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Gait is an important basic function of human beings and an integral part of
life. Many mental and physical abnormalities can cause noticeable differences
in a person’s gait. Abnormal gait can lead to serious consequences such as
falls, limited mobility and reduced life satisfaction. Gait analysis, which includes
joint kinematics, kinetics, and dynamic Electromyography (EMG) data, is now
recognized as a clinically useful tool that can provide both quantifiable and
qualitative information on performance to aid in treatment planning and evaluate
its outcome. With the assistance of new artificial intelligence (AI) technology,
the traditional medical environment has undergone great changes. AI has the
potential to reshape medicine, making gait analysis more accurate, efficient
and accessible. In this study, we analyzed basic information about gait analysis
and AI articles that met inclusion criteria in the WoS Core Collection database
from 1992–2022, and the VosViewer software was used for web visualization
and keyword analysis. Through bibliometric and visual analysis, this article
systematically introduces the research status of gait analysis and AI. We introduce
the application of artificial intelligence in clinical gait analysis, which affects the
identification and management of gait abnormalities found in various diseases.
Machine learning (ML) and artificial neural networks (ANNs) are the most often
utilized AI methods in gait analysis. By comparing the predictive capability of
different AI algorithms in published studies, we evaluate their potential for gait
analysis in different situations. Furthermore, the current challenges and future
directions of gait analysis and AI research are discussed, which will also provide
valuable reference information for investors in this field.

KEYWORDS

gait analysis, artificial intelligence (AI), wearable device, sensor, bibliometric analysis

1 Introduction

The term gait describes the characteristics of body movements during walking or
running, and the study of bipedal gait in humans, called gait analysis, refers to the objective
and systematic study of human movement, including visual observation and instrumental
measurement (Theologis, 2011). Gait analysis is a systematic approach that identifies any
changes in gait patterns and tries to find out what causes them and how do they affect
humans (Perry and Burnfield, 2010). Gait is a complex process achieved through the
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coordinated movement of body parts, using interactions between
internal and external factors, and through the action of the
neuromusculoskeletal system (Mirelman et al., 2018). A complete
gait process beginswhen the nervous systemgives the command and
the muscles pull the bones around the joints. This process requires
the division of labor and cooperation of all human systems. Gait
involves not only hip, knee, and ankle flexion and extension, but
also internal and external rotation, the human center of gravity
shift, pelvic tilt rotation and other related movements. It should be
noted that if there is a problem in of these inter-related factors,
it may lead to an individual abnormal gait. Human gait has
certain specificity for various functional abnormalities. Human gait
abnormalities lead to specific functional abnormalities. In addition,
one of the most reliable indicators of falls is aberrant gait, and
poor gait can have additional deleterious effects on mobility and
life satisfaction (Melin et al., 2003; Verghese et al., 2010). Therefore,
gait analysis is an important tool in clinical practice as it can help
to identify specific pathologies and assess disease progression or
treatment effectiveness (Celik et al., 2021). Analysis of a person’s gait
is essential to determining health status since any apparent variation
from normal may point to an underlying disorder.

Traditionally, subjective assessment of gait has been carried
out by experienced health professionals. However, with advances
in technology, especially the rapid development of artificial
intelligence (AI), including the advent of objective and empirical gait
analysis, assessments have improved and become more trustworthy.
According to its definition, artificial intelligence is a branch of
science and engineering that deals with the computational analysis
of what is often referred to as intelligent behavior and the
development of artifacts that display such behavior. Proficiency in
artificial intelligence technology has been explored in almost every
field. The challenge for modern medicine is to compile, assess,
and employ the enormous body of knowledge needed to deal with
complex clinical problems (Ramesh et al., 2004). AI is a subfield
of computer science that can examine intricate medical data. In
many therapeutic situations, their ability to identify significant
associations in data sets can be utilized to make diagnoses,
administer treatments, and forecast results. Machine learning (ML)
is a field of AI that use statistical algorithms to allow computer
systems to progressively improve performance associated with a
given job based on data, rather than depending on rules-based
programming of the underlying causal linkages (Vikara et al., 2020).
Deep learning (DL) is a very new and influential frontier that
is a subfield of machine learning (ML) and is based on deep
neural networks (DNNs)—neural networks with more than one
hidden layer (Chan et al., 2020). Convolutional neural network
(CNN), a subclass of DNN, is particularly useful for information
identification and classification and has attracted much interest
from industry, academia, and clinicians (Chan et al., 2020). Artificial
neural networks (ANNs) are a powerful nonlinear modeling
technique, particularly effective in gait analysis (Kaczmarczyk et al.,
2009). In contrast to other conventional methods, ANN approaches
offer the distinct benefit of being non-parametric and requiring
little to no prior knowledge of the input data. Due to these
factors, ANN approaches may be used in a variety of domains,
including pattern recognition, intelligent control, combinatorial
optimization, forecasting, and others (Yang and Guo, 2016).
Currently, in terms of technology, as themost widely used technique

for examining changes in the human movement process, gait
analysis in combination with AI has promoted the development
of biometric detection equipment and recognition algorithms; In
terms of application, the combination of gait analysis and AI
can provide guidance for clinical diagnosis, efficacy evaluation,
and rehabilitation training, provide solid basic support for the
development of biped robots, walking aids, rehabilitation aids and
artificial joints.The combined application of gait analysis and AI has
become a challenging research topic and will be more extensive in
the future.

The further advancement of each particular research direction
often requires a review of past research (Berlinberg et al., 2019).
Bibliometrics is a kind of useful quantitative science that can track
overall research trends in a particular field, and its application
in medical research has attracted growing attention (Saab et al.,
2019; Zhu et al., 2021). Citation analysis is one of the main tools of
bibliometrics. It is of great value to analyze the most cited classical
literature to discover the key issues in the research (Moed, 2009).
There are few bibliometric studies on gait technology. To the best of
our knowledge, no bibliometric analysis of gait analysis and AI has
been published so far. Therefore, in this study, we obtained relevant
data from articles matched for gait analysis and AI from 1992 to
2022, described the characteristics of the articles, and provided
references for a better understanding of the research worldwide.
In addition, our research can reveal the limitations and knowledge
gaps in the literature to speculate possible research directions. The
research will also benefit developers of sensor technology and those
interested in remote patientmonitoring, whichwill contribute to the
potential improvements of gait-related technology.

2 Methods

2.1 Study design

To provide scientific analysis, we searched relevant articles from
the WoS Core Collection database to identify the articles related to
“gait analysis and AI” through systematic literature reviews (SLR).
SLR is regarded as a crucial part of the systematic review process,
which entails a systematic search of studieswith the goal of obtaining
a transparent study identification report that provides readers with
a clear picture of how the study was identified and how the review’s
findings fit into the pertinent evidence (Cooper et al., 2018).

2.2 Search strategy

In order to improve the search sensitivity, two researchers
(T.B. and J.S.G.) independently selected articles for inclusion. As
demonstrated in Figure 1, we identified relevant publications in
the WoS Core Collection databases using the specialized search
tool, which confined the language and document type to “English”
and “Articles or Review Articles” respectively. The ‘front-page’
filter was used to cover only the documents in which search
keywords are included in the title, abstract, author keywords,
and keyword plus to eliminate the inherent bias of using WoS
Core Collection for bibliometric analysis and prevent introducing
unrelated publications (Cooper et al., 2018). Furthermore, the field
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FIGURE 1
Flowchart of the methodology for identifying articles related to artificial intelligence and gait.

TABLE 1 Retrieval function for Gait analysis and AI research.

Retrieval type Content

Formula TS= [(“AI” OR “artificial intelligence” OR “deep learning” OR “machine learning” OR “pattern recognition” OR “neural network”) AND (“gait”)]

Language English

Document type Articles or Review Articles

Index All

Date 1 January 1992 to 31 December 2022

tag, which contains titles, abstract, and keywords, was given as TS=
[(“AI” OR “artificial intelligence” OR “deep learning” OR “machine
learning” OR “pattern recognition” OR “neural network”) AND
(“gait”)], as shown in Table1. According to the inclusion criteria, two
researchers (T.B. and J.S.G.) independently examined the abstracts
or full texts to find the articles on AI and gait analysis. When the
two reviewers disagreed, a third investigator (Y.J.W) joined and
helped reach a consensus until the articles were included in the final
analysis.

