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Remember me - user-centered
implementation of working
memory architectures on an
industrial robot
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The present research is innovative as we followed a user-centered approach
to implement and train two working memory architectures on an industrial
RB-KAIROS + robot: GRU, a state-of-the-art architecture, and WorkMATe,
a biologically-inspired alternative. Although user-centered approaches are
essential to create a comfortable and safe HRI, they are still rare in industrial
settings. Closing this research gap, we conducted two online user studies with
large heterogeneous samples. The major aim of these studies was to evaluate
the RB-KAIROS + robot’s appearance, movements, and perceived memory
functions before (User Study 1) and after the implementation and training
of robot working memory (User Study 2). In User Study 1, we furthermore
explored participants’ ideas about robot memory and what aspects of the
robot’s movements participants found positive and what aspects they would
change. The effects of participants’ demographic background and attitudes were
controlled for. In User Study 1, participants’ overall evaluations of the robot were
moderate. Participant age and negative attitudes toward robots led to more
negative robot evaluations. According to exploratory analyses, these effects
were driven by perceived low experience with robots. Participants expressed
clear ideas of robot memory and precise suggestions for a safe, efficient,
and comfortable robot navigation which are valuable for further research and
development. In User Study 2, the implementation of WorkMATe and GRU led
to more positive evaluations of perceived robot memory, but not of robot
appearance and movements. Participants’ robot evaluations were driven by their
positive views of robots. Our results demonstrate that considering potential
users’ views can greatly contribute to an efficient and positively perceived robot
navigation, while users’ experience with robots is crucial for a positive HRI.

KEYWORDS

user-centered approach, evaluational studies, robot working memory, human-robot
coexistence, robot navigation

1 Introduction

Amongst various contexts, robots have become an integral part of industrial working
processes. The application of intelligent technologies to automate industrial processes and
thereby to make them more efficient and safe was characteristic of Industry 4.0. Extending
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the principles of Industry 4.0, Industry 5.0 was marked by a
transition to a strong user-centered perspective on technology
use (see Psarommatis et al., 2023a; Azamfirei et al., 2023a;
Konstantinidis et al., 2022b for an overview). Unlike ordinary
industrial tools, robots are supposed to perform their given tasks
autonomously in a shared environment with human workers.
Therefore, with regard to Industry 5.0, developments in human-
robot interaction (HRI) are increasingly driven by the idea of
human-robot co-existence and collaboration. To enable smooth
human-robot co-working, two perspectives need to be regarded.
On the one hand, some technological requirements need to be met:
Robots should be capable of localizing themselves with respect
to their surroundings. To ensure a comfortable and safe HRI,
robots need to adapt to the dynamics of a shared environment
(see Konstantinidis et al., 2022a; Azamfirei et al., 2023a), which
are determined by humans’ activities, intentions, and needs. On
the other hand, the humans’ perspective needs to be taken into
consideration: Robots should meet potential users’ expectations and
needs to evoke positive perceptions (see Bernotat and Eyssel, 2017b;
Bernotat and Eyssel, 2018).

Robot working memory architectures were found to be useful
to achieve the technological requirements for an efficient and
safe human-robot co-existence because they enable autonomous
and environmental-aware robot actions (see, e.g., Landolfi et al.
(2023); Reich et al. (2020); Joo et al. (2019); Jung et al. (2019)).
Similar to human working memory (see Baddeley (2000; 2010)),
robot working memory architectures enable a robot to store,
organize, and process data. Using robot working memory
architectures, a robot is supposed to ‘learn’ based on prior
experiences, that is, to ‘decide’ what information to use in order
to improve future behavior according to the dynamics of shared
environments.

