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Introduction: Image-based heart rate estimation technology offers a
contactless approach to healthcare monitoring that could improve the lives
of millions of people. In order to comprehensively test or optimize image-
based heart rate extraction methods, the dataset should contain a large number
of factors such as body motion, lighting conditions, and physiological states.
However, collecting high-quality datasets with complete parameters is a huge
challenge.

Methods: In this paper, we introduce a bionic human model based on a three-
dimensional (3D) representation of the human body. By integrating synthetic
cardiac signal and body involuntary motion into the 3D model, five well-
known traditional and four deep learning iPPG (imaging photoplethysmography)
extraction methods are used to test the rendered videos.

Results: To compare with different situations in the real world, four common
scenarios (stillness, expression/talking, light source changes, and physical
activity) are created on each 3D human. The 3D human can be built with any
appearance and different skin tones. A high degree of agreement is achieved
between the signals extracted from videos with the synthetic human and
videos with a real human-the performance advantages and disadvantages of
the selected iPPG methods are consistent for both real and 3D humans.

Discussion: This technology has the capability to generate synthetic humans
within various scenarios, utilizing precisely controlled parameters and
disturbances. Furthermore, it holds considerable potential for testing and
optimizing image-based vital signs methods in challenging situations where
real people with reliable ground truth measurements are difficult to obtain, such
as in drone rescue.

KEYWORDS

simulated cardiac signal, imaging photoplethysmography (IPPG), bionic human model,
non-contact, synthetics

1 Introduction

Detecting cardiac signals based on image sequences provide a non-contact means
for healthcare monitoring that can improve the lives of millions of people. Existing
image based vital signs estimation methods can be divided into two main categories:
imaging photoplethysmography (iPPG) and imaging ballistocardiography (iBCG). iPPG
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is a set of techniques that aim to recover the changes of volume
and oxygen saturation in blood close to the surface of the skin, the
resulting signal is known as the blood volume pulse (BVP). While
iBCG-based techniques aim to extract subtle motion of the body
caused by the mechanical flow of blood and the respiratory system.

In 2008 (Verkruysse et al., 2008), pioneered the extraction of
PPG signals from a human face using a standard digital camera.
Subsequently, in 2013, iBCG signals were successfully extracted
from headmotion (Balakrishnan et al., 2013). Since then, numerous
algorithms based on the techniques above have been proposed
to enable recovering cardiac signals from image sequences. In
general, they can be summarized as traditional algorithms and
deep learning algorithms. Traditional algorithms use modeling
methods based on optical principles [such as POS (Wang et al.,
2016)] or signal processing methods [like ICA (Poh et al., 2010)
or PCA (Lewandowska et al., 2011)] to convert useful spatial and
temporal information in ROIs from videos to extract cardiac signals.
These cardiac signals are all extracted from subtle light changes
which are easily masked by body motion and lighting fluctuations.
Given that deep learning techniques can adequately model the
dynamic spatial and temporal information present in videos,
they have shown impressive performance over traditional source
separation algorithms [e.g., DeepPhys (Chen and McDuff, 2018);
PhysNet (Yu et al., 2019); TS-CAN (Liu et al., 2020); EfficientPhys
(Comas et al., 2022)]. It is well known that reliable neural network
models are highly dependent on extensive and representative
data sets for training. However, variables like motion, changes
in illumination, and variations in skin type collectively introduce
intricate influences on image based cardiac signal extraction.

Collecting a high-quality data set with accurate physiological
parameters for models to learn from is a big challenge. The datasets
for image-based cardiac signal measurements are privacy-sensitive,
since most video recordings include the participant’s face and
sensitive physiological signals, which increases the difficulty of
recruiting and organizing participants. Moreover, deep learning
models are hungry for the availability and quality of training
datasets. Thus, how to accurately control the variables such as
motion, lighting changes, and different skin types during data
recording processes is also a huge challenge. So far, the public data
sets intended for image based heart rate estimation are either limited
in size or not diverse. To overcome these limitations, Niu et al.
(2018) introduced a heart rate estimator that was pre-trained
on synthetic spatio-temporal maps for cardiac signals. Similarly,
Song et al. (2020) present a convolutional neural network (CNN)
model trained on spatio-temporal heart rate (HR) feature images.
These HR feature images were built from synthetic pulse signals that
were generated based on real ECG signals. However, data sets based
on 2D data sources do not contain all of the phenomena found in the
real world. In 2022, McDuff et al. (2022a) first implemented facial
blood flow changes into synthetic avatars and generated samples
under a range of real-life conditions. Results show that models
trained on synthetic and real video data improve the quality of
recovered cardiac signals. Based on this technology, a synthetic
dataset of 2,800 videos called SCAMPS was launched in the same
year (McDuff et al., 2022b).

Additionally, several remote PPG toolboxes [pyVHR
(Boccignone et al., 2022), rPPG (Liu et al., 2022) and PhysBench
(Wang et al., 2023)] have been deployed to replicate and test

deep learning and traditional methods with supporting public
benchmark datasets. In particular, rPPG and PhysBench have
trained and validated the SCAMPS dataset on different deep
learning algorithms. Although the SCAMPS dataset has a large
amount of simulation data, compared with other real training
sets, the benchmark results of models trained on it do not show
outstanding accuracy and robustness, particularly in some cases
such as theMMPD dataset (Tang et al., 2023) which contains darker
skin type videos. One reason might be that although the SCAMPS
dataset was much more diverse than real training sets, the size of
each variable group is relatively smaller. So it is possible to cause
larger errors on some specific subjects (e.g., darker skin or larger
motion) when the model reaches a local minima (McDuff et al.,
2022a). Another reason might be that there is still a gap between
simulation and real videos (McDuff et al., 2022b), such as the avatars
in SCAMPS only have PPG signals, but BCG signals have also been
proven to affect the accuracy of iPPG signal recovery.

In this study, we propose an enhanced 3D HumanModel which
has a cardiac signal with similar dynamics to a real person to
solve the challenge of building controlled yet diverse data sets
for machine learning. The model can be used to test image-
based vital signs methods under any environmental condition that
can be modelled and rendered, including environment, light and
movement, all repeatable and controllable. The main contributions
of this study are: 1) the 3D Human Model has a complete body,
and all subject variables (such as expressions, blinks, skin types,
physical activities, etc.) and environmental variables (light changes)
can be systematically controlled in the simulation environment; 2)
we integrated body movements caused by involuntary movements
and breathing into the 3D human body, making the 3D model
objectively more similar to real people; 3) evaluate the performance
on a set of bionic humans with different appearances against real
database videos, by using traditional methods andmachine learning
methods, specifically testing some special variables such as body
movement and people with darker skin types.

The remainder of the paper is as follows. In Section 3, we present
the imaging systemmathmodel for human skin and how to simulate
physiological signals, then integrate them into the 3D model. In
Section 4 the proposed model is experimentally evaluated and
compared. Then we discuss possibilities, extensions and limitations
in Section 5. Conclusions and future work are in Section 6.