2.3 Bibliometric analysis

Collect basic information such as journal name, publication
date, total citations, average citations per year (ACY), journal name,
first author, institution, theme, and keywords. And descriptive
statistics of counts or percentages are used to compare different
categories of information. The journal impact factors were obtained
from the “Journal Citation Reports (JCR)© (2022)” (Clarivate,
2023). There is only the final corresponding author, institution, and
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FIGURE 2
Total publications and citations on AI and Gait during1992–2022.

country/region in works with numerous corresponding authors.
Data mining, mapping and visualization of network analysis was
performed using Microsoft Excel and VosViewer (Waltman et al.,
2010).

3 Results

Bibliometric analysis is a useful tool for retrieving published
information and is widely used to quantitatively evaluate academic
activity (Sarkodie and Strezov, 2019). Bibliometric analysis can
not only be used to explore the characteristics, structure, and
development of academic literature, but also can quickly grasp the
basic information and research trends in a field. Classical citation
recognition is still one of the important methods for the systematic
evaluation of scientific research performance. The total number of
citations retrieved from the WoS using the SLR was 3,357. When
the article type was limited to articles or review articles and the
language was English, we obtained 2,255 publications. Finally, 1,351
articles met all inclusion criteria and included in the bibliometric
analysis.

3.1 Temporal and spatial analysis

Figure 2 presents the publishing time trends in terms of both
publications and citations. The results indicate a general upward
trend in gait analysis and AI research from 1992 to 2022. The
three stages below can roughly be used to categorize this trend:

1992–2003: the number of papers published was limited, with
gradual increase number of papers published, with a total of 47
papers. 2004–2015: during this stage, the number of publications
and citations increased from 47 to 177 and from 2,446 to 8,044
respectively; 2016–2022: in 2016, one study was published in the
journal Nature demonstrating the potential of using deep learning
algorithms for gait analysis. The study used large-scale gait datasets
and utilized convolutional neural networks (CNNs) to identify and
categorize various gait patterns (LeCun et al., 2015). The average
annual publishing increased to 39–244 documents during this stage
of rapid development.

There are 76 countries and regions that have published articles,
and nearly 11.2% of them have published fewer than 10 articles.
Figure 3A shows the top 15 countries with the highest output
of articles, and Figure 3B shows the geographical distribution of
literature from 1992 to 2022. The results showed that China and
United States were in the leading position in the field of gait analysis
and AI research. Among them, China ranked first in the number
of publications (293 articles, 21.7%), and the H-index was 30;
United States ranked second in the number of publications (239
articles, 17.7%), and the H-index was 39. China and United States
far outstripped other countries throughout the study period. The
performance of Chinese researchers in the fields of gait analysis
and AI is noteworthy, especially after the Chinese government
issued the “New Generation of Artificial Intelligence Development
Plan” in 2017, the number of papers published in the field of gait
analysis and AI in China increased rapidly. In addition, there were
four countries with more than 100 papers: South Korea ranked
third, with 119 papers published, and the H-index was 21; The
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FIGURE 3
(A) The top 15 countries with the highest output of articles (B) Geographical distributions of publications during 1992–2022.

UK ranked fourth, with 117 publications and the H-index was
21; India ranked fifth, with 108 publications and the H-index
was 20; Canada ranked sixth, with 102 publications and the H-

index was 28. The above eight countries accounted for 78.8% of
the papers published in the research field of gait analysis and
AI.
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3.2 The most influential journals

Between 1992 and 2022, 416 journals published the 1,351 papers
that were chosen for publication. Only one gait analysis and AI
research publication was published in nearly two-thirds of these
journals. The top 15 reputable journals for gait analysis and AI
research are listed in Table 2, and they accounted for 42.12% of
all articles. Sensors was the most productive journal, with 162

publication records, followed by IEEE Access (72) and Gait and
Posture (40). IEEE Journal of Biomedical and Health Informatics
had the highest IF value (7.7) among these top 15 journals.
Furthermore, the Sensors had the highest TC score (2368), followed
by Gait & Posture (1562) and Journal of Biomechanics (1488).
Additionally, in order of the number of citations per publication,
Journal of Biomechanics, Gait & Posture and IEEE Transactions
on Biomedical Engineering were the top three. According to the

TABLE 2 Themost productive journals in gait analysis and AI research.

No. Journal Country IF (2022) TP TC TC/TP

1 Sensors Switzerland 3.9 162 2,368 14.62

2 IEEE Access United States 3.9 72 791 10.99

3 Gait and Posture Ireland 2.4 40 1562 39.05

4 IEEE Sensors Journal United States 4.3 35 462 13.20

5 IEEE Transactions on Neural Systems and Rehabilitation Engineering United States 4.9 35 565 16.14

6 Journal of Biomechanics United Kingdom 2.4 29 1488 51.31

7 IEEE Journal of Biomedical and Health Informatics United States 7.7 26 830 31.92

8 Biomedical Signal Processing and Control United Kingdom 5.1 23 347 15.09

9 Neurocomputing Netherlands 6 21 419 19.95

10 Multimedia Tools and Applications Netherlands 3.6 20 288 14.40

11 Journal Of Neuroengineering and Rehabilitation United Kingdom 5.1 19 224 11.79

12 Applied Sciences Basel Switzerland 2.7 18 141 7.83

13 IEEE Transactions on Biomedical Engineering United State 4.6 18 656 36.44

14 Plos One United States 3.7 18 629 34.94

15 Scientific Reports Germany 4.6 17 404 23.76

Note: IF is impact factor of the journal; TP is the number of total publications; TC is the number of total citations; TC/TP is the citations per publication.

TABLE 3 Themost productive institutions in gait analysis and AI research.

No. Institute (country) TP TC RC (%) h-index

1 Chinese Academy of Sciences (China) 59 1221 20.137 16

2 University of Calgary (Canada) 24 549 23.529 14

3 Xian Jiaotong University (China) 22 307 7.509 10

4 National Institute of Technology System (United States) 19 291 7.950 8

5 University of Erlangen Nuremberg (Germany) 19 674 21.839 13

6 Egyptian Knowledge Bank (Egypt) 17 121 94.444 5

7 University of Waterloo (Canada) 16 426 15.686 12

8 Zhejiang University (China) 14 172 4.778 7

9 Indian Institute of Technology System (India) 13 244 12.037 8

10 Monash University (Australian) 13 645 19.700 9

11 Pennsylvania Commonwealth System of Higher Education (United
States)

13 171 5.439 7

12 University of California System (United States) 13 364 5.439 8

13 Victoria University (Australian) 13 821 19.700 9

Note: TP is the number of total publications; RW (%) is the ratio of the total publications of one institute to world publications; RC (%) is the ratio of the total publications of one institute to
those of the corresponding country; TC is the number of total citations.
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results, the core journals were those devoted to gait analysis and
AI research, such as IEEE Access, Gait & Posture, Journal of
Biomechanics and IEEE Transactions on Biomedical Engineering.
These journals have been the most significant in this subject
and are showing a lot of interest in the gait analysis and AI
research.

3.3 Most productive institutions and their
collaborations

In this study, a total of 1726 institutions and 1,351 articles were
included. Table 3 lists the most influential institutions with more
than 13 publications. Of the 13 institutions listed in Table 3, there
were three each in China and United States, two each in Canada and
Australia, and one each in India, Egypt and Germany. In contrast
to the results shown in Figure 3A, UK, South Korea, Japan, and
Italy all produced more than 50 papers and were among the most
influential countries, but did not have any of the most productive
institutions. The Chinese Academy of Sciences has published the
most articles, with 41 articles, h-index of 12, and the most cited
times of 1,001. In second place was the University of Calgary from
Canada, which published 24 articles with 463 citations and the
highest H-index (13). The National Institution of Technology in
the United States produced 19 articles and was cited 192 times,

ranking fourth. It is worth noting that Zhejiang University, ranked
8th, produced 14 articles with 134 citations, also from China. In the
top ten institutions of paper output, China has a leading position.
The general statistics of the top institutions showed an upward trend,
indicating that gait analysis and AI research has developed rapidly
in the past years. In addition, Figure 4 shows the close cooperation
among these institutions. Institutions in various countries have a
close cooperative relationship in the research of gait analysis and
AI.

3.4 Most contributing authors and their
collaborations

A total of 4,837 authors participated in research on gait analysis
and AI during the past 30 years, and 81% of the authors published
only one article. Table 4 lists the top 10 highly productive authors
who have published at least 8 papers; This proportion accounted for
only 0.3% of all authors, but their publications accounted for 10.36%
of the total number of publications. Klucken J from the University
of Erlangen Nuremberg published the most articles, with a total of
14 articles and 580 citations; Semwal VB published the most articles
as the first author (n = 5). Hausdorff JM from Tel Aviv University
published 8 articles with the most citations 785 times. The networks
of author partnerships on gait analysis and AI studies were analyzed

FIGURE 4
The collaboration network of the most productive institutions.
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TABLE 4 Themost productive authors in gait analysis and AI research.