One state-of-the-art working memory architecture that is
commonly used in machine learning is GRU (Gated Recurrent
Unit, Cho et al. (2014)). GRU is a sort of recurrent neural
network architecture (RNN) that is often used to process data
sequences, such as language input (see Cho et al., 2014). Learning
is enabled by iterative adjustments of internal parameters (see
Cho et al., 2014; Landolfi et al., 2023). However, current state-of-
the-art architectures were limited in controlling and prioritizing
stored information as required to solve more complex tasks.
Kruijne and others thus proposed WorkMATe (Working Memory
Architecture for Task Execution), a biologically-inspired working
memory architecture whose key components include a gated
memory circuit driven by internal actions (Kruijne et al., 2021).
More precisely, training occurs in a biologically-inspired manner
based on attentional feedback and reward prediction errors. That
is, the system optimizes its behavior based on reward feedback
similar to biological dopamine-based processes that enable animals
and humans to learn and adapt their behavior (see Glimcher, 2011;
Wang et al., 2018).WorkMATe enables to store and process multiple
inputs separately and to update and transfer trained adaptations to
new contexts and stimuli. All this makes WorkMATe well suitable
for complex memory tasks and allows for flexible and task-oriented
memory control.

Overall, working memory architectures allow for flexible and
task-oriented robot behavior when sensing humans and objects
(e.g., leaving space, slowing down, stopping). These behavioral

adaptations can make robot navigation safer and more predictable
for humans (see Li et al., 2022; Landolfi et al., 2023). However,
despite Industry 5.0’s strong focus on the humans’ perspective, the
implementation of robot working memory was mainly regarded
from the technological perspective. The humans’ perspective had
been widely neglected so far.

Involving potential users’ perceptions and preferences already
in the research and development processes of new technologies
was found to lead to more positive user experiences and
safety in human-technology interaction (see Mahmood et al.,
2000; Ben Allouch et al., 2009; Schiffhauer et al., 2016; Bernotat
and Eyssel, 2017a; Diehl et al., 2017; Robinson et al., 2020;
Lacroix et al., 2023). Therefore, in the present research we
addressed a research gap by putting the humans’ perspective into
focus during the implementation and training of two working
memory configurations on an industrial RB-KAIROS + robot
(Robotnik (Valencia, Spain)): One working memory architecture
was based on GRU (Cho et al., 2014) and the other was based
on WorkMATe (Kruijne et al., 2021), the biologically-inspired
alternative. Following a human-centered approach, we considered
potential users’ ideas and perceptions of a comfortable and
efficient human-robot co-existence right from the beginning of
the implementation and training processes.

More precisely, we conducted two online user studies.Themajor
aim of User Study 1 was to investigate participants’ judgements of
the RB-KAIROS + robot’s appearance, movements, and perceived
memory functions when presented in its initial state, i.e., with
no working memory configuration implemented. In addition, we
controlled for the effects of participants’ attitudes toward robots,
social desirability, situational motivation to participate in the study,
experience with technology and robots, and demographics on
participants’ evaluations of the robot as covariates. The effects of
these covariates were considered because they have been found to
play a role in prior HRI research (Schiffhauer et al., 2016; Bernotat
and Eyssel, 2017b; Bernotat et al., 2017; Meyer zu Borgsen et al.,
2017; Bernotat and Eyssel, 2018; Bernotat et al., 2021). The
consideration of the covariates therefore allowed for a more holistic
view on the psychological aspects that might underlie participants’
perceptions of an industrial robot. To inspire further developments
toward an efficient and positively perceived robot navigation, the
secondary aim of User Study 1 was to explore participants’ ideas of
robot memory in general and what aspects of the robot’s movements
participants found positive andwhat aspects theywould change.The
expected benefit of exploring participants’ ideas of robot memory
and their indications about the robot’s movements was to provide
concrete practical implications for developers of robot memory and
robot navigation.

User Study 2 served to evaluate the RB-KAIROS + robot’s
appearance, movements, and perceived memory functions after the
implementation and training of GRU and WorkMATe compared
to no working memory in a between-subjects study. Analogous
to User Study 1, the effects of participants’ attitudes, experience
levels, social desirability, motivation to take part in the study, and
demographics were controlled for (see Landolfi et al. (2023) for a
technological evaluation of robot working memory that was done
complementary). Moreover, using the same measures as in User
Study 1 allowed us to validate our newly developed measures on
robot appearance, robotmovements, and robotmemory. In this way,
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as an additional benefit of our research, we potentially offer suitable
measures for future research on HRI in industrial settings that were
lacking so far.

