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Non-contact robotic
manipulation of floating objects:
exploiting emergent limit cycles

Sylvain Jacquart, Nana Obayashi* and Josie Hughes

CREATE Lab, Institute of Mechanical Engineering, EPFL, Lausanne, Switzerland

The study of non-contact manipulation in water, and the ability to robotically
control floating objects has gained recent attention due to wide-ranging
potential applications, including the analysis of plastic pollution in the oceans
and the optimization of procedures in food processing plants. However,
modeling floating object movements can be complex, as their trajectories are
influenced by various factors such as the object’s shape, size, mass, and the
magnitude, frequency, and patterns of water waves. This study proposes an
experimental investigation into the emergence ofrobotically controlled limit
cycles in the movement of floating objects within a closed environment. The
objects’ movements are driven by robot fins, and the experiment plan set up
involves the use of up to four fins and variable motor parameters. By combining
energy quantification of the system with an open-loop pattern generation, it is
possible to demonstrate all main water-object interactions within the enclosed
environment. A study using dynamic time warping around floating patterns gives
insights on possible further studies.

KEYWORDS

limit cycles, water interactions, non-contact manipulation, floating objects, ocean
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1 Introduction

Many aquatic animals exhibit tool-use-like behavior using water itself as a “tool”
for self-protection and hunting (Mann and Patterson, 2013). Octopuses and squids
squirt water jets as a means of attack or to propel itself to aid in burrowing for
camouflage (Wells, 1990; Mather and Dickel, 2017). Dolphins and whales use waves,
bubbles, and mud for hunting (Torres and Read, 2009), one of the most famous of
them being the bubble-net feeding technique by humpback whales (Friedlaender et al.,
2011). Interacting with objects and surroundings without direct physical contact—or non-
contact manipulation—enables these animals to perform tasks that would be otherwise
impossible using only their flippers or fins. This is also true for artificial systems which
leverage the fluidic environment to manipulate objects. Manipulation of these objects
usually occur as a result of transfer of energy through the fluid medium. Oftentimes,
as a result of nonlinear interactions within dynamic systems, limit cycles, or recurring
patterns of behavior, may arise spontaneously. These can emerge not only in biological
rhythms (Asgari-Targhi and Klerman, 2019) or oscillations (Wallace et al., 2011), but also
in robotic systems, primarily as a control strategy to achieve stable and repetitive motions
(Dai and Tedrake, 2012; Lee et al., 2019). In the context of a controlled water environment,
such as a tank, understanding the emergence of limit cycles in the movements of floating
objects when the water environment is actuated allows for precise object manipulation
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by harnessing stable and predictable oscillations, enabling control
over object positions and trajectories, without the need for direct
contact.

Modeling themovements of floating or deformable objects in the
fluid environment is challenging (Persi et al., 2020; Obayashi et al.,
2022), as they are influenced by various factors including the object’s
morphology and the magnitude, frequency, and patterns of water
waves. While mathematical modeling of floating objects on open
water bodies is known (Marchenko, 1999; Raman-Nair and Chin,
2012), there exists a significant reality gap when validating through
experimentation. Existing non-contact manipulation techniques
that rely on levitation in the chemical and pharmaceutical fields (Al-
Nuaimi et al., 2022) are limited in their capacity to manipulate a
wide range of materials. A number of other approaches work on a
microscale, or have a very small range of non contact capabilities
(Floyd et al., 2009; Peyer et al., 2011). Manipulation of free-floating
objects leveraging Faraday flows and learning techniques require
a large amount of training data (Hardman et al., 2022). In order
to evaluate the potential usage of non-contact manipulation
techniques for applications in fields such as food grading and sorting
(Abbas et al., 2019) and plastic waste gathering in bodies of waters1,
we must be capable of quantifying the behavior and interactions
of floating object morphology in the fluid environment. This is a
question which is of key relevance to the soft robotics field (Stella
and Hughes, 2023).

In this work, we leverage a closed water environment where
we induce limit cycles in floating object trajectories by actuating
the water’s surface using fins. Our goal is to explore the potential
of controlling these object movements without the need for direct
contact. The interactions between the floating objects and their
surrounding environment is experimentally characterized. Using
dynamic time warping (DTW) to compare the trajectories of the
floating objects enables quantification of the similarities (Ilic et al.,
2023) between their limit cycles, which can then be used to generate
an open-loop controller for controlling the objects’ trajectories.
In the remainder of the paper, we present the methods and
experimental setup used to explore these limit cycles, followed by
experimental results and conclusion with suggestions for future
work.