No. Authors Institution Position on author list TC TP

1 Klucken J University of Erlangen Nuremberg First author-1 correspond author-0 14 580

2 Eskofier BM University of Erlangen Nuremberg First author-1 correspond author-1 13 415

3 Ferber R University of Calgary First author-1 correspond author-4 12 398

4 Lemaire ED University of Ottawa First author-0 correspond author-1 12 265

5 Hausdorff JM Tel Aviv University First author-1 correspond author-3 8 785

6 Osis ST University of Calgary First author-1 correspond author-1 8 335

7 Semwal VB Indian Institute of Information Technology Allahabad First author-5 correspond author-4 8 262

8 Kofman J University of Waterloo First author-0 correspond author-6 8 248

9 Gassner H University of Erlangen Nuremberg First author-1 correspond author-1 8 182

10 Khan MA NITEC University First author-1 correspond author-1 8 172

Note: TP is the number of total publications; TC is the number of total citations.

FIGURE 5
The collaboration networks of the most productive authors.

using Vosviewer software in order to investigate the cooperation
and collaboration between high-yield authors and other authors
(Figure 5). These top-ranked authors form essentially independent
research teams and have active collaborative relationships with each
other.

3.5 Keyword analysis

Oftentimes, keywords reveal important details about the author’s
particular emphasis. Keyword co-occurrence analysis is frequently
used to show how terms relate to one another and give readers
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FIGURE 6
The co-occurrence network of Gait and AI keywords.

insight into research hotspots and emerging trends (Mao et al.,
2018). In this study, we use keyword co-occurrence analysis to
pinpoint the most salient problems and crucial areas for gait
analysis and AI research. 3,233 keywords altogether, acquired
from 1,351 investigations, are sorted and combined according to
gerund, singular or plural type, and abbreviation. The most frequent
author keywords were “machine learning”, “gait analysis”, “deep
learning”, “gait”, “gait recognition”, “parkinson’s disease”, “feature
extraction”, “legged locomotion”, “wearable sensors”, “pattern
recognition”, “neural network”, “sensors”, “artificial intelligence” and
“convolutional neural network” with over 50 occurrences. The co-
occurrence network based on high-frequency terms (more than
7) is shown in Figure 6. The word’s size and center correspond to
its magnitude and frequency. Through the analysis of keywords,
our study objectively reflects the hotspots of gait analysis and AI
research.

3.6 Citation analysis

Citation analysis is an important part of bibliometrics and is
used to identify and chart the frequency and pattern of citations
in literature. Citation times is one of the important indexes to
measure the influence of publications. Although this does not
always correspond with paper quality, citation counts are thought to
indicate the influence of scientific publications (Brandt et al., 2010).
Citations may be related to a number of factors, such as the age
and accessibility of IF journals (Gao et al., 2020). Articles on gait
analysis and AI research were cited 24,189 times from 1992 to
2022, and Table 5 presents the top 10 cited articles. The most cited
article was Decomposing biological motion: A framework for analysis
and synthesis of human gait patterns, which was cited 615 times.
Troje, NF was the first author of this article, which was published
in Journal of Vision in 2002. In this article, researchers create
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TABLE 5 Themost cited articles in gait analysis and AI research.

NO. Title First author Journal Year TC ACY

1 Decomposing biological motion: A framework for
analysis and synthesis of human gait patterns

Troje, NF. Journal of Vision 2002 615 27.95

2 MPCA: Multilinear principal component analysis of
tensor objects

Lu, HP IEEE Transactions on Neural Networks 2008 559 34.94

3 Gait dynamics, fractals and falls: Finding meaning in the
stride-to-stride fluctuations of human walking

Hausdorff, JM Human Movement Science 2007 558 32.82

4 A Comprehensive Study on Cross-View Gait Based
Human Identification with Deep CNNs

Wu, ZF IEEE Transactions on Pattern Analysis and Machine
Intelligence

2017 317 45.29

5 Self-Powered and Self-Functional Cotton Sock Using
Piezoelectric and Triboelectric Hybrid Mechanism for

Healthcare and Sports Monitoring

Zhu, ML Acs Nano 2019 289 57.8

6 Quantification of human motion: gait analysis - benefits
and limitations to its application to clinical problems

Simon, SR Journal Of Biomechanics 2004 289 14.45

7 Support vector machines for automated gait classification Begg, RK IEEE Transactions on Biomedical Engineering 2005 237 12.47

8 A review of analytical techniques for gait data. Part 1:
fuzzy, statistical and fractal methods

Chau, T Gait & Posture 2001 236 10.26

9 Sagittal gait patterns in spastic diplegia Rodda, JM Journal Of Bone and Joint Surgery-British Volume 2004 219 10.95

10 Automated person recognition by walking and running
via model-based approaches

Yam, CY Pattern Recognition 2004 205 10.25

Note: TC is the number of total citations; ACY is the average citations per Year.

a framework to convert biological motion into a representation
that enables analysis using linear methods of statistics and pattern
recognition, and they suggest a straightforward motion modeler
that can be used to visualize and accentuate variations in walking
patterns between men and women (Troje, 2002). The second-
most-cited paper presented a multilinear principal component
analysis (MPCA) framework for tensor object feature extraction
and demonstrated that an MPCA-based gait recognition module
achieves highly competitive performance and compares favorably to
the most advanced gait recognizers even without a fully optimized
design (Lu et al., 2008).

Based on previous studies we can learn that average citations
per year (ACY) are a better indicator of an article’s impact and
influence on future trends (Tang et al., 2021). We show the top
ten articles with the highest ACY in Table 6. Self-powered and self-
functional cotton sock using piezoelectric and triboelectric hybrid
mechanism for healthcare and sports monitoring, published by Zhu,
ML as the first author in Acs Nano in 2019, had the highest
ACY(57.8). In addition, it is the fifth most cited article and the
most recently published article among the top 10 most cited articles.
Researchers created the S-2-sock in this study to achieve a variety
of purposes, including energy harvesting and monitoring different
physiological signs (Zhu et al., 2019). Concepts derived from earlier
influential articles are assimilated into common sense, reducing
citations of the original texts. Studies that were published more
recently require more time to build more citations to demonstrate
their significance. Articles with high citation counts but low ACY
are probably the product of historical accumulation (Tang et al.,
2021).

4 Discussion

4.1 Principles of gait analysis

4.1.1 Gait cycle
The gait cycle represents a series of repeated tasks that culminate

in walking. To understand pathology, normal gait patterns are
essential to be able to detect alterations in gait. Weber brothers
used the concept of the gait cycle and calculated the time of the
gait in 1836 (Prakash et al., 2018). The gait cycle is an integrated
function of the lower limbs, pelvis, and spine. A gait cycle consists
of activity from the initial contact point of one lower limb to the
pointwhere the same lower limb contacts the ground again.The limb
remains in touch with the ground for around 60% of the gait cycle,
which is separated into the support phase’s initial contact, loading
response, mid-stance, terminal stance, and pre-swing phases. The
swing phase, which makes up the remaining 40%, is broken down
into three stages: initial swing, mid-swing, and terminal swing. It
is the time when the limb is propelled forward without touching
the ground. Gait phase makes it simple to distinguish between the
various movement patterns created by individual joints and body
segments, which helps with gait analysis (Whittle, 2007). Each gait
phase has a distinct objective, and achieving that objective requires
a crucial pattern of chosen movement (Sobral et al., 2018). Figure 7
shows the basic gait phases and the expected interval phases and
subphases throughout the gait cycle:

a. Initial contact The moment the heel of the reference foot made
contact with the ground was taken into account. Consequently,
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TABLE 6 Top 10 articles with the highest ACY.