2 Related work

2.1 Public datasets of real humans

The first public database used for remote vital signs estimation
was MAHNOB-HCI (Soleymani et al., 2011), which contains 527
videos of 30 subjects with their reference data, recorded with
small facial movements under controlled illumination. Similarly
(Zhang et al., 2016), introduced the MMSE-HR database, which
consisted of 560 videos of 140 subjects with synchronous heart
rate reference data involving facial expression changes. However,
these two databases were all originally designed for emotion analysis
as with DEAP (Koelstra et al., 2011) which consists of 160 videos
captured from 32 participants synchronized with physiological
parameters such as blood pressure and breathing rate.There are also
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TABLE 1 A summary of real human datasets.

Real human database Subjects Videos Illumination Motion Gold standard

DEAP Koelstra et al. (2011) 32 180 Lab Environment Expression EEG/PPG/BP/BR

MAHNOB-HCI Soleymani et al. (2011) 27 527 Lab Environment Expression EEG/PPG/BP/BR

PURE Stricker et al. (2014) 10 60 Lab Environment Talking PPG

AFRL Estepp et al. (2014) 25 300 Lab Environment Head POS PPG

COHFACE Heusch et al. (2017) 40 160 Lab + Nature Stable PPG

OBF Li et al. (2018) 106 2120 Lab Environment Stable PPG/ECG/BR

ECG-Fitness Špetlík et al. (2018) 17 204 Lab Environment Physical Activities ECG

UBFC-RPPG Bobbia et al. (2019) 42 42 Lab Environment Stable PPG

VIPL Niu et al. (2019) 107 2378 Lab Environment Head POS PPG

MMPD Tang et al. (2023) 33 660 Lab + Nature Head POS/Expression + Talking PPG/BR

RLAPWang et al. (2023) 58 754 Lab Environment Head POS/Expression + Talking PPG

TABLE 2 A summary of synthetic databases.

Sythestic database Model type Subjects Videos Illumination Motion

SCAMPS McDuff et al. (2022b) face rig 2800 2800 Lab + Nature Expression/Talking/Head POS

Wang et al. (2022) face rig 480 480 Lab Head POS

our bionic human dataset face rig + body rig 12 34 Lab + Nature Expression/Talking/Physical Activities

FIGURE 1
Method for skin color changes. The spectrum of hemoglobin absorption in blood cells is different between the oxygenated state and the deoxygenated
state, and oxygenated blood is brighter than deoxygenated blood. In addition, the color of oxygenated blood is lighter than that of deoxygenated blood.
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some public-databases especially designed for the task of remote
vital signs estimation. In 2014, Stricker et al. (2014) released the
PURE database consisting of 60 videos from 10 subjects, in which
all of the subjects were asked to perform six kinds of movements
such as talking or head rotation. Another publicly available dataset
UBFC-RPPG (Bobbia et al., 2019) includes 43 videos synchronized
with a pulse oximeter finger clip sensor. Subjects sat stationary
in front of the camera while at same time they were required to
play a time sensitive mathematical game that supposedly raises the
heart rate. Li et al. (2018) proposed the OBF database which was
specifically designed for heart rate variability (HRV) feature analysis,
the data were recorded both from healthy subjects and from patients
with atrial fibrillation (AF). However access to this database is not
free. To complement the limited diversity of large movements in
public datasets, a dataset called ECG-Fitness (Špetlík et al., 2018)
was collected with the subjects performing on fitness machine.
In 2023, MMPD dataset (Tang et al., 2023) has been published to
broaden the diversity of facial appearances and lighting conditions.
In particular, MMPD dataset is the first public dataset that includes
subjects with diverse skin types (Fitzpatrick scale of 3–6).

Table 1 summarizes some properties of recent public datasets.
While more and more real human datasets for remote vital signs
detection have been developed in recent years, none of them
currently contain sufficient features to enable the deep learning
model reliably achieve generalizability. Some of the datasets also
exhibit data synchronization issues (Yu et al., 2019; Comas et al.,
2022; Wang et al., 2023). The synchronization between videos and
sensor signals significantly impacts training performance.

2.2 Synthetic iPPG video

The technology for creating synthetic iPPG videos can avoid
data synchronization issues and does not require a lot of human
and material resources to complete. Currently, there is a few of
ongoing research focused on the generation of synthetic videos.
In 2020, Tsou et al. (2020) made a first attempt to create synthetic
videos by merging rPPG signals into given source images/videos
using augmentation methods. Ba et al. (2022) introduced another
augmentation method in which they employed a generative neural
network to transform real patient skin tones to a variety of skin tones.
Both methods fall into the category of “semi-synthetic” methods
(McDuff et al., 2023) and heavily rely on real human samples.
The first synthetic dataset, SCAMPS (McDuff et al., 2022b), was
published in 2022. It generated synthetic iPPG video by using
graphics-based technology, leveraging human physical models to
create a diverse and realistic representation. The facial identities are
created from a combination of 3D face scans from publicly available
sources (3dscanstore) and physically-based shading material in
Blender. The input PPG signal for the avatars is generated through
the convolution of a Gaussian window with the beat sequence,
derived from a heart rate frequency range. In contrast to the intricate
pipeline of SCAMPS, Wang et al. (2022) presents a more user-
friendly approach for generating synthetic videos. This method
employs a statistical 3D head model, extracting facial features from
publicly available in-the-wild face datasets [BUPT-Balancedface
(Wang et al., 2019)], while the PPG waveforms are recorded from
real human subjects.

Table 2 summarizes some properties of recent public synthetic
datasets and our bionic human set.

3 Materials and methods

To simulate realistic cardiac signal in a 3D HumanModel, there
are four major steps: 1) imaging system model; 2) generating a
synthetic cardiac signal; 3) generating the body movement signal;
4) integrating the synthetic cardiac signal into the human skin
model.

3.1 Imaging system model

Normally, a simple imaging model can be expressed as Eq. 1:

f (x,y) = i (x,y) r (x,y) (1)

where i is the incident light component and r is the reflected
component; x,y are the coordinates in the image. For human skin,
r(x,y) includes specular (mirror-like) light reflection from the skin
surface reflection and diffuse reflection.

As illustrated in Figure 1, the alteration in blood color,
influenced by the exchange of gases in the heart and lungs,
directly affects the skin color. These subtle changes can be captured
by a standard digital camera. The iPPG signal is derived from
these subtle skin color variations. Consequently, by integrating the
aforementioned simple image model, the cardiac signal model over
time via a sequence of frames can be defined as Eq. 2:

C = I ⋅ r (t) +N (t) = I ⋅ (p (t) +m (t)) +N (t) (2)

where I denotes the lighting variations; p(t) is diffuse reflection
variation which has the pulsatile information, the iPPG signals,
from the RGB channel respectively; m(t) is skin specular reflection
variation which is caused by body motion; m(t) cannot be ignored,
because even when stationary, the human body still has slight
movement due to the body’s balance control. From the bio-
mechanical standpoint, a simple body movement system can be
described as a sequence of stacked inverted pendulum motions. We
explained this part more in 3.3.N(t) is white noise mainly caused by
the camera.