2 Materials and methods

In this section we first introduce the robotic experimental
setup developed to investigate non-contact manipulation and the
emergence of limit cycles. The analysis approach is then detailed to
explore the controllability of objects in this manner.

2.1 Experimental setup, fins and control
parameters

In order to observe non-contact manipulation and the emergent
limit cycles of floating objects, a custom setup is built as shown
in Figure 1A. The rectangular tank is filled with 50 L of water

1 The Great Bubble Barrier, https://thegreatbubblebarrier.com/

and a camera is placed 70 cm above the water surface. Non-
contact interactions are generated using rectangular 0.4 mm-thick
polypropylene sheets and are individually actuated byDYNAMIXEL
XL430-W250-T around their support rod (Figure 1C). The primary
control parameters are the fin amplitude, A ∈ [20°, 90°], the pause
time between each stroke, tpause ∈ [0.2 s, 2.0 s], the starting position
of the object (in front of the fin or centered in the tank), and
the number of motors in the corners of the tank (one, two, or
four). By varying a combination of these parameters, a diverse
range of interactions between water surface environments and
objects can be created, allowing the emergence of multiple limit
cycles. Using the default parameters of the motor, the actuation is
performed in step mode such as presented in the parameterized
controller plot (Figure 1D) and each servos is actuated according
to the selected motor sequence. The actuation time, tmove, is
managed by the system to reach the specified amplitude, A, while
the pause time tpause (later tp) is a parameter of the experiment
plan.

2.2 Floating objects and CV tracking

Since the morphology of the floating object has a significant
effect on its trajectory on the fluidic environment surface, several
items are tested in this study, as shown in Figure 1B. They comprise
of table tennis balls (later “ball”), as well as 3D printed ice-pucks
(later “puck”), which are hollow and disk-shaped. The buoyancy
Eq. 1 can be rearranged to Eq. 2, where F⃗b is the buoyancy force,
ρw is the water density, Vw is the volume of water displaced by
the floating object, g is the acceleration due to gravity, mo is the
mass of the floating object, and Vo(z) is the volume of the floating
object submerged a distance z in the water. From geometry, the total
volume submerged in the water for the ball and puck is calculated
as Eqs 3, 4, where R is the radius of the objects. Figure 2A shows
the ball and the puck’s cross section at the water surface with the
calculated radius r indicated. Figure 2B shows the side view of the
floating objects with the submerged distance z and the submerged
volume V indicated.

F⃗b = ρwVwg =mog (1)

mo = ρwVo (z) (2)

Vball(z) = π(Rballz
2 − 1

3
z3) (3)

Vpuck(z) = π(R2
puckz) (4)

The trajectory of the floating objects are recorded using a
webcam recording at 30 FPS. The camera is mounted perpendicular
to the plane of the water surface. To extract the trajectory from the
raw videos, each frame is compared to the first frame to obtain a
binary difference image. Each of these images is then blurred, and
a binary mask is created to detect the largest item of a specified
RGB value in each frame, which corresponds to the floating body.
The mean location of the object in the two dimensions of the image
frames is used to identify the floating item location in each frame.
In addition to the Cartesian position of the object, its instantaneous
speed is also recorded. To ensure repeatable measurement, a color
thresholder algorithm was used to distinguish red markers in the
corners of the box from their surroundings, defining them as the
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FIGURE 1
Experiment setup for this study, with the 4 fin setups in the corners (A), selected floating objects with dimensions (B), motor and fin system placed in
corners, which allows only for rotation in around the rod axis (C), and parameterized controller plot according to standard motor parameters (D).

FIGURE 2
(A) Top view of the floating objects’ cross section with the calculated radius at the water surface. (B) Side view of the floating objects with the
submerged distance and volume indicated.

reference frame for the tests. Two example curves obtained with
the tracking algorithm can be found in Figure 3, respectively for the
puck and the ball.