NO. Title First author Journal Year TC ACY

1 Self-powered and self-functional cotton sock using
piezoelectric and triboelectric hybrid mechanism for

healthcare and sports monitoring

Zhu, ML Acs Nano 2019 289 57.8

2 A comprehensive study on cross-view gait based
human identification with deep CNNs

Wu, ZF IEEE Transactions on Pattern Analysis and Machine
Intelligence

2017 317 45.29

3 MPCA: multilinear principal component analysis of
tensor objects

Lu, HP IEEE Transactions on Neural Networks 2008 559 34.94

4 Deep learning-enabled triboelectric smart socks for
IoT-based gait analysis and VR applications

Zhang, ZX NPJ Flexible Electronics 2020 138 34.5

5 Gait dynamics, fractals and falls: finding meaning in
the stride-to-stride fluctuations of human walking

Hausdorff, JM Human Movement Science 2007 558 32.82

6 A model-based gait recognition method with body
pose and human prior knowledge

Liao, RJ Pattern Recognition 2020 131 32.75

7 Using smartphones and machine learning to quantify
Parkinson disease severity the mobile Parkinson

disease score

Zhan, AD Jama Neurology 2018 185 30.83

8 A review of the evolution of vision-based motion
analysis and the integration of advanced computer
vision methods towards developing a markerless

system

Sharma, Saloni Sports Medicine-Open 2018 183 30.5

9 Machine learning in human movement biomechanics:
best practices, common pitfalls, and new opportunities

Halilaj, Eni Journal of Biomechanics 2018 174 29

10 Decomposing biological motion: a framework for
analysis and synthesis of human gait patterns

Delp, Scott L Journal of Vision 2002 615 27.95

Note: TC is the number of total citations; ACY is the average citations per Year.

it is sometimes referred to as a heel strike. The load response is
beginning at this point.

b. Loading response It starts when the reference foot makes the first
contact and continues until the other foot is lifted and waved
in the air. In order to absorb stress, the knee was flexed, and
the heel was employed as a rocker. Contact with the forefoot,
however, was minimized with the help of ankle flexion, which
prevented the heel from acting as a rocker (Tao et al., 2012a).
During this time, the supporting limb is fully supported by
the torso and the reference foot is fully in contact with the
ground.

c. Mid-stance It starts with a vertical landing on the swing leg’s tibia.
The dorsiflexion of the ankle, which is the rocker arm of the ankle,
allows the limb to advance in the stationary foot.The front foot lift
and body alignment at the front foot are the two elements of the
middle standing phase.

d. Terminal stance At this stage, the heel lifts, the forefoot rocker
promotes limb advancement, and the body’s weight is transmitted
to the front of the forefoot.

e. Pre-swing It starts with the other limb’s initial touch and finishes
with the toe-off, and its principal role is to position the limbs for
swing.

f. Initial swing This is the initial swing phase. It starts with
lifting the foot off the ground and concludes with the
stance foot opposing the swing foot. This phase of flexion
limb progression includes increased knee flexion and hip
flexion.

g. Mid-swing Theflexion of the reference foot achieves its maximum
extent during this stage, which is referred to as the second phase
of the swing.

h. Terminal swing The tibia is parallel to the ground during this
stage. The tibia swings vertically at the start of this phase, which
concludes with the foot’s ball striking the ground. When the
lower leg crosses in front of the thigh and the knee extends, limb
propulsion is accomplished.

4.1.2 Gait parameters
Inappropriate biomechanics can lead to gait dysfunction, which

can lead to serious health problems if not diagnosed promptly
and followed up with treatment (Prentice et al., 2001). It would
be appropriate to have a prone overview on the parameters that
are utilized in gait analysis. Gait data of interest to researchers,
particularly physiotherapists and orthopedic surgeons, fall into six
broad categories:

a. Anthropometric parameters Anthropometric parameters usually
take into account the physical dimensions of the human body,
including age, sex, weight, height, limb length, and body mass
index (BMI). In gait analysis, researchers have argued in favor
of grouping together people with comparable anthropometric
characteristics. Isolating the effect of anthropometric parameters
on gait analysis is essential.

b. Spatio-temporal parameters For gait researchers and clinicians,
spatio-temporal parameters (TSPs) are often the most
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FIGURE 7
Diagram showing the key phases, stages, and events of the human gait cycle.

understandable and clinically applicable data points (Hecht et al.,
2022). The spatiotemporal characteristics of the gait analysis
system include step and stride length, step breadth, cadence,
velocity, phases (stance and swing), and foot strike and toe-
off events. They are among the simplest to assess and correlate
with functional severity and disability across a variety of illness
conditions, and are occasionally referred to as vital signs of gait
(Inam et al., 2010).

c. Kinematic parameters By taking into account the motion of the
body landmark that was chosen for analysis, joint angles are
included. Along with joint angles (such as the angle of the

trunk, hips, knees, and ankles), it also includes angular motion,
acceleration, and segment trajectory. These characteristics are
typically measured using markers and sensors (Sutherland,
2002).

d. Kinetic parameter It is a collection of forces that produce ground
reaction forces (GRFS). Reverse dynamics enables the estimation
of forces and torques for various joints by combining kinematic
and GRF data. Total load, weight distribution, including the
mapping of the center of pressure and the plantar pressure, as
well as joint moments and joint dynamics, are some of these
(Hecht et al., 2022).
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e. Electromyography (EMG) parameters By capturing the timing
and force of muscle contractions during the gait cycle, EMG
investigations and neuromuscular recruitment analysis can
supplement traditional gait analysis. Sequential changes inmuscle
activation and muscle fiber recruitment can be used to quantify
the effects of injury and muscle atrophy on normal gait as
well as predict pathological gait abnormalities following surgery
(Palmieri-Smith et al., 2013).

f. Combined parametersResearchers havemade an effort to combine
the previously described parameters, such as joint angle and
ground reaction force, with anthropometric measures in order to
improve analysis and visualization (Lai et al., 2009). By revealing
complex correlations between pathological and problematic gait,
these studies help clinicians by revealing which patients will
benefit most from surgical intervention (Arnold et al., 2006).

The research field determines the factor of interest in the
discussed parameters. The choice of precise gait parameters is
essential in gait analysis because the choice of the most suitable gait
features has a significant impact on the study’s findings.

4.2 Gait analysis approaches

Modern methods for analyzing human gait can be broadly
divided into four categories: Vision or image processing based using
a video camera, sensor-based and other technologies and hybrid
approaches (Prakash et al., 2018).

4.2.1 Vision based approach
In methods for vision-based gait analysis, frames are taken with

a camera. This analysis can be done in two ways; There are marker-
based or markerless on the subject.

Mark-based gait analysis makes use of spherical skin markers
with a diameter of 4–25 mm that are either active (light-emitting)
or passive (retro-reflective) and are coupled to certain anatomical
landmarks or corresponding body segments of the human body via
marker clusters or position sensors (Klöpfer-Krämer et al., 2020).
The position and orientation of markers in 3D volumes are often
determined by optical motion tracking systems, which typically
employ near-infrared technology and call for at least two cameras
(Baker, 2006; Sander et al., 2012). The camera emits an infrared
light signal and detects the reflection of a marker attached to the
body. The camera sends out an infrared light signal, which is picked
up by the marker’s reflection off the body. Individual markers
operate at a specific frequency, therefore this signal is utilized to
pinpoint the marker’s location. Current optoelectronic techniques
can measure human motion at sampling speeds exceeding 1,000 Hz
with spatial resolution up to 1mm, contrary to Winter’s initial
belief that a sampling frequency of 50 Hz was sufficient for gait
analysis (Winter, 2009b). These contemporary methods offer highly
reliable thorough investigation of high-speed motion (Baker, 2006).
There are a number of restrictions that must be taken into
account, notwithstanding the enormous contribution that marker-
based 3D gait analysis has made to patient therapy. Due to the
existence of soft tissue aberrations when markers are applied on
the skin’s surface, especially in obese patients, the measurement

of joint position is frequently incorrect. Although there has been
significant advancement, biomechanical models frequently presume
that complicated human anatomy is not accurately represented
by simplified joints, particularly the knee joint (Szczerbik and
Kalinowska, 2011a).

The primary research focus ofmarkerlessmotion capture, which
has its roots in the fields of computer vision and engineering,
is the tracking, estimation, and recognition of human motion.
Motion capture methods can include background subtraction
(Chang et al., 2009), contour extraction (Rigoll et al., 2000;
Pratheepan et al., 2009; Muro-de-la-Herran et al., 2014b), shape-
from-silhouette methods (Rigoll et al., 2000), optical flow, medial
axis transformation or fuzzy clustering process (Corazza et al.,
2006; Szczerbik and Kalinowska, 2011b). The data utilized for
biomechanical studies or clinical contexts should be accurate
and thorough, even if it is possible to provide two-dimensional
models with markerless motion capture using just one camera.
This necessitates correct modeling of joint mechanics and body
motion in 3D models (Mundermann et al., 2006). Thus, multiple
synchronized cameras are used in authorized medical equipment
built on 3D models. These systems have the significant benefit of
allowing measurements to be made in the patient’s environment
without the use of specialized laboratory settings. Wearing
clothing, carrying a bag or backpack, and having more than
one object or other item in the measured space are common
contour extraction restrictions. Such questions have been the
subject of numerous studies in the past (Knippenberg et al.,
2017).

