C++ directly enabling multi-threaded
operations. Real-time plotting of sensor data and prediction results
of Algorithm 1 during needle insertions are displayed on QT GUI
using the QCustomPlot library.

5.2 Gelatin tissues to simulate adverse
events

A homogeneous gelatin tissue of stiffness 60 kPa (1:3 gelatin
to sugar in 500 mL water) and dimensions 14 × 8 × 7.5 cm was
created to validate tissue displacement prevention methods from
Algorithm 1. The tissue is placed on a platform smeared with soap
water to simulate a slippery surface for the sliding motion of the
tissue, as shown in Figure 5B. For short-hand notation, let this
sample be denoted as T1. Another gelatin sample of varying stiffness
60 and 20 kPa (1:3 gelatin to sugar in 1000 mL water) was created
by embedding an obstacle to validate needle buckling prevention
methods in heterogeneous tissue with a known environment. To
prevent damage to the needle and the EM needle position sensor, a
standard rectangular Scotch-Brite dish scrubber of thickness 0.7 cm
is used as an obstacle. The 20 kPa region is on one side of the
obstacle at 7.1 cm from a short edge, and the stiffer 60 kPa region
is on the other side of the obstacle at 6 cm from the opposite
short edge as shown in Figure 5C. This tissue denoted as T2 is
also placed on the slippery platform to validate Algorithm 1 during
buckling and tissue displacement events. For more details on gelatin
preparation methods, refer to the work of Narayan et al. (2018a).
BothT1 andT2 are used for experiments within 12 h of refrigeration.
A trakSTAR sensor was taped on the surface of these tissues to track
displacements.

5.3 Steerable needles

Two steerable needles with different dimensions and tips are
used to validate the proposed prevention methods for robustness to
needle types. The first steerable needle (N1) shown in Figures 5D is
made from a hollow nitinol tube with dimensions 250 mm length,
0.8 mm OD, and 0.6 mm ID and a 30° prebent tip of 4 mm length
(Majewicz et al., 2014). For integrationwith the robot, an EMneedle
tracker was inserted into the hollow end of the needle and secured
with Luer locks. The second needle (N2) is a clinically available
prostrate seeding needle with a stiff hollow tubing of length 175 mm
and thickness 1.27 mm. A stainless steel wire of thickness 1.2 mm
was cut into a small piece of length 10 mm and inserted into the tip
of the hollow seeding tube such that 5 mmwas jutting out of the tube
and the rest 5 mmwas inside the tube.The tip was ground to create a
bevel angle of 60° to enable cutting through the tissue. Another EM
needle tracker was inserted into the hollow end of the needle and
secured with Luer locks for integration with the robot similar to N1,
as shown in Figure 5E.

5.4 Insertion protocol in gelatin and
biological tissues

To specifically evaluate IMFAC control and tissue displacement
prevention methods against different needle types, a total of 30
insertions with prebent needle N1 and six insertions with straight
needle N2 were performed in tissue T1. To validate both buckling
prevention and tissue displacement prevention algorithms against
various needle and tissue types, a total of 10 insertions with needle
N1 and four insertions with N2 were performed in tissue T2.
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FIGURE 5
Experimental setup: (A) Needle steering robot with force and EM sensors. (B,C) Gelatin tissues (T1,T2) on a slippery platform smeared with soap water
to elicit adverse events. (D,E) Prebent-tip needle (N1) for insertions in all tissues and the straight bevel needle (N2) for insertions in T1 and T2. (F) Goat
liver (T3) on a non-slippery platform to validate event prevention algorithms. (G) Fluoroscopic imaging to track adverse events during insertions in T3.

These insertionswere performed using four initial user-commanded
insertion velocities (0.25,0.5,1,1.5)cm/s, and three initial user-
commanded duty cycle (0,50,100)%. Videos of the insertions
were recorded using an iPhone 11 camera focused on the top
surface of the tissue and a digital camera (Sony W800/B20MP
5X Optical Zoom) focused on the overall robot-tissue setup. The
videos were used as ground truth for verification of the prevention
algorithms. For viewing and analysis, motion images were generated
in MATLAB at 30 frames per second and overlaid using Adobe
Photoshop CC 2020.

Around 16 needle insertions were performed with the ex vivo
goat liver tissue labeled as T3 in Figure 5F at the University of
Texas Southwestern Medical Center. The liver tissue was placed on
a clean platform. Live fluoroscopic videos were collected using a
9-in XRII OEC series 9600 fluoroscope (X-ray source and CCD
camera) and saved with a Canopus ADVC 110 frame grabber, as
shown in Figure 5G. The fluoroscopic videos were used as ground
truth to check if adverse events were detected or prevented using
Algorithm 1.