3.2 Synthetic iPPG generated

In order to simulate the cardiac signal in video, we need to
first generate the iPPG signal. A standard PPG wave is shown
in Figure 2A. The analysis of the PPG signal has been used to
measure the vital signs like heart rate, respiration rate, heart rate
variability (HRV), oxygen saturation, blood pressure and to detect
some vascular diseases (Allen, 2007). There are many different
methods to generate the PPG signal such as modelling the PPG
waveform by Gaussian functions (Banerjee et al., 2015; Tang et al.,
2020), generate the pulse signals via sinusoidal signals (Wannenburg
and Malekian, 2015; Niu et al., 2018) and a synthetic PPG signal
based on ECG signals (Sološenko et al., 2017; Song et al., 2020).
However, these PPG modeling approaches were too complex for
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FIGURE 2
(A) Pulse waveform of photoplethysmogram (PPG) (Fischer et al., 2017). (B) A 10 s synthetic ppg signal with heart rate of 70 beats/min and 0.3 Hz
inter-beat interval (IBI) variation; the sample rate is 25 Hz. (C) A simulated iPPG signal based on (B).

FIGURE 3
Framework of the integration method.
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this study because they included more physiological assumptions
thanwe needed. Also, simple equations only using sinusoidal signals
contain too little information to even express HRV.

Thus, in order tomeet the need to control some basic parameters
in the cardiac signal, in this study, we chose to use an open source
python library neurokit2 (neurokit2) to generate the simulated PPG
signal (ppg simulate in neurokit2).The ppg simulate uses a four-point
interpolation method to simulate the PPG signal. From Figure 2
we know that a PPG wave can be described with four key-points:
wave onset, location of the systolic peak, location of the dicrotic
notch and location of the diastolic peak. The PPG signal is then
generated by interpolating the key-points with a cubic curve at the
desired sampling rate. It can control the parameters like HRV, PR,
peak position and motion artifacts to make the PPG signal more
realistic. Figure 2B shows a simulated PPG signal p(t) via function
ppg simulate neurokit2 with basic physiological information: heart
rate, breathing rate and HRV. The red dots present the key-points
for interpolation nodes to generate the synthetic signal. Figure 2C is
an example of iPPG signal with white noise N(t).

3.3 Generating the involuntary body
movement signal

Tomodelm(t), we have classified involuntary movements of the
human body into twomain categories: BCGmotion andmovements
of body parts associated with breathing.

3.3.1 BCG motion
When people are stationery, whether standing or sitting, a

swaying movement occurs in many parts of human body (such
as neck, hip, and ankle); the frequency components of the
body movement distribute in the area of lower 0.5 Hz (hip and
ankle rotations) and beyond 0.9 Hz (anti-phase coordination),
respectively (Kim et al., 2005; Morasso et al., 2019). Since BCG
motion was found to be a source of artifacts in iPPG signals
(Moco et al., 2015), in this model, we only consider the high
frequency component that can be used for BCG signal analysis from
video (Balakrishnan et al., 2013). Also, from Moco et al. (2015), the
flexion and extension movements of the neck appears to have the
strongest affect over iPPG signal. For our purposes, with a simplified
motion function, the BCG motion signal is written as Eq. 3:

bcg (t) = θX (t) ; (3)

where θ is the rotation angle of theX-axis of the neck (0.12°± 0.03°).

3.3.2 Breathing
Breathing induces movements in the head, shoulders, and

chest. In our 3D human simulation, we replicate these motions by
manipulating the y-location of the head and shoulder rig (up and
down) and the x-location of the chest rig (forward and backward).
The breathing frequency is dynamically sampled within the range of
0.13–0.4 Hz (equivalent to 8–24 breaths per minute).

3.4 Integrating synthetic cardiac signal

The 3D model was built in Blender (Blender). To realistically
synthesize skin in Blender based on the anatomical structure and
physiological function of real skin (Tsumura et al., 2003; Doi and
Tominaga, 2006), the synthetic human skin was designed to consist
of three layers: Base color layer, subsurface layer and surface texture
layer. In the human skin model (see Figure 3), the base color layer
is for melanin in the epidermis which controls the skin color of the
avatar. The subsurface layer is a variable area which is designed to
present the hemoglobin status change in the dermis as explained
in Figure 1. To make the model more lifelike, we also added a
surface texture layer to simulate the texture and wrinkle of realistic
human skin. The facial and bodily rig has been built based on a
human skeleton to control both facial actions (expressions, talking,
and blinking) and body movements (iBCG motion, breathing, and
physical activity).

To integrate a synthetic cardiac signal into the skin with every
video frame, we first generate a synthetic PPG signal p(t) by using
Toolbox neurokit2. Then the p(t) needs to normalize into the range
of 0–1, which presents the rate of change of the cardiac signal in
each of the red, green and blue channels in the subsurface layer.
Considering spectral power distributions of visible light for the
reflectance of the skin surface, we introduced βr, βg and βb as the
weights for cardiac signals in each R, G, and B channel; where
βr,βg,βb are equal to 0.33, 0.77, and 0.53 respectively (As we know
that the green channel has the strongest information from the
cardiac signal (Verkruysse et al., 2008), we need to search for the
accuracy weights of each color channel. The weighting [βr,βg,βb]
= [0.33, 0.77, and 0.53] is from Wang et al. (2016) and De Haan

FIGURE 4
Examples of the appearances of the 3D human in different scenarios.
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and Van Leest (2014) which is based on ideal laboratory lighting
conditions and the RGB camera). So the change to color induced
by the cardiac signal in the subsurface layer can be written as Eq. 4:

c (t) = (βr,βg,βb)P (t) (4)

where P(t) is the simulated iPPG signal. At the bottom of Figure 3
we see the simulation of a physiological signal on a 3D model. After
amplifying the pixel value for every frame, the Avatar’s skin color
changes over time and can be clearly observed.

The final cardiac signal model which is extracted from the 3D
model video is (Eq. 5):

C = I ⋅ (c (t) +m (t)) (5)

where I could be a constant I0 when people keep still under ideal
laboratory lighting conditions or I(t) when there are illumination
intensity changes. Figure 3 illustrates the framework for integrating
skin color variation c(t) and involuntary body motion variation
m(t) with the fluctuating illumination intensity I(t) (caused by light
changes, facial movements or physical activity) into the animation.