4.2.2 Sensor based approach
Sensor-based approaches offer quantifiable information on

physical activity, opening up a variety of applications by detecting
parameters such as step number, step speed, step frequency, stride
length, foot gap (Patel et al., 2012; Kluge et al., 2018; Brognara et al.,
2019), left-right asymmetry, double support, stance and swing
time (Brognara et al., 2019), stride variability (Ganea et al., 2012),
and activity type, duration, and intensity (Chen and Bassett,
2005). The subject’s body or the ground under them can be
equipped with sensors in order to carry out a gait analysis
(Tao et al., 2012a;Muro-de-la-Herran et al., 2014a;Ngo et al., 2014).
Electromyography (EMG) and inertial measurement equipment
were attached to the individual’s body in either a surface or medium
based configuration. The dynamics of subject motion were also
obtained using the Force Platform.

a. Electromyography (EMG) is a technique for studying muscle
electrical activity while walking and detecting gait phase. Motor
unit action potentials (MUAPs) were recorded using needle-
like or surface EMG electrodes (Sutherland, 2001). The relative
muscle tone can also be determined by interpreting the EMG
signal’s amplitude during gait, although this needs specialized
knowledge of electrode settings and is susceptible to interference
(Prakash et al., 2018).

b. Inertial sensors can measure single or multi-point motion
trajectories of a subject’s single or multiple body segments
during walking. These sensors have become widely used and
indispensable for all activities that indirectly or directly address
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motion because of their lightweight, small size, low power
consumption, portability, and low cost (Sprager and Juric, 2015).

c. Floor platform-based sensors are utilized in order to gather the
forces that are responsible for the generation of ground reaction
forces, force patterns, plantar pressure distribution, as well as
step and gait phase recognition. In each step, the foot applies a
load to the ground, which pushes back, transmitting a ground
reaction force (GRF) to each foot. The magnitude and orientation
of the GRF varied during the support phase of each foot and
were directly related to the acceleration of the center of mass
of the body (Winter, 2009a). The GRF is usually described as
vertical forces as well as antero-posterior and mid-lateral shear
forces. At each corner of the GRF plate are sensors made of
steel plates that measure the force being applied to the plate.
The three orthogonal force components of the object’s motion
are calculated using this force, which is turned into an electrical
signal.

d. Pressure sensors are inserted inside the insole to collect
information about the load imposed on the sensor
(Alaqtash et al., 2011b). When these piezo-based sensors are
subjected to mechanical strain, they generate electrical signals.
Researchers can use these methods to identify gait phases,
but these techniques have spatial limitations. To make correct
measurements, subjects consciously placed their feet in the center
of the floor platform so that they could not demonstrate their
normal pattern.

4.2.3 Other technologies and hybrid approach
Other technology-based methods for human gait study include

electrogoniometers, magnetic resonance imaging, and medical
imaging systems. Joint Angle change analysis and step detection
can be performed by evaluating the resistance changes of the
potentiometers of the two arms in the Electrogoniometer. This
method based on Electrogoniometer is not appropriate in time-
limited environments due to the fact it takes time to attach
to a subject. The magnetic system-based labeling method does
not require the line of sight of the marker as the vision-based
labeling method does because it uses a magnetic field to track the
ferromagnetic marker. It is possible to determine the movements
of the surgical segment and the anatomical information of the
subject’s surgical segment using methods like magnetic resonance
imaging (MRI), computed tomography (CT), and ultrasound. It
is then utilized to alter a computational model that may be
employed with kinematic and kinetic data (Schöllhorn et al., 2008).
But these systems also have limitations that are sensitive to
disturbances.

Researchers have improved their understanding of human gait
through the use of vision, electromyography, and force platforms
(Prentice et al., 2001; Heinen and Osorio, 2006; Schöllhorn et al.,
2008; Zhang et al., 2014). Deep learning models offer new options
for the detection, fusion, and classification of varied multi-source,
multi-sensor data since they require minimal pre-processing on
complex data and can produce quicker and more accurate results
from a rising variety of databases (Alharthi et al., 2019). Therefore,
in addition to the ways mentioned above, there is a hybrid
method that combines two or more of the methods mentioned
above.

4.3 Evolving technology for analyzing gait

4.3.1 Wearable techniques
The miniaturization of sensors, the extension of the field

of use for motion tracking systems, and, most crucially, the
rise in consumer demand for wearable activity trackers are all
results of ongoing technical advancements. This has led to a
steady increase in the supply of sensor components as well as a
reduction in cost. Therefore, as a consumer product, the market
for wearable technology has enormous potential. 115 million units
were sold globally in 2017, but by 2023, the market is projected
to reach 279 million units (Klöpfer-Krämer et al., 2020). The fields
of ergonomics, sports, and medicine can all benefit from the
new opportunities afforded by wearable technologies to assess
motor function and performance. The continued development of
technology has led to theminiaturization and lightening of wearable
sensors, which has made possible the expansion of gait parameter
measurement outside the confines of laboratory settings (Muro-de-
la-Herran et al., 2014a; Shull et al., 2014; Washabaugh et al., 2017).

Wearable sensors mainly include inertial measurement units
(IMUs), insole pressure sensors (IPS), electromyography (EMG)
sensors, angiometers, inclinometers, electromagnetic trackers, and
stretch sensors. However, we were only able to identify three main
types of wearable sensors by quantitative analysis of the literature in
this study: IMUs, IPS, and a combination of the two.

4.3.1.1 Inertial measurement units
By using threshold or statistical classification systems,

acceleration-based techniques, also known as inertial measurement
units (IMU), can recognize postures and categorize everyday
motions associated with a person’s functional state. Threshing-
based motion classification distinguishes between active states
using a hierarchical algorithm framework (Yang and Hsu, 2010).
Among wearable sensors, Magnetic and Inertial Measurement
Units (MIMUs) are the most promising (Yang and Hsu, 2010;
Bergamini et al., 2014). They provide several combinations of
inertial sensors such as acceleration sensors, gyroscope sensors,
and magnetometers (Sang et al., 2018). Evaluation of joint and
segmental kinematics is possible with the simultaneous use of
complicated and many wearable devices. Therefore, it is essential
to understand if the joint kinematics analysis uses an absolute or
relative 3D orientation of the inertial sensor to the inertial reference
(Chen and Bassett, 2005; Camomilla et al., 2018). All sensors must
be sampled at a frequency that is at least twice as fast as the fastest
measurablemotion in order to assure uninterrupted sampling (Chen
and Bassett, 2005).

Researchers have experimented with a variety of methods for
gait-related studies by inserting IMUs in various body segments
or combinations thereof. There are numerous options for sensor
placement. Li et al. (2016) compared the “energy of acceleration”
signals from the thigh, calf, and foot, which is the standard for
raw acceleration less gravity. They suggested that the “acceleration
energy” of the foot seemed relatively more “stable” when graphically
examined compared to the other two parts of the body, and therefore
recommended that the IMU be placed on the foot. In the context
of freezing gait, Mazilu et al. (2012) showed detection performance
of 98% or greater for all three body segments, indicating that
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the question of ideal sensor placement is unimportant. A hidden
Markov model (HMM)-based classifier was the subject of a
similar observation made by Taborri et al. (2014). They found that
employing angular velocities of the foot improved the accuracy
of the HMM-based classifier for gait event recognition over using
angular velocities of the thigh or calf.

The raw signal from the IMU is noisy, especially the
accelerometer signal, so filters arewidely used.The twomost popular
sensor fusion techniques for estimating imu azimuth are those
based on Kalman filters and complementing filters. The accuracy,
computational cost, and energy efficiency of the two methods were
evaluated by Casamassima et al. (2014), who came to the conclusion
that the Kalman filter-based approach was the better option. Two of
the most well-liked approaches utilizing complimentary filters have
been developed by Mahony et al. (2008), Madgwick et al. (2011).
Overall, it is well known that the Kalman filter-based approach
is more precise but computationally challenging, whereas the
complementary filtering approach is known to be computationally
light and quite accurate.