2.3 Emergence of limit cycles

Floating objects in a contained environment with actuated
waters may follow repeatable trajectories which are similar to
limit cycles (Grotmaack and Meylan, 2006; Huang et al., 2011).
The experimental setup inherently involves wall effects, but our
deliberate choice is to operate within these confines. This allows
gaining insight into the conditions under which limit cycles can
naturally arise within this specific system environment. In Figure 3,
the representative emergent limit cycles for a floating puck and a

table tennis ball, actuated by a single fin, are shown. The puck (left)
accelerates when approaching a wall due to the waves bouncing off
the panel and adding to each other, which increases the object’s
speed. In contrast, the ball (right) dissipates its energy over a longer
and elliptic clockwise loop compared to the circular trajectory of the
puck. This is due to the mass difference between floating items, as
the ball is not able to store much potential energy. In addition, from
the first fin stroke, the energy transmitted to the ball is not sufficient
to make it move far enough from the fin before the second stroke.
As a result, the ball receives a second energy boost that significantly
increases its speed.The latter effect was consistently observed for this
setup configuration.

We observe that emergent limit cycles are influenced by the
shape, area, and mass of the object as these factors directly affect
the contact surface with the transmission medium (water) and
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FIGURE 3
Standard patterns for the puck and the ball (Amplitude = 70°, Pause time = 0.8 s). In both scenario, the fin is actuated for 45 s, then the system is
allowed to decay freely in energy for the next 10 s. The loop dimensions in the bottom right corner is related to the object’s geometrical properties.

FIGURE 4
Maximum free displacement after a single back and forth fin stroke for the ball and the puck. The ball reacts periodically to stroke amplitudes, while the
puck behave like a band-pass filter. For this plot, each sequence is performed 15 times with clear outliers (due to tracking errors) removed.

the amount of energy delivered by the motor and fin setup. In
addition, we observe that some patterns of behaviour are repeatable
and show high controllability, whereas for others this is not the
case.

2.4 Energy quantification with a single
stroke

Energy is a crucial parameter in characterizing this system,
and in order to quantify it, object displacement is recorded when
a fin is actuated with a single back-and-forth stroke. Each test is
performed 15 times with clear outliers (due to tracking errors)
removed. Figure 4 shows the relationship between the amplitude of
the fin stroke and the distance traveled by floating items. Black points
and error bars represent the mean value and standard deviation for
each stroke amplitude.

For both bodies, energy is injected in the system by the motor to
make the object travel significantly (a minimum of 35 degrees of fin
amplitude). On the left plot (for the ball), the ball reacts periodically
for different stroke amplitudes and travels farthest distances around
specified amplitude ranges (35–40° and 55–70°) with low deviation
at range limits. From 80 degrees of amplitude, ball movements on
the water surface become chaotic, which leads to poorly repeatable
trajectories. On the right plot, the puck reacts like a band-pass
filter, with an ideal energy transfer range from 35 to 70 degrees
of fin amplitude. For amplitudes above 70°, both objects bounce
on waves and spin on their yaw axis, decreasing the total amount
of total energy available for travelling. Single-stroke measurements
reveal that an object’s stored energy in a closed water environment
is primarily influenced by its shape, size, and mass. Notably, the
puck, being approximately six times heavier and larger in submerged
volume than the ball, exhibits stability and a wide energy transfer
range. Varying the stroke angle of the fin can significantly vary the
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FIGURE 5
Experiment plan results for a single motor setup - Start position in front of the fin. From left to right: Standard parameters, lower amplitude, longer
pause time, higher amplitude and longer pause time. Each sequence is repeated 5 times with similar parameters. Green and red frames around each
sub-figure are indicative markers of the presence or absence of limit cycles.

energy and hence motion of the floating object. Due to this study
and analysis of the stroke amplitude, we parameterize the motion of
the fin by stroke angle and pause time, i.e., the amount of time this
energy is given to dissapate before injecting additional energy.

2.5 Similarity identification between
trajectories

To evaluate the similarity or repeatability of repeated trajectories
we choose to use dynamic time warping (DTW) to adjust the
trajectories and then generate a metric for error. This enables us
to test the correlation between each patterns of floating item with
analog parameters but which may vary in speed. Results from the
single motor setup experiment plan were used (see Figure 5). To
make this analysis each trajectory was compared to a representative
curve within each amplitude and pause time configuration. As
computer vision tended to generate outlier centroids at the end of
each take, only the first half of data-points are considered for the
DTW study.