3.5 Motion variation coding

To ensure precise control over motion variation, we break down
each motion action into a single pattern. Each action pattern is
regulated by the positioning or rotation of the body and face rig.
These crafted patterns are subsequently integrated into the frames
where action needs to be dynamically generated. Periodic actions,
such as blinking and running/walking patterns, are repeated with
the same duration across video frames. Non-periodic actions like
smiling, laughing, or talking patterns are randomly distributed in
the video frames. Additionally, variations in light source intensity,
transitioning from brightness to darkness, are also introduced
randomly. The algorithm is as follows (Algorithm 1):

  framenum = M⊳ Total number of frames to render

  procedure Periodic actions

    step = N ⊳ The frequency of action. The faster

the action, the smaller the N.

   for i in range int (framenum/step) do

     actionInsertFrameKey = i* step

     <do pattern>

    end for

  end procedure

   procedure Non-Periodic actions

   i= 0

   while i ≤ framenum do

    step = random(0,j) ⊳ The frequency of action.

    actionInsertFrameKey = i+step

    <do pattern>

   end while

  end procedure

Algorithm 1. Action algorithm.

4 Experiments

4.1 Experimental setup

To compare with different situations in the real world, we
rendered videos under four scenarios: 1) stationary person under
stable laboratory light; 2) person with expressions/slight head
movements/talking under stable laboratory light; 3) stationary
person in a varying lighting environment; 4) person performing
physical activities, such as walking and running (see examples in
Figure 4). The stable laboratory light scenario corresponds to the
constant I0 mentioned in Eq. 5 and induced changes in illumination,
expression and physical activities correspond to I(t). The videos
were rendered with 3D people with different heart and breathing
rates. The involuntary body movement signal m(t) were set to the
same frequency as the 3D human heart rate, which was the main
source of artifacts in the simulated iPPG signal. We also introduced
the HRV variations into the input cardiac signals for further
study. All variables, including cardiac signals c(t), involuntary
body movement signals m(t), and induced changes I(t), were
imported into Blender through python scripts. The human mesh
was generated by Blender free add-on MB-Lab. The video frame
rates were rendered at 25 fps and the dimensions were 640*360 in
every case.

4.1.1 Image based iPPG methods
In this section, five traditional iPPG methods and four deep

learning methods were used to process the 3D subject videos.
The traditional methods can be roughly classified into two

groups: 1) signal processing methods; 2) skin pixel based methods.
Signal Processing Methods: 1) GREEN (Verkruysse et al., 2008):
the green channel has been shown to contain the strongest
pulsatile/cardiac signal of the RGB channels (Verkruysse et al., 2008;
Lee et al., 2013). The raw cardiac signal is the spatial average of
the green color channel pixels in the facial area of a video; 2) ICA
(Poh et al., 2010) is a Blind Source Separation (BSS) method which
is based on ICA introduced by Poh et al. (2010). The ICA (JADE
implementation) separates the raw signals into several independent
signal sources. The second component of the signal sources is
chosen to be the cardiac signal; 3) CEEMDAN (Al-Naji et al.,
2017) use CEEMDAN to find out the iPPG signal from the raw
signal averaged from the green channel pixels in the ROI of video
sequences.

Skin Pixel Based Methods: 1) CHROM (De Haan and Jeanne,
2013): a linear combination of the chrominance signals from
the bandpass filtered outputs of the spatial averaging in the
ROI of the red, green and blue color channels respectively;
2) POS (Plan-Orthogonal-to-Skin) (Wang et al., 2016): defines a
skin reflection model, which calculates a plane orthogonal to
the skin-tone in the temporally normalized RGB space for iPPG
extraction.

The deep learning methods we use to test the 3D model are
DeepPhys (Chen and McDuff, 2018), TS-CAN (Liu et al., 2020),
PhysNet (Yu et al., 2019) and Physformer (Yu et al., 2022). In
which, DeepPhys and TS-CAN are two part 2D convolutional
attention networks; PhysNet is a 3D convolutional network
architecture; Physformer is an end-to-end video temporal difference
transformer based architecture.
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FIGURE 5
Examples of iPPG waveforms and their power spectra recovered from 3D/real human using traditional and deep learning methods. (A) is the iPPG
waveform and its power spectra recovered by using traditional method (ICA) when 3D/real human under stable situation. (B) is the iPPG waveform and
its power spectrum recovered using the traditional method (ICA) when 3D/real people perform physical activities. (C) is the iPPG waveform and its
power spectra recovered by using deep learning method (Physformer) when 3D/real human under stable situation. (D) is the iPPG waveform and its
power spectrum recovered using the traditional method (Physformer) when 3D/real people perform physical activities.

The code for the experiments was written in MATLAB and
Python, some of the traditional methods source code refers to
the iPhys Toolbox (McDuff and Blackford, 2019). The pretrained
deep learning models are from rPPG (Liu et al., 2022), PhysBench
(Wang et al., 2023) and Yu et al. (2022).

4.1.2 Public datasets
Because there is no public dataset that contains all of the

scenarios we need to test, we chose the public data set DEAP
(Koelstra et al., 2011), ECG-Fitness (Špetlík et al., 2018) andMMPD
dataset (Tang et al., 2023) as the control group. DEAP provides
ground-truth scenes of stillness, expressions, and light source
changes. ECG-Fitness is for physical activity validation and MMPD
is used for testing darker skin tones. MMPD also offers stable

and expression/talking scenarios for real people with darker
skin types.

4.1.3 Pre-trained models
Considering the data synchronization issues (Yu et al., 2019;

Comas et al., 2022) of data set can affect the training performance.
We use the RLAP (Wang et al., 2023) dataset which has been
reported with no signal offset by Wang et al. (2023), as the
training set for TS-CAN, DeepPhys and PhysNet. The pre-
trained model based on VIPL (Niu et al., 2019) is from the
original open-source code of Physformer method. Additionally,
the SCAMPS (McDuff et al., 2022b) as the only simulation
database is used for comparing the results on real human and
our 3D human.
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FIGURE 6
The RMSE of the (A) five traditional iPPG methods and (B) four deep learning methods with 3D/real human under four different scenarios. The gray
brackets below the x-axis are the training sets of the deep learning model.

4.2 Evaluation metrics

By using the above image based iPGG methods to process the
videos of 3Dmodels and real people respectively, we use twometrics
to compare the performance of these iPPG methods running on 3D
models and real people.

4.2.1 Root-mean-square error
For real person, the Root-Mean-Square Error (RMSE) is used to

measure the difference of heart rates calculated by the iPPGmethods
and the ground truth PPG sensor data recorded synchronously in
public data sets. For 3D models, the RMSE refers to the difference

between the heart rates extracted by the iPPGmethods and the input
pulse rate of the simulated cardiac signal. We computed a heart rate
every 10 sec.

4.2.2 Percent error
We use the percent error to evaluate the accuracy of the results

from each iPPGmethod when running on real world videos and 3D
human videos. The formula for percent error is Eq. 6:

%Error = |P−T
T
| ⋅ 100% (6)

where T denotes to the ground truth heart rates in the tested public
data set and the input heart rates of the simulated cardiac signal; P
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FIGURE 7
Boxplots showing the minimum, maximum, 25th-75th percentile, and median of the percentage error for (A) the five traditional iPPG methods and (B)
the four deep learning methods run on real and 3D-rendered videos. The median values are indicated by red/blue bars inside the boxes, the quartile
range by boxes, the full range by whiskers.