Using extra constraints from the interaction of the foot sole with
the ground during walking can increase the accuracy of orientation
(and position) estimates using the IMU. To account for drift, the
zero-velocity update (ZUPT) method or its variations are frequently
utilized. The algorithm takes advantage of the fact that the support
foot is quasi-static during a certain part of the support phase. At this
instant, the linear and angular velocities of the feet are assumed to be
zero, and the drift error resulting from the integration is reset. Yang
et al. estimated the standing time according to the threshold set by
angular velocity and acceleration, which is helpful for the correct
application of ZUPT (Lin et al., 2017).

4.3.1.2 Insole pressure sensors
The center of pressure (COP), as well as other gait parameters

like step count, gait cycle duration, swing duration, stance duration,
and foot-ground interaction events like heel strike (HS) or toe
off (TO), are all estimated using insole pressure sensors (IPS),
which measure foot pressure distribution (Nguyen and La, 2016).
Several IPS variations based on photoelectric sensors, force sensing
resistors (FSRs), capacitive sensors, and piezoelectric sensors based
on polyvinylidene difluoride (PVDF) film are available (Harle et al.,
2012). PVDF films lack endurance despite being trustworthy
and affordable. FSRs, on the other hand, are incredibly robust,
adaptable, and affordable. FSRs performs well in detecting temporal
information, such as the instant of force application, but is less
accurate when estimating force magnitude in real time. It can be
regarded as the industry standard for wearable sensing because it
is the sole wearable sensor used in validation studies (Stoggl and
Martiner, 2017).

Due to its low cost, wearability, and unrestricted motion, which
permits natural gait in both indoor and outdoor contexts, IPSs is
typically viewed in validation studies as an alternative to force plates.
Despite these benefits, there are several restrictions that should be
taken into account. Since IPSs are typically worn within shoes,
they are sensitive to pressure between the shoe and the foot. As
a result, pressure readings may not be zero even when the foot is
in the swing phase (Senanayake and Senanayake, 2010; Harle et al.,
2012). Although IPSs estimate temporal properties similarly to force
plates, their use for real-time ground response force estimation is

not suggested because it takes significantly longer to achieve the
set point than force plates (Harle et al., 2012). Sensor placement,
unlike IMU, is not a difficult problem for IPS. While the IMU can
be put anywhere on the subject’s body, the IPSs are almost always
placed in the subject’s shoe, in the same position as the foot. FSRs
are traditionally placed within the IPS at specific hot sites such as the
heel, toe, and first and fifthmetatarsal bones.This IPSs demands that
the subject’s foot proportions be correct so that the FSRs are aligned
with the relevant hot spot. Senanayake et al. found measurement
errors as a result of respondents with varying foot sizes (6–11),
whereas IPS was at a fixed size (8) (Senanayake and Senanayake,
2010). Lin et al. (2016) reported using the derivative of the pressure
signal, robustness to this offset, caused by themismatch between the
IPS and the size of the foot. Compared to the traditional approach,
which involved placing a number of FSRS on carefully chosen
hotspots, the authors’ use of an array of 48 pressure sensors provided
better resolution. As IPSs resolution improves, this approach is
moving toward placing as many sensors as possible inside the insole
to collect data throughout the foot and identify hotspots during
signal processing, rather than at the hardware end.Whenused in real
time, this requires more communication bandwidth and computing
power to process additional information.

4.3.1.3 Combination of IPS and IMU and other wearable
sensors

IPS paired with IMU solutions are emerging in the wearable
sensor industry. Examples include Stridalyzer from Retisense in
Bangalore, India, Moticon Science fromMoticon GmbH inMunich,
Germany, and Arion wearable from ATO-GEAR in Eindhoven,
the Netherlands (Prasanth et al., 2021). An arrangement like this
can combine the benefits of both sensor kinds. Depending on the
product, the IMU’s position in relation to the IPS might be fixed,
avoiding errors brought on by variations in the IMU’s position
among datasets, subjects, and segments.

Electromyography (EMG) sensors, rotary encoders, laser
rangefinders, flexion sensors, and capacitive calf orthotics are
additional wearable sensors for gait analysis. All other sensors take
kinematic measurements aside from the EMG sensor. However,
EMG sensors, which monitor muscle electrical activity, have the
intrinsic benefit that the signal manifests before the corresponding
movement of muscle activation (Duan et al., 2017). Fleischer and
Hommel (2008) reported that the EMG signal appeared 20–80 m
before the onset of contraction.Thiswould facilitate early perception
and thus reduce the latency of control. Farmer et al. (2014) proposed
an autocorrelation model that uses EMG signals as input to predict
ankle angles, which is said to predict about 100 m in advance.
However, there are limitations in the availability of EMG sensors.
First, to increase the signal-to-noise ratio, the skin is often shaved,
covered with an abrasive gel, and the sensor is attached to the skin
to ensure consistent contact and minimize motion artifacts. Second,
EMG signals from people with certain impairments, primarily
neurological problems, may be weaker and more challenging to
understand since EMG signals require more preprocessing/filtering.
Additionally, EMG-related characteristics vary from person to
person and may frequently change in reaction to alterations in
the skin’s and body’s physiological states, such as sweating. The
proper placement of the sensor is also crucial and necessitates some
training because it should be as near as possible to the relevant
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abdominal muscles. For less experienced users, this strategy might
not be as effective. Most typically, classification algorithms and less
frequently, physiological models are used in the evaluation of EMG
patterns (Fleischer and Hommel, 2008).

4.3.2 Machine learning techniques
Machine learning (ML) is widely used in many fields such as

medical diagnosis (Begg and Kamruzzaman, 2006; Farah et al.,
2019), pattern recognition (Shim and Lee, 2015; Souza and Stemmer,
2018), image processing (Leightley et al., 2017; Wei et al., 2018),
classification (Van Gestel et al., 2011; Senanayake et al., 2014),
predictive analysis (Yoo et al., 2013; Pla et al., 2017; Xiong et al.,
2019), monitoring (Van Gestel et al., 2011; Yoo et al., 2013;
Senanayake et al., 2014; Xiong et al., 2019; Zeng et al., 2020),
and is therefore suitable for gait research. Nonetheless, ML
techniques have been used in many gait applications, such as
diagnosing gait disorders (Alaqtash et al., 2011a; Devanne et al.,
2016; Leightley et al., 2017), predicting early intervention related
to fall-related risks due to disability or aging (Begg et al., 2005;
Begg and Kamruzzaman, 2006; Paulo et al., 2019), determining
motor recovery tasks (Costa et al., 2016b; Goh et al., 2018), or
planning rehabilitation or therapeutic interventions (Liu et al., 2016;
Thongsook et al., 2019).

The goal of ML in gait analysis is to create a model of a
biomechanical system T(x) by establishing the association between
input data f(x) and output y(x), despite the fact that the input data
is distorted by noise n(t), necessitating pretreatment of the input
data (Khera and Kumar, 2020). The initial multidimensional array
of input data contains multiple subjects or their trails as ui, and data
attributes such as kinematics, kinetics, or neuromuscular signals
as vi. The model’s output is a classification of gait abnormalities,
events, and activities. The input dataset is split into a training
set, test set, and validation set for the iterative process used to
evaluate the biomechanical system T(x) using ML approaches. The
model was trained using the training set and verified to ascertain
the level of fitting once a certain ML technique was chosen. An
unreleased test dataset was used to evaluate the performance.
The process ends when the correct accuracy is reached; if not,
the model parameters must be returned and retrained to get the
necessary accuracy.The system becomes difficult when there are too
many parameters, therefore feature selection is possible. The most
frequently employed techniques are supervised, unsupervised, and
reinforcement learning (RL).

4.3.2.1 Supervised learning
The feature vector in this type of learning is made up of labeled

data with the intention of finding the optimum function to map
the relationship between the input feature vector and the related
label. Support vector machines (SVM), neural networks (NNs),
random forests (RF), hidden Markov models (HMM), ensemble
learning, k nearest neighbors (kNN), and decision trees (DTs)
are some of the strategies investigated in gait research. Due to
SVM’s high generalization capabilities, even with little datasets, gait
analysis has becoming increasingly popular. It can handle both linear
and nonlinear problems at its core. Gait research greatly benefits
from classification performance that can be expanded to multiple
classifications rather than just binary classification (Williams et al.,
2014; Guo et al., 2017). The usage of NNs made up of single

or multiple layers of perceptrons is the method most frequently
utilized in gait analysis. NN employs feedforward and backward
propagation methods, which frequently function as a “black box”
and do not require manually created features. NN was frequently
employed in gait studies to address issues with pattern recognition
and prediction. DT is a subtype of RF for extremely nonlinear and
complex variable connections. In addition to being interpretable, it
is incapable of providing optimal answers.The random forest, on the
other hand, chooses the predictionwith themost votes out of a group
of random DTs. The kNN classifier based on a distance metric is
popular in real-time applications since it does not require underlying
assumptions about the distribution of the dataset (Costa et al.,
2016a; Souza and Stemmer, 2018). In order to account for linguistic
information that cannot be stated mathematically, fuzzy techniques
are applied in gait asymmetry investigations (Senanayake et al.,
2014; Semwal et al., 2015). Due to difficulties specifying several
linguistic factors and selecting membership functions optimally,
such strategies have not been as thoroughly investigated in gait
research.