6 Results and discussion

A good result of an optimal needle steering in the event of a
mild tissue displacement is shown in Figures 6A–C. As the prebent
needle N1 steered within the tissue T1, MTD was detected in the
direction of the tip showing curved tissue motion from the motion
image in Figure 6A. Eachmotion image was generated by overlaying
three frames of motion above the other to show the translation

displacement of the tissue and insertion or retraction motions of
the needle. As soon as MTD was detected at 11.5 s (pink-shaded
region) from Figure 6B, optimal steering inputs were calculated
such that MTD stopped for short periods of time as can be seen
in the discontinuities around 20 s from Figure 6C. The insertion
procedure completed with reduced insertion velocity (blue plot) and
increased duty-cycle (green plot) as no severe events were predicted.
It should be noted that the insertion inputs were constrained where
the velocity cannot reduce below 0.25 cm/s nor increase beyond
1.5 cm/s due to motor ratings. Similarly, there are only limited duty-
cycled steering options between 0% and 100%. If the needle was
inserted with the lowest insertion velocity and MTD was detected,
then the duty-cycle increased to reduce tissue motion.

Buckling prediction results in tissues with embedded obstacle
T2 are shown in Figures 6D–F. The motion images are obtained
by overlaying two frames above the other to show the insertion
and retraction motions of the needle during a predicted event. The
frames corresponding to the interaction of the needle tip at the
obstacle and the final retraction step are overlaid for better visibility
since overlaying more than two images causes blur. In all the plots
shown, buckling events were predicted at those timestamps when a
force increase (not shown)was alerted by the detection algorithms as
soon as the needle tip touched the obstacle, and the needle retracted
as soon as a buckling was predicted at this time of force increase
alert at 6.7 s. Using Algorithm 1, the robot stopped insertions and
the needlewas retracted by 2 cm.The retraction distance of 2 cmwas
chosen arbitrarily. This choice would depend on the path planning
algorithms based on preoperative data or the operating surgeon.
Results in the 20 kPa region of tissue T2 show that prediction
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FIGURE 6
Results in gelatin tissues: (A–C) Motion image and plots showing controlled needle insertions with the prebent needle (N1) in tissue T1 to minimize
tissue motion, by changing needle insertion velocity and duty cycle (tip orientations) during the detection of MTD. (D–F) Motion image and plots
showing the retraction of the straight needle (N2) at the obstacle in T2, and buckling was predicted. (G–I) Motion image and plots showing controlled
needle insertions with needle N1 in tissue T2 during MTD, followed by reactive control (robot stopped insertion) when severe displacement (STD) was
predicted.

algorithms are robust to tissue environments and that they solely
depend only on the force readings. However, the limitation is that
sometimes, force does not increase even on encounter with an
obstacle. In this case, the algorithmswould neither detect nor predict
any buckling event, explained in the next paragraph.

An example of an optimal needle steering with reactive control
is shown in Figures 6G–I. When N1 was inserted into tissue T1,
MTD was detected at 27.2 s as soon as the tip approached the
obstacle. Optimal steering inputs were calculated to reduce MTD,
but the robot stopped motion as severe displacement of the tissue
was predicted, represented by the yellow-shaded plot. It should be
noted that buckling of the needle shaft was expected as soon as
the tip encountered the obstacle; however, instead of a rapid force
increase, a mild displacement was detected which resulted in severe
displacement. Therefore, even when the needle appeared to have
buckled, the axial force did not increase rapidly as expected, which
caused both the buckling prediction and detection algorithms to fail.

However, the overall procedure worked because of a displacement
prediction and the insertion stopped on time. This example shows
the advantage of developing unified methods for adverse event
predictions.

Another example of a unified prediction is shown in Figure 7.
When the needle N1 was inserted for 0% duty cycle, the needle
became curved due to the high stiffness of the tissue. Moreover,
since the surface was slippery, mild displacements were detected as
the needle steered further into the tissue. Due to the high steering
curvature of the 0% duty-cycled needle, a buckling was predicted
and a slight bend of the needle shaft can be seen in themotion image.
Even though this could be a false buckling alarm, it is still safer to
stop the needle as it gives time to the operating surgeon to decide if
the insertion procedure should continue or stop.

Validation results in the ex vivo goat liver T3 are shown in
Figure 8. The prebent needle N1 was used for all insertions in
T3. The timestamps of the live fluoroscopic videos match the
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FIGURE 7
Optimal needle steering control with buckling prevention: (A) Motion image showing optimal needle insertions in gelatin T1 to minimize MTD and
prevent needle buckling. (B) Control inputs change when MTD is detected to avoid STD. (C) Normalized position plots of the needle and tissue
showing MTD detections. (D) Buckling predicted due to which the robot stops insertion and retracts the needle.