TABLE 3 Evaluation metrics real human.

Method Training set Test set—real human

Stable Expression/Talk Light changes Physical activity

RMSE PE (%) RMSE PE (%) RMSE PE (%) RMSE PE (%)

GREEN - 4.36 4.48 5.92 2.81 13.41 18.68 17.25 7.35

ICA - 6.08 4.48 25.09 29.44 17.37 22.30 20.34 1.08

CEEMDAN - 4.36 4.48 5.92 2.81 14.24 20.41 22.88 9.32

CHROM - 4.38 6.55 8.38 9.00 1.94 2.73 13.49 13.62

POS - 2.13 3.70 5.92 2.81 5.99 6.97 6.45 1.08

TS-CAN
RLAP 34.54 47.63 18.34 26.05 32.31 51.87 24.92 19.27

SCAMPS 36.51 52.27 31.56 36.91 52.34 84.94 11.35 8.96

DeepPhys
RLAP 18.09 21.73 2.87 30.97 29.67 31.39 20.81 18.24

SCAMPS 35.21 47.01 29.73 40.20 16.62 19.99 15.78 15.42

PhysNet
RLAP 2.06 2.56 24.82 29.82 12.18 12.18 19.51 15.16

SCAMPS 27.95 36.39 28.03 31.75 19.39 29.55 24.85 25.21

Physformer VIPL 14.31 18.46 20.62 25.89 9.46 14.54 9.20 7.95

is the extracted values by the traditional methods and deep learning
methods.

4.3 Results

In this part, the image-based iPPG methods described above
were used to extract cardiac signals from both videos captured from
3D models and with real people in different scenarios. In order
to verify the effectiveness and practicality of our method, we first

compared the iPPG signal waveform recovered by the image-based
methods then we compare the evaluation metric.

4.3.1 Waveform of recovered iPPG signal and its
frequency domain

Figure 5 shows an example of the iPPG signal and its frequency
domain extracted from videos of real people and 3D models under
different scenarios (stable and active) by traditional method and
deep learning method respectively. We found that the distribution
of the 3D human pulse signal in the frequency domain looks
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qualitatively similar to that of a real person: 1) in the stationary
scene (Figures 5A, C), compared with the iPPG signal processed
by traditional methods, the pulse spectrum of the iPPG signal
extracted by the deep learning method, both the pulse spectrum
of the real person and the 3D person show less noise (especially
can be observed in 5c); 2) for a person engaged in physical activity
(Figures 5B, D), obvious regular movements can be observed in the
low-frequency area (0.5–1 Hz) of the pulse spectrum of real people
and 3D characters.

More comparison of raw signals from different scenarios can be
found in Supplementary Figure S1. From the 3D human video, we
can find fluctuations in the raw signal caused by expressions and
lighting changes (see the purple dashed box in the 3D human scene),
which is similar to the raw signal in the real world (see the yellow
dashed box in the real human scene). Furthermore, since the entire
cardiac cycle is a four phase activity, the fundamental frequency
and its harmonic frequencies can be observed in the time-frequency
diagrams of the real person (Supplementary Figures S2, S3). Based
on this observation, from the time-frequency diagrams of the 3D
human, we can see that the iPPG signal extracted from the 3D
human can replicate the real signal.

4.3.2 Comparison of the performances
Figure 6 illustrates the RMSE for both real humans and 3D

Human Models across four distinct scenarios. The data is processed
by using the traditional methods (Figure 6A) and deep learning
methods (on training set RLAP and VIPL) (Figure 6B), respectively.
Body motions and darker skin types are both important factors
effecting the accuracy of the recovered cardiac signals in many
iPPG measurement algorithms. In Figure 6A, all the traditional
iPPG methods show higher RMSE when analyzing real humans
and 3D humans in motion, consistent with the fact that body
motions are a problematic source of noise in image-based vital
sign measurements. While in the stationary scenario in Figure 6A,
except for ICA, the traditional methods do not perform well on 3D
human videos.The high RMSE values are caused by dark skin tones,
and if we remove the results for dark skin persons, all traditional
methods show reliable performance in stable environments (RMSE
all under 5 beats/min, see Supplementary Figure S4). We also notice
that in the expression/talking scenario in Figure 6A, the ICA
method shows the higher RMSE values both on real human
videos (25 beats/min) and 3D human videos (14 beats/min) than
other traditional iPPG methods, which is in line with the
findings that ICA is more sensitive under the non-stationary
scenario in De Haan and Jeanne (2013), Wang et al. (2016) and
Al-Naji and Chahl (2018). For the performance of deep learning
methods, in Figure 6B, it is obvious that the PhysNet algorithm
outperforms the other methods both on real humans and 3D
humans, especially in stationary scenes. This finding is in line
with the results from Yu et al. (2019) who reported that a 3D-
CNN version was able to achieve superior heart rate prediction
errors comparing with a 2D-CNN architecture. Another interesting
finding is that the performance of the Physformer method on
both real humans and 3D humans are relatively stable in four
different scenarios. It can be seen that both the traditional
and deep learning iPPG methods have similar performance on
real and 3D humans, which indicates that our method can

maintain good agreement with real people under real-world
conditions.

To further evaluate the agreement between the data sources,
we then calculated the percent error (PE) for each method, the
Boxplots of PE are shown in Figure 7. From the box plots of the
percent error of the traditional methods, in Figure 7A, we can see
that the median values of the two sets of boxes (real and 3D) are
close on each method, especially on ICA, CEEMDAN and CHROM
algorithm, which means that the average level of accuracy of the five
traditional iPPG methods is similar when running on real human
videos and 3D human videos.The large range of percentage error for
the ICA method is caused by the high value of RMSE in Figure 6A,
which we explained above. In particular, we can find that the iPPG
method is more stable on 3D human videos, displayed as narrower
boxes in both Figures 7A, B. This is also in line with the common
understanding that the complexity of various factors in real-world
scenarios which could affect the cardiac signal extraction is higher
than that in simulated data.

Tables 3, 4 show the performance evaluation metrics (RMSE
and PE) of traditional and deep learning methods on real and 3D
humans. Since the deep learning “trained” model is usually not
generalizable, from the evaluation metrics tables, we can see that
traditional iPPGmethods show stronger stable performance on both
real and 3Dhumans. In particular, the deep learningmodels training
on synthetic data set, SCAMPS does not perform well either on
real humans or 3D humans. This result is also consistent across
dataset test results of SCAMPS in (McDuff and Blackford, 2019;
McDuff et al., 2022a; Wang et al., 2023). Although McDuff et al.
(2022a) has reported that the models trained on combined real and
synthetic data can improve heart rate extraction accuracy, how to
make simulated data accurately supplement the lacking variables in
different real-person datasets still requires further exploration.