3 Results

3.1 Experimental plan for limit cycle
characterization

An experimental plan was developed to evaluate the impact of
key parameters on the setup shown in Figure 1A. All sequences were
performedwith a fin actuation time of 45 s, followed by an additional
10 s without actuation to allow a free energy decay into the system.
For single stroke measurements, 20 s of tracking time were adequate
to enable the floating object to dissipate its energy.

The experimental plan is threefold. First, a single motor setup
is used where the variable parameters are the fin amplitude and
the pause time. This is used to characterize the system’s physical
properties (dimensions andwall adhesion). Figure 3 shown earlier in
Section 2.3 is part of the dataset collected for this portion. Second,

a dual motor setup in a diagonal configuration is used, where the
variable parameters are unchanged from the first. The object is
released in the middle of the tank, to characterize the different
floating items tested, in terms of geometry and weights. Finally,
we demonstrate an open-loop control of the floating objects with
modifications to the motor sequence.

3.2 Limit cycles in a single motor
environment

Figure 5 shows the trajectories of the floating objects when the
environment is actuated using a single motor. Each sequence with
fixed parameters was performed 5 times and the objects are released
in front of the fin.

Subplots 1 and 2 demonstrate the presence of limit cycles when
using the standard parameters, as similar initial positions lead to
comparable patterns. With a lower fin amplitude (subplots 3–4),
the total energy in the system declines, and the ball is subject to
bouncing wavelets, travelling shorter distances. However, the puck
retains enough energy to reach the opposite wall. By increasing the
amplitude (subplots 7–8), the floating object obtains enough energy
to complete a full circuit of the closed system. Due to its greater
contact surface and weight, the puck follows constant trajectories
with minimal deviations within each loop. On the contrary, the ball
is influenced by its initial placement on water, and the first strokes
have a significant impact on the path.

With a longer pause time (subplots 5–6), the object can move
freely. As a result, the ball advances easily, while the puck trajectory
is influenced by even slight changes in the starting position. Finally,
with a shorter pause time (subplots 9–10), the object receives energy
in small and regular doses, resulting in smoother patterns. The
system energy is higher than under standard conditions, as the ball
follows the walls for the first half of its trajectory, while the puck
needs at least one clockwise loop in a corner to lose its energy.

The system displays emergent limit cycles for various amplitudes
and pause times. The floating object’s geometry and weight play
a crucial role in determining the path, as two different objects
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FIGURE 6
Normalized distance found by Dynamical Time Warping, between the
trajectories for limit cycles with a single motor (Figure 5) and a
representative trajectory. Blue bars are related to the Puck, while
orange bars are related to the Ball. Excluding the final results A = 70°
and tp = 0.2 s, the normalized energy is consistently lower for the ball
as compared to the puck. DTW is therefore a valid way to sort objects
based on their energy.

follow contrasting paths. Additionally, multiple sources of noise
including wavelets, surface tension, and bouncing waves on panels
were recognized as having a significant impact on limit cycles.

3.3 Trajectory similarities for objects
floating in a single motor environment

To test the correlation between each patterns of floating objects
with analog parameters but which may vary in speed, results from
the single motor setup experiment plan were used (see Figure 5)
in a dynamic time warping (DTW) algorithm. Each pattern was
compared to the average curve within each amplitude and pause
time configuration. As computer vision tended to generate outliers
towards the end of the trajectories, only the first half of trajectory is
considered for the DTW study.

Figure 6 presents the results for this configuration. The error
bars represent the standard deviation associated to the 5 tests of
each sequence. Based on the results obtained from dynamic time
warping, several observations can be made. When excluding the
final results which correspond to a shorter pause time configuration
(A = 70° and tp = 0.2 s), it is evident that the normalized energy
required to fit each 5-pack curve from Figure 5 to the representative
curve is consistently lower for the ball as compared to the puck. The
error bars present in the results reflect inconsistencies rising from
the computer vision process, leading to continuity errors within the
computation of the mean path used as reference.

DTW, applied to both ball andpuck curves, highlights disparities
in energy requirements. This observation suggests that trajectory
tracking and the observed variation can potentially convey insights
about an object’s type and mass (and submerged volume). In
earlier energy quantification experiments (Figure 4), the puckwhich
is six times heavier than the ball displayed greater stability for
single-strokes across a wider range of actuator inputs. However,
the ball demonstrates a higher propensity for limit-cycle-like
behavior due to its inherent instability within a repetitively actuated
environment.