4.3.2.2 Unsupervised learning
Unsupervised learning eliminates the need for labels because

there are no labeled data sets accessible. To provide the required
result, the algorithmmust independently determine the relationship
(Yuwono et al., 2014). Distance plays an important role in clustering.
Usually, if the data are close to each other, they cluster into a class.
This technique has rarely been explored in gait analysis research, as
defining the learning objectives precisely and dealing with a large
number of feature vectors becomes a tedious task (Senanayake et al.,
2014). However, this technique can be applied when it is unclear
how one observation relates to another. To handle large datasets,
classifiers need to be combined with some dimensionality reduction
methods. These unsupervised techniques are able to learn different
patterns of specific diseases. Explanatory studies can ensure that
an appropriate distance measure is chosen for a given problem. In
addition to distance measures, the classification of subgroups can
also be done via latent profile analysis of clusters.

4.3.2.3 Reinforcement learning
Reinforcement learning requires interactionwith the system and

multiple devices such exoskeletons and walking assistive devices to
adapt to a dynamic environment. These devices are employed in the
rehabilitation process. In gait rehabilitation, Deep Neural Network
(DNN) and RL are frequently employed. For gait rehabilitation,
numerous control methods have been created (Hasson et al., 2015).
Given its capacity to better capture participant variability and
automate in accordance with the requirements of certain objects,
RL and deep neural networks (DNNs) are frequently utilized
in rehabilitation equipment. Techniques for feature selection and
extraction are employed to enhance processing power, while a
dimensionality reduction approach is utilized to reduce complexity.
Feature selection is the process of selecting the suitable feature and
trimming the remainder while maintaining the originality of the
feature (Gil et al., 2019). The mathematical procedure of extracting
fresh characteristics from existing features is known as extraction.
The selection and extraction of features can be automated using
classifiers like convolutional neural networks (CNNs), artificial
neural networks (ANNs), and deep neural networks (DNNs).
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4.3.3 Brain–computer interface techniques
Brain-computer interface (BCI) development has been critical

in the study of musculoskeletal gait and brain dysfunction problems
in recent years. The premotor and supplementary motor areas
(SMA), where motor programs are formed, are activated by sensory
inputs from the cerebral and sensory cortices (Khan et al., 2021).
The cerebellum is thought to control gait “error/correction” to
coordinate appropriate movement by reacting to anomalies in
posture (Cunningham et al., 2010; Takakusaki, 2013). Depending
on variables like age, weight, and height, BCI technologies
behave differently during bipedal movements (Samson et al., 2001;
Mahlknecht et al., 2013). A brain-computer interface (BCI) is a
communication system that offers users control channels separate
from the brain’s output channel so they can use brain activity to
control external devices (Nijboer et al., 2008; Nicolas-Alonso and
Gomez-Gil, 2012). A standard BCI system has five stages. The
acquisition of brain signals using a neuroimagingmodality is the first
stage. Pre-processing such signals is the second stage since they have
physiological sounds and motion artifacts (Pinti et al., 2019). The
third stage, known as feature extraction, involves choosing useful
traits (Nazeer et al., 2020). Then, appropriate classifiers are used to
categorize these traits. The application interface is the last stage, in
which the categorized BCI signals are sent as a command to an
external device (Moore, 2003).

In various gait applications for BCI, various brain signals
such as functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), electroencephalogram (EEG),
or functional near-infrared spectroscopy (fNIRS) are used. In order
to analyze the variations in cerebral blood flow and under-neuronal
activities for gait analysis, MEG and fMRI provide great spatial
and temporal resolution. They are ineffective for gait research in
real time, however, because they are not portable (Morshed and
Khan, 2014).Non-invasive and transportable brain signalmodalities
are practical technologies for the analysis of gait abnormalities in
online BCI applications. The non-invasiveness, portability, and
ease of use of EEG and fNIRS are making them more and more
popular in the scientific community. EEG is a neuro-imaging
technique with a high temporal resolution that is frequently used
for research on gait (Lazarou et al., 2018). In comparison to EEG,
fNIRS is a relatively novel technique that was successful in collecting
brain hemodynamics. The variations in oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (HbR) during gait can be
recorded to aid (Herold et al., 2018). In many applications that
cause a hemodynamical response, such as motor rehabilitation, it is
essential (Khan et al., 2018). To better understand the brain signals,
however, the merging of these several modalities of brain signals
can offer supplementary data. As a result, hybrid BCI (hBCI), a new
sub-field of BCI, emerged. In hBCI, at least one brain modality
is combined with another non-brain data acquisition modality
(Pfurtscheller et al., 2010; Hong and Khan, 2017; Hong et al., 2018).

Eliana et al. utilized a treadmill to capture 87% accurate EEG-
based walking brain signals for sensorimotor applications (García-
Cossio et al., 2015). Lower-limb movement for gait rehabilitation
was observed using fNIRS signals by Rea et al. (2014). Perrey
investigated neural gait control using fNIRS, focusing on the
appropriate cortical regions (Perrey, 2014). EEG-based walking-
intention signals were recognized with 82% accuracy in stroke
patients by Sburlea et al. (2015). According to their results, patients

who were strongly driven to complete rehabilitation-related tasks
had a greater success rate. A bipedal robot prosthetic controller
was proposed by Zhao et al. (2017). A walking gait pattern was
discovered for the robotmechanism, and an online optimized trans-
femoral prosthesis control approach (control Lyapunov function
(CLF)based quadratic programming (QPs) with variable impedance
control) was tested on the prosthetic device’s knee and ankle joints.

4.3.4 Clinical application of gait analysis
Although gait is a complicated process requiring normal

musculoskeletal function and being regulated and controlled by
the neurological system on several levels, clinical gait assessment
is a focused, straightforward, and affordable technique (Jarchi et al.,
2018; Mirelman et al., 2018). Gait testing is currently carried out in
a minimal amount of time, in a variety of settings, and frequently
without the use of expensive devices. Clinicians frequently utilize
functional assessments based on behavior or observational gait
assessment techniques to gauge their patients’ walking capacity.
Researchers are focusing more and more on the study of various
gait disorders and gait-related clinical diseases as a result of the
rapid development of AI in the field of gait analysis. Low-cost
technologies, such as wearables and accelerometers, are being
used to objectively quantify gait in clinical practice. According
to the characteristics of each disease, gait disorders are usually
classified into several types: spastic gait, paralytic gait, ataxic gait,
Parkinsonian gait, disturbed gait, involuntary movement, combined
gait, and psychogenic gait disorders (Shibasaki, 2010). Clinical
decision-making is aided by gait classification, which allows doctors
to separate apart gait patterns into groups that have clinical
significance (Dobson et al., 2007).