4.3.3 Performance on fine-tuning model
To investigate this work, we first used PhysNet and DeepPhys

pre-trained models (trained on the RLAP dataset) to measure hear
rates from real people performing physical activities (the test are data
from MMPD dataset). Given that the RLAP dataset lacks physical
activity features and contains subjects with similar skin tones, we
fine-tuned the pre-trained model on real and synthetic dataset
respectively. Subsequently, we evaluate the fine-tuned model on the
same group of data on which we tested the pre-trained models.
The real data for fine-tuning the models are walking people with
diverse skin tones fromMMPD dataset. The synthetic data for fine-
tuning the models are our walking or running 3D humans with
different skin tones. From Figure 8A, the Root Mean Square Error
(RMSE) in heart rate estimates for models fine-tuned on real people
is 7.05 bpm (Physnet) and 10.56 bpm (DeepPhys). Meanwhile,
for models fine-tuned on 3D human data, the RMSE values are
6.66 bpm (Physnet) and 10.38 bpm (DeepPhys). Both scenarios
demonstrate a performance improvement compared to the RMSE in
heart rate estimates on the pre-trained model, which is 13.16 bpm
(Physnet) and 12.99 bpm (DeepPhys). Also from the Figure 8B we
can see that the fine-tuned model exhibits a reduction in error and
outperforms in terms of stability.These findings indicate that our 3D
human can help to enhance the generalization capabilities of deep
learning models.
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TABLE 4 Evaluation metrics 3D human.

Method Training set Test set—3D human

Stable Expression/Talk Light changes Physical activity

RMSE PE (%) RMSE PE (%) RMSE PE (%) RMSE PE (%)

GREEN - 18.85 5.31 4.76 4.25 16.99 20.09 8.18 6.74

ICA - 4.93 5.92 13.69 17.08 4.5 5.60 21.14 14.63

CEEMDAN - 18.55 2.83 4.76 4.25 4.96 6.16 8.18 6.74

CHROM - 9.67 3.42 5.33 3.91 3.30 3.19 21.79 16.74

POS - 18.74 5.31 4.76 4.25 4.54 6.17 13.07 10.95

TS-CAN
RLAP 12.77 17.87 28.39 32.92 14.69 17.47 25.33 24.76

SCAMPS 25.01 24.50 20.76 21.62 24.24 34.39 32.28 23.01

DeepPhys
RLAP 16.12 24.08 22.02 27.66 30.59 43.34 20.48 18.37

SCAMPS 25.01 24.50 23.97 25.79 41.13 53.83 32.28 23.01

PhysNet
RLAP 6.73 18.86 4.16 5.85 15.87 20.80 23.19 21.73

SCAMPS 24.45 28.99 8.38 9.11 25.45 37.42 22.67 18.49

Physformer VIPL 15.01 16.04 6.75 7.14 12.96 18.03 11.91 9.57

FIGURE 8
(A) is RMSE values represent the performance of pre-trained and fine-tuned models when tested on human doing physical activity. (B) is the boxplot of
PE (Percent Error) for pre-trained and fine-tuned models during testing on human doing physical activity.

5 Discussion

Our results show it is possible to build data sets based on 3D
HumanModels with simulated cardiac signals and involuntary body
movements for testing image-based iPPG method or to supplement
the training set. The raw signals and cardiac signals of videos with
3D humans were quite similar to the signals from videos with
real humans. The distributions in the frequency domain of the 3D
human’s cardiac signals are qualitatively similar to the distributions

found with real humans. The comparison of evaluation metrics
(RMSE and PE) show that the tested traditional and deep learning
iPPG methods have similar performance while running on real
world videos and the simulated videos using our model. These
experiments are intended to demonstrate that rendered videos of
3Dmodels closely match videos of real people. In addition, this also
shows that since all variables in the model can be imported into
video rendering using python, it is possible to precisely control the
input variables. Rendering our 3D human in different environments
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can be used for iPPG algorithm validation and noise analysis in
future research. Futhermore, since our 3D human has a complete
body and skeleton (rig), any pose can be created and rendered
in any scene. This function can be applied to some areas that are
difficult to achieve with real-person data sets, such as human vital
sign detection based on iPPG method in drone rescue.

6 Conclusion

We have undertaken a novel study that simulates the cardiac
signal on a 3D Human Model. In order to enhance the authenticity
of the entire model and the possibility of adding more variables in
the future, we also added environmental variables such as lighting
changes and bodymovement to the rendered video. Fivewell-known
traditional iPPGmethod and four deep learning iPPGmethod have
been used to process the rendered videos and the results were
compared with those extracted from real human videos. The results
section shows that the signals from the 3D human in both the time
domain and frequency domain have good agreement with the data
from the comparison group (videos with real humans). The future
direction of this studywill be addingmore environmental conditions
and integrating more advanced vital signs such as HRV analysis,
SpO2 and blood pressure into 3DHumanModels. More exploration
in some specialised fields, such as simulated drone rescue scenes
and synthetic patients’ physiological signals will be conducted in the
future.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Ethics statement

Ethical approval was not required for the studies involving
humans because Use publicly available datasets. The studies were
conducted in accordance with the local legislation and institutional
requirements. Written informed consent for participation was
not required from the participants or the participants’; legal

guardians/next of kin in accordancewith the national legislation and
institutional requirements because Use publicly available datasets.
Written informed consent was not obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article because the images are from public datasets.

Author contributions

DW: Conceptualization, Data curation, Methodology,
Project administration, Software, Validation, Writing–original
draft, Writing–review and editing. JC: Project administration,
Supervision, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2023.
1266535/full#supplementary-material

References

Allen, J. (2007). Photoplethysmography and its application in clinical physiological
measurement. Physiol. Meas. 28, R1–R39. doi:10.1088/0967-3334/28/3/r01

Al-Naji, A., and Chahl, J. (2018). Remote optical cardiopulmonary signal extraction
with noise artifact removal, multiple subject detection and long-distance. IEEE Access
6, 11573–11595. doi:10.1109/access.2018.2811392

Al-Naji, A., Perera, A. G., and Chahl, J. (2017). Remote monitoring of
cardiorespiratory signals from a hovering unmanned aerial vehicle. Biomed.
Eng. online 16, 101–120. doi:10.1186/s12938-017-0395-y

Ba, Y., Wang, Z., Karinca, K. D., Bozkurt, O. D., and Kadambi, A. (2022).
“Style transfer with bio-realistic appearance manipulation for skin-tone inclusive
rppg,” in Proceedings of the 2022 IEEE International Conference on Computational
Photography (ICCP), Pasadena, CA, USA, August 2022 (IEEE), 1–12.

Balakrishnan, G., Durand, F., and Guttag, J. (2013). “Detecting pulse
from head motions in video,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA, June 2013,
3430–3437.