In addition, it can be seen that the error bars and DTW
metrics are the lowest for the middle 3 ball configurations. Even
through the associated trajectories were labelled respectively as Low
energy, Directional and Limit cycle, the algorithm has indicated the
movement has a high repeatability.

3.4 Limit cycles in a dual motor
environment

Figure 7 shows the trajectories of the floating objects, where the
water is actuated by two fins. Each sequence with fixed parameters
was performed 5 times and the objects were released from starting in
the middle of the tank. As depicted in subplots 1–2, the trajectories
are highly similar when using standard amplitude and pause time.
The object departs from the unstable middle position of the storage
box, bouncing on wavelets as the trajectory is tangent to the waves

FIGURE 7
Experiment results for a dual motor setup—Start position in the middle of the system. From left to right: Standard parameters, lower amplitude, longer
pause time, higher amplitude and longer pause time. Each sequence is repeated 5 times with similar parameters. Green and red frame are indicative
markers of the presence or absence of limit cycles.
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FIGURE 8
Paths in open loop following Z-shaped (A) and inverted L-shaped (C) pattern with the corresponding motor sequence (B) and (D), respectively. Motor
sequences are a subtle mix of motor order, with motor sweep amplitude and pause time. The two open-loop patterns are fully repeatable between the
top two motors. The trajectory is then heavily influenced by how the object catches the waves coming from the top right fin (motor #1).

generated by the fin strokes. Both objects then follow the clockwise
current towards the top left motor, experiencing re-acceleration at
the top left fin within the 45 s of the experiment. This process can be
highly repetitious.

A smaller amplitude (subplot 4) results in distinct emergent
limit cycles for the puck only (this behavior was experimentally
verified over 10 loops). The ball exhibits similar behavior, but the
pattern is inconsistent due to the additional wavelets created by the
secondmotor while the ball is in themiddle position.Withmaximal
amplitude (subplots 7–8) or a small pause time (subplots 9–10), the
floating objects receive an excess of energy andwavelets from the two
motors, leading them to a dead end in one of the corners opposite
a motor rather than a limit cycle path. Finally, with a pause time of
2 s, both objects react chaotically to the free time between impulses
within the system, as shown in subplots 5 and 6.

For the dual motor configuration, we can make the following
statements. First, emergent limit cycles taken by the floating objects
tend to oscillate due to increased energy at thewater surface. Second,
it would be possible to draw a potential force field map of the system
by analyzing the behavior of multiple object trajectories within the
system and their frequency of passage at each point. From present
observations, we can identify special points, either unstable (the
middle of the system, in front of each motor) or stable (the two free
corners and their surrounding walls). Third, the shapes of waves
generated by the back and forth movements of the fins have a
significant impact on the limit cycles during the re-acceleration of
the objects. Different wave shapes, such as punctual ones, would lead
to different patterns within the closed system.

3.5 Open-loop trajectory control

To demonstrate open-loop control of floating objects,
we determine the motor sequence required for non-contact
manipulation of an object along a specified trajectory. Optimizing
this control requires determining the motor sequence, amplitude,
and pause time of each motor and fin setup. A valid motor sequence
is a subtle mix of motor order, with sweeped amplitude and pause
time. To allow a direction change of the floating item, at least 2
motors should be actuated one after another multiple times with
varying amplitudes, to avoid discontinuities (i.e., object ends up
in a corner). Additionally, it is wiser to actuate the fins with small
amplitude and pause time (around A = 40° and tp = 0.3 s), as it
allows more controllable trajectories and avoids any overflows of
energy into the system, which would make the system chaotic and
unpredictable. The selected amplitude comes from the conclusions
of Figure 4, as amplitudes below A = 40° are not sufficient to give
directional energy impulses to the floating object. Based upon
the experimental data and heuristic evaluation, a sequence of
control inputs for the two inputs can be chosen to meet a desired
pattern.

The starting position of the object is key to avoid a trajectory
that collides with a wall. We consider the floating object to be under
control as long as it stays within the central rectangle drawn by the
four motor positions, which is relatively small compared to the total
area of the storage box selected.

