AUTHOR=Mishra Chinmaya , Verdonschot Rinus , Hagoort Peter , Skantze Gabriel TITLE=Real-time emotion generation in human-robot dialogue using large language models JOURNAL=Frontiers in Robotics and AI VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2023.1271610 DOI=10.3389/frobt.2023.1271610 ISSN=2296-9144 ABSTRACT=
Affective behaviors enable social robots to not only establish better connections with humans but also serve as a tool for the robots to express their internal states. It has been well established that emotions are important to signal understanding in Human-Robot Interaction (HRI). This work aims to harness the power of Large Language Models (LLM) and proposes an approach to control the affective behavior of robots. By interpreting emotion appraisal as an Emotion Recognition in Conversation (ERC) tasks, we used GPT-3.5 to predict the emotion of a robot’s turn in real-time, using the dialogue history of the ongoing conversation. The robot signaled the predicted emotion using facial expressions. The model was evaluated in a within-subjects user study (