2 User study 1 - materials and
methods

2.1 Participant sample

In total,N = 89 participants took part in User Study 1. However,
n= 7 participants had to be excluded because they reported that they
could not watch the video properly. From the remaining participants
n = 82 participants, n = 40 completed the study in Italian language,
n = 23 in German language, and n = 19 in English. Demographics
consisted as follows:

Age: M = 37.91, SD = 15.66, range: 17–76 years; gender:
female: n = 33; male: n = 29, non-binary: n = 3, undisclosed:
n = 17; nationality: Italian: n = 30, German: n = 17, English-
speaking country: n = 7 (i.e., Australia, United States, Canada, Great
Britain), others: n = 10 (i.e., India, Nigeria, Mexico, France, Uzbek),
undisclosed: n = 18; native language: Italian: n = 25, German:
n = 21, English: n = 11, others: n = 7 (i.e., French, Hindi, Marathi,
Spanish, Tamil, Telugu, Uzbek), undisclosed: n = 18; professional
status: students:n=23, employees:n=29, others:n=11 (i.e., retired,
mother, unemployed), undisclosed: n = 19.

Overall, participants indicated fairly high levels of experience
with technology in general, M = 5.31, SD = 1.54, but pretty low
levels of experience with robots, M = 3.56, SD = 1.93. The majority
of participants indicated to know robots mainly from media (e.g.,
books, movies): n = 44, followed from work: n = 30, other studies:
n = 24, home: n = 15, and other contexts: n = 5 (i.e., research,
medicine, school, traffic).

Only a minority of participants (n = 5) reported to
have known the RB-KAIROS + robot from other studies
before (not known from other studies: n = 59, undisclosed:
n = 18). Likewise, n = 7 reported to have known the RB-
KAIROS + robot from media (not known from the media:
n = 57, undisclosed: n = 18).

All participants showed discrete response patterns on each of the
measured constructs. That is, none of the participants responded to
the questions following a specific pattern or showed extreme values,
whichmight have suggested a lack of attention andmotivation while
completing the questionnaire.

2.2 Experimental procedure

The study was conducted online using SurveyMonkey 
(San Matteo, California, USA), a tool for online studies. The
online format was chosen because it was considered safer for
participants. In addition, it allowed to easily recruit as large
samples as possible across countries. The study was advertised on
social media platforms, University mailing lists, and by friends
and family in Italy, Germany, United Kingdom, and Australia.
After giving consent to participate in the study, participants
watched a short video sequence of about 2 minutes. The video
sequence showed a working environment divided into two areas

(see Figure 1). In one of the areas, the workers’ area, two alleged
workers transported objects from one table to an opposite. In
the other area, no people were around. It was thus also called the
empty area. An RB-KAIROS + robot (Robotnik (Valencia, Spain),
2023, see Figure 1) moved between the two areas of the working
environment according to a predefined sequence of way-points.
The robot was shown in its initial state with no robot working
memory configuration implemented. That is, the robot was
not capable of performing behavioral adaptations based on the
area or the presence of humans. It navigated with a maximum
speed of 0.65 m/s and holonomic driving, using Time Elastic
Band (TEB) (Rösmann et al., 2017) as local path planner. After
having watched the video sequence, participants completed a
questionnaire to evaluate the robot based on the scene they had
watched. In total, participants needed about 15 min to complete the
study.

2.3 Robot platform

The RB-KAIROS + robot (Robotnik Valencia, Spain, 2023); see
Figure 1) is a rover robot built for industrial use (115Kg, 978 ×
776 × 1.542 mm). It is supposed to navigate in empty halls as well
as in shared environments with workers. For an efficient robot
navigation, the RB-KAIROS + robot is equipped with four Ilon
wheels that enable it tomove holonomically, that is, in any direction.
A frontal RGB-D camera (640 × 480 resolution, 30 fps) and a pair of
SICK S300 laser scanners are installed to capture the environment.
Enabling 360°vision, the laser scanners are placed at the top right and
at the bottom left corner of the robot’s in 30 cm height. Furthermore,
a Kinova Jaco2 assistive robotic arm is mounted on top of the robot’s
base.