Figure 8 presents two patterns (Z-shape and L-shape) obtained
with open loop shape generation with the corresponding motor
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FIGURE 9
Surface tension of objects in contact with the walls. When the object
becomes wet and comes into contact with a wall, surface tension
tends to cause it to adhere to the panel inversely proportional to the
body’s weight. The ball is therefore more prone to this phenomenon.

sequences also shown, which are obtained from heuristics from the
experimental results in Figures 4, 5, 7. These were chosen as they
reflect some of the motion ‘primitives’ seen in the characterization
data. Other sequences were tested to generate patterns, but these
results were discarded due to their poor repeatability caused by the
multiplication of wavelets over time, as well as the need for adaptive
offset tuning (i.e., asymmetrical fin amplitude when the object is
approaching a motor position).

As shown in Figure 8, both open-loop patterns show high
repeatability for the first section of the trajectory (the horizontal
motion). The trajectory is then heavily influenced by how the object
catches the waves coming from the top right fin. For the Z-shaped
pattern, with the most precise catch (blue path), the puck finishes
exactly at the bottom left fin and receives a direct re-acceleration
in the correct direction. With a slight stroke delay (green path),
the puck’s behavior is influenced by water currents and the re-
acceleration in the bottom corner is unstable, leading to an incorrect
end trajectory. For the L-shaped pattern, similar behaviours can
be highlighted: a direct wave catch (cyan path) allows the floating
object to make a clean 90° turn, while with a short delay (purple
path) the floating object tends to follow a loose trajectory and
wastes additional energy along the way, bouncing on small wavelets
generated by the two right motors.

As seen in the single and dual motor setups, the initial position
is important in determining the overall path of the object, and the
present open-loop control sequences illustrate this evidence once
more.

4 Discussion

The present study identifies all the main interactions between
water and objects within a contained environment. The behavior
of floating objects in three different configurations (single and
dual motors, open-loop control) could be predicted based on
observations and initial parameters.

Based on the single fin system, it was determined that the
amplitude of fin movements must be maximized to create an
emergent limit cycle, but only up to a certain energy peak (around

70o in the present setup, as presented in Figure 4). Beyond this
amplitude, the system exhibits chaotic behavior due to excessive
energy and wavelets. Additionally, it was observed that the more
motors present in the system, the more chaotic it tends to become
because equilibrium points become harder to maintain due to
stronger currents.

Based on our current observations, the most substantial source
of noise affecting patterns appears to be surface tension, particularly
concerning the adhesion of objects to the panel (Figure 9).
Notably, this effect is most pronounced with the ball. Additional
sources of noise include underwater currents, surface wavelets,
and panel-induced bouncing waves, all contingent on the floating
object’s shape. While we acknowledge the intricate nature of these
interactions, our research approach prioritizes offering a high-level
representation of system behavior and interactions, as illustrated
through the concept of limit cycles. Our primary focus is on
comprehending the underlying conditions and mechanisms driving
these cycles, where the emergence of limit cycles are defined by each
particular system.

To continue researching using the present system, the next
step would be to implement a closed-loop control algorithm with
adaptive fin offsets. All patterns obtained through this study were
rounded at the corners due to the movement of the fins, which
oscillate around a determined equilibriumposition. By using smaller
and constant fin strokes (around the first energy peak of 40o

for the ball) with a dynamically changing fin middle position,
it would be possible to sharpen patterns and more accurately
direct floating objects. This control technique, which is fully
implementable in a food processing plant, belongs on the list of
significant improvements that can be made on industrial food
lines.

One potential enhancement to consider is to modify the
rectangular fin shape that moves back and forth through the water
by replacing it with a conical fin that moves up and down through
the water’s surface. This modification would alter the wave pattern
from a series of spherical fronts to a point source, resulting in a
uniform distribution of energy within each stroke and greater ease
in directing floating objects. The energy transmitted by point wave
sources is also easier to quantify, and the current method of indirect
energy quantification by measuring the farthest distance traveled by
the object would become unnecessary.

Ultimately, our current understanding of non-contact
manipulation and energy transfer through water interactions,
as obtained from the present experimental plan, is still limited.
There is much more for us to learn from the behaviors of
marine species and birds in this regard. By continuing to study
these natural examples, we can also explore novel ways in
which non-contact manipulation can be applied to robotics,
for example, of self-assembly or manipulation (Obayashi et al.,
2023).
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