timestamps of the real-time plots of the predicted adverse events,
confirming the timely prevention of these events in heterogeneous
tissues. All insertion data in gelatin and goat liver tissues with both
the types of needles were combined for statistical analysis. The
Kruskal–Wallis statistical method was performed on the data to
study the effectiveness and robustness of the prevention algorithm
against different needles and tissue environments. Prevention rate is
computed as the ratio of the number of adverse events prevented to
the total number of insertions for each tissue sample and needle type
(blue diamond bars), see Figure 9A. Similarly, the detected event
rate (red cross bars) is the ratio of the number of adverse events
detected by the total number of insertions for each tissue sample and
needle type, and the rate of no events is computed as the ratio of the
number of insertions with no adverse events detected or predicted
by the total number of insertions for each tissue sample and needle
type (green square bars). Error bar plots show that the largest
percentage of the needle insertions was optimized for control and
prevention of adverse events (blue diamond bars). According to the
two-way ANOVA analysis from Figure 9B, prevention rates did not
depend on the needle or tissue type nor the needle-tissue interaction
effects (p > 0.01), proving the robustness of the algorithms. The rate
of detected events shows that early prediction of adverse events
was not successful; however, the robot still stopped the insertion

procedure through a reactive control mechanism on detection
of the adverse event. The rate of controlled needle insertions
(prevented events) in the goat liver was comparable to the rate of
the detected events because of the local deformations of the tissue
which were detected as severe tissue displacement events. Tissue
deformation is a separate problem that is not covered in this work;
however, real-time tissue mapping could be used to obtain control
inputs for optimal needle steering with minimal tissue deformation
and motion.

To study the effectiveness of the adverse event prevention
algorithm to robotic needle steering applications, needle insertions
were grouped into a) completed insertions with an optimal steering
mechanism to prevent severe adverse events, b) aborted insertions
due to the prediction or detection of a severe event, and c) completed
insertions with no adverse events predicted or detected. The bar
plots in Figure 9C show that the majority of needle insertions were
aborted due to the reactive control mechanism of Algorithm 1
which prevented severe events such as STD and needle buckling. In
about 25% of the needle insertions, MTD was detected and optimal
steering inputs were continuously updated to complete the insertion
procedure while minimizing MTD and preventing severe events.
About less than 10% of the needle insertions did not encounter
any adverse events, which shows that reactive and adaptive control
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FIGURE 8
Prevention of adverse events in biological tissue: (A–C) Fluoroscopic motion image and plots showing controlled insertions with the change in
insertion velocity and duty cycle (tip orientation) during MTD, followed by reactive control (robot stopped insertion) when STD was predicted. (D–F)
Motion images and plots showing needle retraction when a drastic increase in force was predicted.

FIGURE 9
Performance of adverse event prevention algorithm: (A) Adverse event occurrence rates for different needles and tissue environments. (B) ANOVA
analysis screenshot from MATLAB showing the effect of needle–tissue interactions. (C) Percentage of insertions controlled or aborted to prevent
adverse events.

mechanisms are important to be considered in robot-assisted needle
procedures to ensure patient safety.

A major limitation of this study is that there were no targets
assigned to evaluate the accuracy and time of the insertion
procedure. Steering control inputs should be optimal not only in
minimizing adverse events but also in procedural time; that is, time
taken for the needle to reach desired targets, while also minimizing

adverse events simultaneously, needs to be extensively studied and
is a scope for future work. This work is a significant step to ensure
procedural safety through data-driven techniques. When combined
with efficient computer vision and tactile feedback techniques, our
prediction and control methods can significantly improve patient
safety and reduce procedural time and effort for the operating
surgeon.
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7 Conclusion and future work

We improved the existingmodel-free adaptive control technique
(IMFAC) for general nonlinear systems to ensure continuous system
stability and robustness against changes in system parameters
and external disturbances. Comparing the simulation results with
existing MFAC, IMFAC was more stable and robust to arbitrary
values of system and control parameters. Then, we developed
a preventive control subroutine by integrating IMFAC with
previously developed event prediction methods from the work
of Narayan and Fey (2020) to minimize adverse events in real
time. Choice between reactive and adaptive control techniques
was autonomous depending on the severity of the event. The
robot implemented reactive methods such as needle retraction
and stopped insertions when a needle buckling or a severe tissue
displacement was predicted. During a mild tissue displacement,
the robot adaptively steered the needle into the tissue to minimize
and prevent future severe displacements so that continuity of
the insertion procedure is ensured. Statistical results across
different tissues and needles show robustness and generalizability
of our algorithms to incision tool types and unknown tissue
environments.

Since the algorithms rely on sensor data, the prediction
and prevention subroutines might fail if a sensor gets faulty,
resulting in more severe adverse events and injuries to the tissue.
To address this issue, future work will focus on integrating
augmented visual feedback techniques with our data-driven
models. Moreover, the technique would also help identify
the source of adverse events so that more intelligent actions
can be implemented to ensure better continuity and safety of
the procedure.
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