2.4 Questionnaire measures

For most questionnaire measures, 7-point Likert scales were
used to capture participants’ agreement to an item’s content. High
scores indicated high endorsement of a respective construct. Items
were recoded if necessary. Indices were composed based on their
Cronbach’s alphas (α) as a measure of the construct’s reliability
(Cronbach, 1951). All measured constructs showed satisfying
reliabilities, except for the situational motivation scale which had
thus to be excluded from statistical analyses (see below for each
scale’s Cronbach’s alpha, see Cronbach (1951); Schmitt (1996) for
interpretations of Cronbach’s alpha).

Robot Appearance: The robot’s appearance was evaluated with
eleven items that were adapted based on Bernotat and Eyssel’s
Bernotat and Eyssel (2017a) previous research on robot design (e.g.,
“Judging by the appearance of the robot, I had the impression that
it looked technically sophisticated.”, α = .69). One item (“Judging by
the appearance of the robot, I had the impression that it looked like
any technical tool that I would not have recognized as a robot.”) was
removed from the index to increase the internal consistency of the
scale.

Robot Movements: The robot’s movements were judged by
using 17 self-generated items (e.g., “Watching the robot moving, I
had the impression the robot’s movements were smooth.”, α = .83).
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FIGURE 1
Scene of the video that shows the empty area (left) and the workers’ area (right) with the two workers and the RB-KAIROS + robot moving amongst
them.

In addition, to consider potential users’ perceptions of robot
memory and robot movements as potential memory-based visible
outcomes, we posed three open-response questions on robot
movements: 1. “Please describe in what direction the robot’s
wheels moved.”, 2. “Please describe what you liked about the
robot’s movements.”, 3. “Please describe what you would change
about the robot’s movements.”. The first question served to enquire
whether participants were aware of the holonomic direction of the
robot’s wheels.The open-response format prevented us from forcing
participants tomake guesses about the robot’s driving.The latter two
questions served to potentially improve the robot’smovements in the
future.

Robot Memory: Participants perceptions of robot memory
functions were assessed by 14 items (e.g., “Watching the robot, I
had the impression the robot could autonomously decide whether
to adapt its behavior to a specific situation or not.”, α = .91). The
items were based on literature on trust, memory, and automation
in humans and in robots (e.g., Baddeley, 2000; Parasuraman et al.,
2000; Hancock et al., 2021), but adapted to fit the purpose of the
present research.

In addition, an open-response format was used to enquire
participants’ imagination of robot memory (“What do you think
would characterize robot memory?”).

Positive and Negative Attitudes Toward Robots: Participants’
positive and negative attitudes toward robots were assessed with
10 items each (positive attitudes: e.g., “I think robots are great
innovations.”, α = .76, negative attitudes: e.g., “I would feel uneasy if
robots really had emotions.”, α = .77). The negative attitudes toward
robots sub-scale was an adapted and extended version of Nomura
and colleagues’ scale Nomura et al. (2006). Nomura and colleagues
did not provide a sub-scale on positive attitudes toward robots.
Therefore, items on positive attitudes were self-generated to assess
the full spectrum of attitudes toward robots.

Social Desirability: 17 items by Stöber (German version: Stöber
(1999), English version; Stöber (2001), e. g., “In traffic I am always
polite and considerate of others.”, α = .78) were used to measure
participants’ desire to behave in a socially expected manner.

Situational Motivation: With four items by Guay and
colleagues Guay et al. (2000), we assessed participants’ motivation

to participate in the present study (e.g., “By personal decision.”,
α = .45).

ExperienceWith Technology and Robots:With one item each,
we enquired participants’ experience with technology in general
(“Please indicate towhat extent youhave experiencewith technology
in general.”) and with robots in particular (“Please indicate to what
extent you have experience with robots.”). In addition, to deepen
insights into participants’ experience with robots, we used amultiple
choice format to assess from what context participants mainly
knew robots from (response options: media (e.g., movies, books),
work, home, other studies, and other contexts which had to be
specified). In addition, participants were asked to indicate whether
they knew the RB-KAIROS + robot before from other studies or
media.