Gait analysis’s therapeutic significance was originally established
in the treatment of cerebral palsy in youngsters (Sutherland et al.,
1980; Gage, 2004).Motion analysis labswere created as a result of the
complicatedwalking patterns of these kids, the interaction of various
joint and muscle issues, and the unpredictable results of orthopedic
surgery. As knowledge of gait disorders has grown, various surgical
techniques have been created or improved (Ounpuu et al., 1993;
Seniorou et al., 2007). Gait analysis is currently an element of
preoperative planning for one-stage, multi-level surgery for diplegia
and more complicated hemiplegia in the majority of institutions
treating children with cerebral palsy. There is still ongoing debate
on the repeatability of gait data interpretation; yet, there is evidence
that demonstrates how the appropriate application of gait analysis
leads to improved outcomes (Graham and Harvey, 2007). After
Alzheimer’s disease, Parkinson’s disease is a frequent neurological
condition. Assessing the reliability of “gait variability during
continuous and intermittent walking in elderly and Parkinson’s
disease” was the primary objective of the research conducted
by Galna et al. (2013), as well as defining the best count for
a sufficient level of certainty regarding gait. Parkinson’s disease
has been categorized using “acceleration measurements based on
digital gait features” by Rehman et al. (2020). In patients with
cerebellar problems, a link between gait variability and falls has
been hypothesized (Galna et al., 2013). Research findings have
demonstrated a positive correlation between elevated levels of
gait variability in the anteroposterior direction regional units and
an increased likelihood of falling in individuals diagnosed with
cerebellar ataxia. The correlation between spatio-temporal, kinetic,
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and kinematic gait parameters in COPD patients was investigated
by Zago et al. (2018) using the 6MWT, step width, and step length
variability as assessment methods. With the aid of gait dynamics,
Kaur et al. (2021) looked into the multiple sclerosis prognosis.
Gait data extraction took place on a treadmill. Height, weight,
age, and gender were employed as normalization variables along
with gait metrics. 94.3% was the highest categorization accuracy.
Better gait analysis findings can be obtained using machine learning
algorithms, which is beneficial for clinical applications like disease
tracking or classification. Jun et al. (2020) proposed a classification
method based on gated cyclic unit (GRU) classifier and 3D skeletal
joint data. The depth information was used to generate a 3D
skeleton model. A machine learning model was used to predict
the stability data under abnormal gait. In myelodysplasia, gait
analysis has also been employed extensively (Duffy et al., 1996).
Analysis is typically recommended for the detection of severe valgus
knee strain (valgus thrust) and the distinction between coronal
and transverse abnormalities, particularly around the hip. Long-
term gait monitoring may soon also make use of smartphab-based
technology. Ongoing attempts are beingmade to collect high-quality
data from smart, off-the-shelf gadgets that are already commonly
used in daily life (Mirelman et al., 2018).

The state of gait analysis techniques has seen some encouraging
advancements. Reproducibility will increase with improved
precision, quicker acquisition, and strict clinical protocols. We will
be able to combine gait analysis with AI methods thanks to better
biomechanical models and custom models.

4.4 Future directions

Although great progress has been achieved in the study of
gait analysis and AI, its applications are still far from being fully
optimized. Future uses for clinical gait analysis include recording
human gait, extracting gait patterns, rehabilitation, and identifying
gait problems (Bin Altaf et al., 2015). Deep learning and machine
learning are being used to provide outcomes that are more
accurate (Liu and Sarkar, 2006). Additionally encouraging is the
development of wearable robots. Robotic rehabilitation has the
ability to extend treatment beyond the therapist’s capabilities and
can deliver constant, effective care without wearing the therapist out.
Better diagnostic potential is demonstrated by ML-based disease
prediction techniques. To train machine learning models and
make predictions, gait characteristics can be standardized. Gait has
undergone substantial research, although its underlying applications
have not yet been thoroughly optimized. Future directions for gait
analysis and AI research are discussed as follows:

a. Extrinsic, intrinsic, physiological, psychological, and pathological
elements all have an impact on how we walk. Despite their best
efforts, the researchers were unable to discover a connection
between these influencing factors and typical walking.

b. The existing datasets, which have a large diversity in terms of
walking environments, are still insufficient to reliably perform
a variety of gait analyses. Nevertheless, we cannot generalize
about a particular person’s gait pattern. The number of subjects
studied was still not large enough to generalize about the standard
gait patterns in particular age groups and genders. Moreover,

compared to other biometrics like faces and fingerprints, the
number of people who can be identified via biometrics is quite
small.The dataset could be considered to be freely biased in terms
of gender and age because there were not enough samples.

c. Vision-based image states increase gait recognition’s effectiveness.
The effectiveness of the recognition algorithm declines as the
external covariation increases (Anwary et al., 2019). The difficult
area of research will be the creation of these algorithms, which
are not dependent on covariation; Researchers are working in
these areas. Covariation can be anything, such clothing, bags, and
shoes (Nandy et al., 2016). However, 80% accuracy is the highest
that can be attained when identifying fabric invariants. Therefore,
more effective and accurate methods are needed to address these
issues.

d. Data quality suffers as a result of factors like vibration, the location
of the sensors in the pocket, and the movement of the garment
(Li et al., 2020). Because the location of the sensors affects the
quality of the data utilized for analysis, choosing the right location
for the sensors is essential for producing high-quality results. In
addition, the exact location of the sensor may change depending
on the requirements of the application. Therefore, high-quality
work is needed in this area of research to detect the best locations
to place sensors so that the identification and monitoring of falls
can be improved.

e. Sensor fusion is the process of combining data from various
sources into a single data set. The accuracy of the data will
be increased when compared to single-source data because
this will combine data from numerous sources (Ilesan et al.,
2022). In gait analysis, sensor fusion can improve spatial and
temporal resolution, improve data integrity and coverage, correct
sensor errors and drift, and achieve multimodal information
fusion (Sabatini, 2011; Tao et al., 2012b; Dehzangi et al., 2017;
Qiu et al., 2018). This technique would be very efficient when
developing gait-based applications. However, when performing
sensor fusion, technical challenges such as data synchronization,
data calibration, and algorithm design need to be considered to
ensure the validity and reliability of the fusion results.

5 Conclusion

The combination of gait analysis and AI provides valuable
insights into the understanding and improvement of humanwalking
patterns. AI technologies, including deep learning and machine
learning, offer automated and objective approaches to analyze gait
data, replacing traditional subjective evaluation methods. These
techniques demonstrate significant advantages in feature extraction,
event recognition, and gait parameter estimation from gait data.
The integration of gait analysis with AI enables us to obtain more
accurate and objective gait assessment results, aiding in clinical
diagnosis, rehabilitation training, and physical health monitoring.

Deep learning models, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), are capable of
learning complex spatiotemporal representations from gait data,
enabling accurate recognition and analysis of gait events. Through
the combination of deep learning and gait data, an extensive range
of applications have been developed, including gait recognition,
abnormality detection, and motion analysis. These AI algorithms
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have showcased remarkable results and improved the accuracy and
reliability of gait analysis. In addition to AI algorithms, sensor data
acquisition also plays a vital role in gait analysis. Some studies
demonstrated high accuracy and robustness in gait recognition
tasks, emphasizing the potential of sensor data in gait analysis.
It is evident that utilizing sensor data greatly contributes to the
effectiveness and success of gait analysis with AI.

Despite the myriad advantages of integrating gait analysis
with AI, several limitations exist. One primary challenge is the
acquisition and processing of high-quality gait data. Consistent
and high-resolution data collection is crucial for accurate gait
analysis. Additionally, the diversity of gait patterns and inter-
individual differences pose challenges for effective gait analysis. To
address these issues, researchersmust focus on developing advanced
sensor technologies, data collection methods, and processing
algorithms to improve the reliability and applicability of gait analysis.
Another challenge in gait analysis with AI is model interpretability
and explainability. Although deep learning and machine learning
models yield high accuracy, their black-box nature often limits
their interpretability. To enhance the trust and adoption of AI
techniques in gait analysis, it is essential to develop transparent
and interpretable models that can provide meaningful explanations
for the generated results. Additionally, researchers should focus on
addressing the limitations of current AI methods in gait analysis.
Improving model interpretability and explainability is crucial, as
it enables healthcare professionals and end-users to understand
and trust the outcomes obtained from AI algorithms. Developing
techniques for feature selection and dimensionality reduction in
gait analysis will also contribute to enhancing the efficiency and
interpretability of the models. Moreover, collaboration between
different disciplines, such as biomechanics, computer science,
and healthcare, is crucial for advancing gait analysis with AI.
By combining expertise and knowledge from multiple domains,
researchers can develop innovative solutions that address the
challenges faced in gait analysis, ensuring the translation of research
findings to practical applications.

The fusion of gait analysis and AI has revolutionized the
objectivity and accuracy of gait assessments. This amalgamation
has significant implications in various fields, particularly in
modern medicine. The potential of AI, specifically deep learning
and convolutional neural networks, has heavily contributed to
advancements in biometric detection equipment, recognition
algorithms, clinical diagnosis, efficacy evaluation, and rehabilitation
training. Advancements in sensor technologies, machine learning
algorithms, and computational power will likely lead to more
sophisticated and accurate gait analysis systems. This synergy has
laid a solid foundation for the development of biped robots, walking
aids, rehabilitation aids, and artificial joints. Moreover, collaborative
efforts between clinicians, researchers, and AI experts are essential

to establish standardized protocols, validate AI-driven gait analysis
methods, and translate them into clinical practice. Undoubtedly, the
combined application of gait analysis and AI represents an exciting
research field with promising future prospects.
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