Banerjee, R., Ghose, A., Choudhury, A. D., Sinha, A., and Pal, A. (2015). “Noise
cleaning and Gaussian modeling of smart phone photoplethysmogram to improve
blood pressure estimation,” in Proceedings of the 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia,
April 2015 (IEEE), 967–971.

Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., and Dubois, J. (2019).
Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern
Recognit. Lett. 124, 82–90. doi:10.1016/j.patrec.2017.10.017

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1266535
https://www.frontiersin.org/articles/10.3389/frobt.2023.1266535/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.1266535/full#supplementary-material
https://doi.org/10.1088/0967-3334/28/3/r01
https://doi.org/10.1109/access.2018.2811392
https://doi.org/10.1186/s12938-017-0395-y
https://doi.org/10.1016/j.patrec.2017.10.017
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Wang and Chahl 10.3389/frobt.2023.1266535

Boccignone, G., Conte, D., Cuculo, V., D’Amelio, A., Grossi, G., Lanzarotti, R., et al.
(2022). pyvhr: a python framework for remote photoplethysmography. PeerJ Comput.
Sci. 8, e929. doi:10.7717/peerj-cs.929

Chen,W., andMcDuff,D. (2018).Deepphys: video-based physiologicalmeasurement
using convolutional attention networks. Available at: https://arxiv.org/abs/1805.07888.

Comas, J., Ruiz, A., and Sukno, F. (2022). “Efficient remote photoplethysmography
with temporal derivative modules and time-shift invariant loss,” in Proceedings of the
IEEE/CVFConference onComputerVision andPatternRecognition,NewOrleans, LA,
USA, June 2022, 2182–2191.

DeHaan, G., and Jeanne, V. (2013). Robust pulse rate from chrominance-based rppg.
IEEE Trans. Biomed. Eng. 60, 2878–2886. doi:10.1109/tbme.2013.2266196

De Haan, G., and Van Leest, A. (2014). Improved motion robustness of remote-
ppg by using the blood volume pulse signature. Physiol. Meas. 35, 1913–1926.
doi:10.1088/0967-3334/35/9/1913

Doi,M., and Tominaga, S. (2006). “Image analysis and synthesis of skin color textures
bywavelet transform,” in Proceedings of the 2006 IEEE Southwest Symposiumon Image
Analysis and Interpretation, Denver, CO, USA, March 2006 (IEEE), 193–197.

Estepp, J. R., Blackford, E. B., and Meier, C. M. (2014). “Recovering pulse
rate during motion artifact with a multi-imager array for non-contact imaging
photoplethysmography,” in Proceedings of the 2014 IEEE international conference on
systems, man, and cybernetics (SMC) (IEEE), 1462–1469.

Fischer, C., Glos, M., Penzel, T., and Fietze, I. (2017). Extended algorithm for real-
time pulse waveform segmentation and artifact detection in photoplethysmograms.
Somnologie 21, 110–120. doi:10.1007/s11818-017-0115-7

Heusch, G., Anjos, A., and Marcel, S. (2017). A reproducible study on remote heart
rate measurement. Available at: https://arxiv.org/abs/1709.00962.

Kim, T.-H., Kim, Y.-T., and Yoon, Y.-S. (2005). Development of a
biomechanical model of the human body in a sitting posture with vibration
transmissibility in the vertical direction. Int. J. Industrial Ergonomics 35, 817–829.
doi:10.1016/j.ergon.2005.01.013

Koelstra, S.,Muhl, C., Soleymani,M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al. (2011).
Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect.
Comput. 3, 18–31. doi:10.1109/t-affc.2011.15

Lee, J., Matsumura, K., Yamakoshi, K.-i., Rolfe, P., Tanaka, S., and
Yamakoshi, T. (2013). “Comparison between red, green and blue light reflection
photoplethysmography for heart rate monitoring during motion,” in Proceedings of
the 2013 35th annual international conference of the IEEE engineering in medicine
and biology society (EMBC), Osaka, Japan, July 2013 (IEEE), 1724–1727.

Lewandowska, M., Rumiński, J., Kocejko, T., and Nowak, J. (2011). “Measuring
pulse rate with a webcam—a non-contact method for evaluating cardiac activity,” in
Proceedings of the 2011 federated conference on computer science and information
systems (FedCSIS), Szczecin, Poland, September 2011 (IEEE), 405–410.

Li, X., Alikhani, I., Shi, J., Seppanen, T., Junttila, J., Majamaa-Voltti, K., et al.
(2018). “The obf database: a large face video database for remote physiological signal
measurement and atrial fibrillation detection,” in Proceedings of the 2018 13th IEEE
International Conference onAutomatic Face andGesture Recognition (FG 2018), Xi’an,
China, May 2018 (IEEE), 242–249.

Liu, X., Fromm, J., Patel, S., and McDuff, D. (2020). Multi-task temporal shift
attention networks for on-device contactless vitals measurement. Adv. Neural Inf.
Process. Syst. 33, 19400–19411.

Liu, X., Narayanswamy, G., Paruchuri, A., Zhang, X., Tang, J., Zhang, Y., et al. (2022).
rppg-toolbox: deep remote ppg toolbox. https://arxiv.org/abs/2210.00716.

McDuff, D., and Blackford, E. (2019). “iphys: an open non-contact imaging-
based physiological measurement toolbox,” in Proceedings of the 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Berlin, Germany, July 2019 (IEEE), 6521–6524.

McDuff, D., Curran, T., and Kadambi, A. (2023). Synthetic data in healthcare.
Available at: https://arxiv.org/abs/2304.03243.

McDuff, D., Hernandez, J., Liu, X., Wood, E., and Baltrusaitis, T. (2022a). Using
high-fidelity avatars to advance camera-based cardiac pulse measurement. IEEE Trans.
Biomed. Eng. 69, 2646–2656. doi:10.1109/tbme.2022.3152070

McDuff, D., Wander, M., Liu, X., Hill, B., Hernandez, J., Lester, J., et al. (2022b).
Scamps: synthetics for camera measurement of physiological signals. Adv. Neural Inf.
Process. Syst. 35, 3744–3757.

Moco, A. V., Stuijk, S., and De Haan, G. (2015). Ballistocardiographic artifacts in ppg
imaging. IEEE Trans. Biomed. Eng. 63, 1804–1811. doi:10.1109/tbme.2015.2502398

Morasso, P., Cherif, A., and Zenzeri, J. (2019). Quiet standing: the single
inverted pendulum model is not so bad after all. PloS one 14, e0213870.
doi:10.1371/journal.pone.0213870

Niu, X., Han, H., Shan, S., and Chen, X. (2018). “Synrhythm: learning a deep heart
rate estimator from general to specific,” in Proceedings of the 2018 24th International
Conference on Pattern Recognition (ICPR), Beijing, China, August 2018 (IEEE),
3580–3585.

Niu, X., Han, H., Shan, S., and Chen, X. (2019). “Vipl-hr: a multi-modal database
for pulse estimation from less-constrained face video,” in Proceedings of the Computer
Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia,
December 2018 (Springer), 562–576.