Manipulation Check: We assessed whether participants could
watch the video properly with both image and sound.

3 User study 1 - results

3.1 Participants’ evaluations of the
RB-KAIROS + robot

To investigate participants’ evaluations of the RB-KAIROS
+ robot when displayed in its initial state without robot
memory implemented (see Section 2.2), a multivariate analysis of
covariance (MANCOVA) was conducted. Participants’ evaluations
of robot appearance, robot movements, and perceived robot
memory were considered as dependent measures. Participants’
positive and negative attitudes toward robots, social desirability,
experience with technology and robots, and demographics (i.e.,
sample language, participant age, gender, nationality, native
language, and professional status) were considered as covariates
in order to control for their effects on participants’ evaluations
of the robot. To enable a valid interpretation of p-values,
effect sizes (ηp2) and statistical power (1-β) were reported
complementary. Statistically significant effects of the covariates
on the dependent measures were confirmed by applying the
principle of parsimony (see Tabachnick and Fidell, 2007). Pearson
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FIGURE 2
Mean scores (grey bars) and standard deviations (soft lines) of participants’ evaluations of robot appearance, robot movements, and perceived robot
memory.

correlations between the dependent measures and the covariates
that had statistically significant effects on the dependent measures
were performed to investigate the role of the covariates in more
detail.

Inspecting participants’ mean scores on robot appearance, robot
movements, and perceived robot memory, participants’ evaluations
of the robot were moderate (see Figure 2).

Regarding the covariates’ effects, participants’ negative attitudes
toward robots statistically significantly affected their evaluations
of robot appearance, F (1,48) = 4.53, p = .038, ηp2 = .086,
1-β = .550. Participant age statistically significantly affected
participants’ evaluations of perceived robot memory, F (1,48) =
4.78, p = .034, ηp2 = .091, 1-β = .572. The effects of the remaining
covariates on the dependent measures were not statistically
significant (ps > .05). Following the principle of parsimony (see
Tabachnick and Fidell, 2007), the same analysis was performed again
with only participant age and negative attitudes toward robots as
covariates in order to confirm the effects.

The statistically significant effect of participants’ negative
attitudes toward robots on their evaluations of robot appearance was
confirmed, F (1,58) = 9.95, p = .003, ηp2 = .146, 1-β = .873. The same
accounted for the statistically significant effect of participant age on
participants’ evaluations of perceived robotmemory, F (1,58) = 6.31,
p= .015, ηp2 = .098, 1-β= .695. Furthermore, the effect of participant
age on their evaluations of robot movements turned out statistically
significant, F (1,58) = 4.12, p = .047, ηp2 = .066, 1-β = .515.

Pearson correlations showed the more negative attitudes
participants shared, the less positive their judgements of robot
appearance, r (60) = −.42, p < .001. The older participants, the less
positive their evaluations of perceived robot memory functions, r
(62) = .-.39, p = .002, and robot movements, r (62) = −.30, p = .017.

Exploratory analyses were performed to investigate the relation
between participant age, negative attitudes toward robots, and
participants’ evaluations of the robot inmore detail (see Section 3.4).

3.2 Participants’ ideas of robot memory

Participants’ written descriptions of robot memory were
analyzed to answer our secondary research question of what
participants imagined being characteristic of robot memory (see
Section 1). More precisely, to quantify participants’ responses, we
counted the frequencies of the words that participants used to
describe their subjective ideas of robot memory. Words were then
clustered according to their frequencies in participants’ descriptions.
That way, six different aspects of robot memory were identified,
namely, memory and recall, learning and adaptation, hard- and
software components, data collection and information storage,
advantages of robot memory, and risks of robot memory (see
Table 1):