Poh, M.-Z., McDuff, D. J., and Picard, R. W. (2010). Non-contact, automated cardiac
pulse measurements using video imaging and blind source separation. Opt. express 18,
10762–10774. doi:10.1364/oe.18.010762

Soleymani,M., Lichtenauer, J., Pun, T., and Pantic,M. (2011). Amultimodal database
for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3, 42–55.
doi:10.1109/t-affc.2011.25

Sološenko, A., Petrėnas, A., Marozas, V., and Sörnmo, L. (2017). Modeling of
the photoplethysmogram during atrial fibrillation. Comput. Biol. Med. 81, 130–138.
doi:10.1016/j.compbiomed.2016.12.016

Song, R., Zhang, S., Li, C., Zhang, Y., Cheng, J., and Chen, X. (2020).
Heart rate estimation from facial videos using a spatiotemporal representation
with convolutional neural networks. IEEE Trans. Instrum. Meas. 69, 7411–7421.
doi:10.1109/tim.2020.2984168

Špetlík, R., Franc, V., and Matas, J. (2018). “Visual heart rate estimation with
convolutional neural network,” in Proceedings of the britishmachine vision conference,
Newcastle, UK, August 2018, 3–6.

Stricker, R., Müller, S., and Gross, H.-M. (2014). “Non-contact video-based pulse
rate measurement on a mobile service robot,” in Proceedings of the The 23rd
IEEE International Symposium on Robot and Human Interactive Communication,
Edinburgh, UK, August 2014 (IEEE), 1056–1062.

Tang, J., Chen, K., Wang, Y., Shi, Y., Patel, S., McDuff, D., et al. (2023). Mmpd:
multi-domain mobile video physiology dataset. https://arxiv.org/abs/2302.03840.

Tang, Q., Chen, Z.,Ward, R., and Elgendi, M. (2020). Synthetic photoplethysmogram
generation using two Gaussian functions. Sci. Rep. 10, 13883–13910.
doi:10.1038/s41598-020-69076-x

Tsou, Y.-Y., Lee, Y.-A., and Hsu, C.-T. (2020). “Multi-task learning for simultaneous
video generation and remote photoplethysmography estimation,” in Proceedings of the
Asian Conference on Computer Vision (Kyoto, Japan: Springer).

Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H.,
et al. (2003). Image-based skin color and texture analysis/synthesis by extracting
hemoglobin and melanin information in the skin. ACM Trans. Graph. 22 (3), 770–779.
doi:10.1145/882262.882344

Verkruysse, W., Svaasand, L. O., and Nelson, J. S. (2008). Remote plethysmographic
imaging using ambient light. Opt. express 16, 21434–21445. doi:10.1364/oe.16.021434

Wang, K., Wei, Y., Tong, M., Gao, J., Tian, Y., Ma, Y., et al. (2023). Physbench: a
benchmark framework for remote physiological sensing with new dataset and baseline.
Available at: https://arxiv.org/abs/2305.04161.

Wang, M., Deng, W., Hu, J., Tao, X., and Huang, Y. (2019). “Racial faces in the wild:
reducing racial bias by information maximization adaptation network,” in Proceedings
of the ieee/cvf international conference on computer vision, LongBeach, CA,USA, June
2019, 692–702.

Wang, W., den Brinker, A. C., Stuijk, S., and De Haan, G. (2016).
Algorithmic principles of remote ppg. IEEE Trans. Biomed. Eng. 64, 1479–1491.
doi:10.1109/tbme.2016.2609282

Wang, Z., Ba, Y., Chari, P., Bozkurt,O.D., Brown,G., Patwa, P., et al. (2022). “Synthetic
generation of face videos with plethysmograph physiology,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, June 2022, 20587–20596.

Wannenburg, J., and Malekian, R. (2015). Body sensor network for mobile health
monitoring, a diagnosis and anticipating system. IEEE Sensors J. 15, 6839–6852.
doi:10.1109/jsen.2015.2464773

Yu, Z., Li, X., and Zhao, G. (2019). Remote photoplethysmograph signal
measurement from facial videos using spatio-temporal networks. Available at: https://
arxiv.org/abs/1905.02419.

Yu, Z., Shen, Y., Shi, J., Zhao, H., Torr, P. H., and Zhao, G. (2022). “Physformer:
facial video-based physiologicalmeasurementwith temporal difference transformer,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
New Orleans, LA, USA, June 2022, 4186–4196.

Zhang, Z., Girard, J.M.,Wu, Y., Zhang, X., Liu, P., Ciftci, U., et al. (2016). “Multimodal
spontaneous emotion corpus for human behavior analysis,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June
2016, 3438–3446.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1266535
https://doi.org/10.7717/peerj-cs.929
https://arxiv.org/abs/1805.07888
https://doi.org/10.1109/tbme.2013.2266196
https://doi.org/10.1088/0967-3334/35/9/1913
https://doi.org/10.1007/s11818-017-0115-7
https://arxiv.org/abs/1709.00962
https://doi.org/10.1016/j.ergon.2005.01.013
https://doi.org/10.1109/t-affc.2011.15
https://arxiv.org/abs/2210.00716
https://arxiv.org/abs/2304.03243
https://doi.org/10.1109/tbme.2022.3152070
https://doi.org/10.1109/tbme.2015.2502398
https://doi.org/10.1371/journal.pone.0213870
https://doi.org/10.1364/oe.18.010762
https://doi.org/10.1109/t-affc.2011.25
https://doi.org/10.1016/j.compbiomed.2016.12.016
https://doi.org/10.1109/tim.2020.2984168
https://arxiv.org/abs/2302.03840
https://doi.org/10.1038/s41598-020-69076-x
https://doi.org/10.1145/882262.882344
https://doi.org/10.1364/oe.16.021434
https://arxiv.org/abs/2305.04161
https://doi.org/10.1109/tbme.2016.2609282
https://doi.org/10.1109/jsen.2015.2464773
https://arxiv.org/abs/1905.02419
https://arxiv.org/abs/1905.02419
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Public datasets of real humans
	2.2 Synthetic iPPG video

	3 Materials and methods
	3.1 Imaging system model
	3.2 Synthetic iPPG generated
	3.3 Generating the involuntary body movement signal
	3.3.1 BCG motion
	3.3.2 Breathing

	3.4 Integrating synthetic cardiac signal
	3.5 Motion variation coding

	4 Experiments
	4.1 Experimental setup
	4.1.1 Image based iPPG methods
	4.1.2 Public datasets
	4.1.3 Pre-trained models

	4.2 Evaluation metrics
	4.2.1 Root-mean-square error
	4.2.2 Percent error

	4.3 Results
	4.3.1 Waveform of recovered iPPG signal and its frequency domain
	4.3.2 Comparison of the performances
	4.3.3 Performance on fine-tuning model


	5 Discussion
	6 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