Words related to memory and recall of information occurred
most frequently, followed by terms referring to learning and
adaptation based on prior information. Learning and adaptation
were closely related to the notion of ‘intelligence’ and the robot’s
ability to evaluate past experiences and to ‘decide’ what information
to use to overcome limitations and errors. Hard- and software
components were considered crucial for robot memory as they
enable to collect and process a variety of data, such as face
recognition and motion profiles. In this context, robot memory was
linked to data collection and information storage. Participants also
mentioned potential advantages of robot memory and potential
risks of robot memory. According to word frequencies, the
potential advantages of robot memory out-weighted perceived
risks. Robotic memory has been described as a way to make HRI
easier, smoother, and more reliable because robotic memory could
overcome human weaknesses and limitations such as human error,
forgetting, and the effects of subjective judgments and emotions.
Some participants even felt that robot memory could enable
communication between robots. Only a few risks of robot memory
were mentioned, such as the concern robot memory could be lost or
controlled and manipulated by an external operator.
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TABLE 1 Aspects of robot memory based on word frequencies in participants’ subjective descriptions of robot memory.

Aspects of robot memory Examples from participants’descriptions Word frequency

Memory and Recall Memory, remember, recall, reuse, retrieve, process, represent information 24

Learning and Adaptation Learning, evaluation, adaptation, repetition, avoiding mistakes and limitations, improving,
deciding what information to use, intelligence

19

Hard- and Software Components Hardware, software, sensors, processor, computer, storage device, lidar sensors, codes, neural
networks, machine learning, deep learning, algorithms (i.e., face recognition, motion profile)

18

Data Collection and Information Storage Capture, collect, and acquire data, extract, save, store, information accordingly 17

Advantages of Robot Memory Robot memory based on human memory can facilitate human-robot interaction, enable
communication between robots, and overcome human weaknesses and limitations (e.g.,
making errors, forgetting, being affected by external factors, subjective judgments, emotions)

12

Risks of Robot Memory Robot memory can get lost in an instant, can be controlled, manipulated, or changed by an
external controller

2

3.3 Suggestions for improvement of robot
movements

To potentially inspire future developments of robot movements,
participants were asked to list aspects they liked about the
robot’s movements and aspects they would change. In line
with participants’ moderate evaluations of robot movements (see
Figure 2), the robot’s movements were appreciated and criticized
at the same time. Participants’ responses can be summed as
follows:

Some participants appreciated that the robot was moving
smoothly, noiselessly, with an adequate velocity, and that it stopped
or changed its direction when detecting humans or objects. This
was described asmaking the robot’s movements predictable, precise,
and trustworthy. One participant even had the impression that
the robot would have tried to move with the same speed as the
workers. This was definitively not the case because behavioral
adaptations of the robot’s speed based on robot working memory
were not yet implemented. About a third of the participants
noticed the robot’s holonomic driving (holonomic driving detected:
n = 32; not detected: n = 30, undisclosed: n = 20). Some of the
participants who noticed the holonomic driving found it interesting
and efficient. Others found the holonomic driving was unexpected
andwouldmake the robot’smovements unpredictable and irritating.
Perceptions of unpredictability and irritation were strengthened
because the robot’s wheels did not turn left or right when the
robot’s driving direction changed and the robot’s intention to move
was not clear. As such, some participants criticized the robot
for crossing the workers’ path too often and approaching the
workers too closely and too fastly without any obvious reason.
To make the robot’s movements smoother and more predictable,
participants suggested to let the robot drive non-holonomically, to
increase the robot’s distance to humans and objectives, to adapt
its speed and trajectory dependent of human presence, and to
indicate the robot’s intention and changes in its motion. Participants
moreover stated the robot should be able to anticipate the workers’
actions.

3.4 Exploratory analyses

Investigating participants’ evaluations of the robot, participant’s
negative attitudes toward robots and age had statistically significant
effects on their overall judgments of the robot (see Section 3.1).

Previous literature showed that older participants feel less
certain in dealing with technology and robots (Damant and
Knapp, 2015; Goodman-Deane et al., 2020; Robinson et al., 2020).
Confirmatively, particularly some older participants stated that they
did not feel competent to judge a robot because they felt they had too
little experience with robots. Participants’ levels of experience with
technology and robots, in turn, were found to be decisive for their
attitudes toward robots and technology (see Connolly et al., 2020;
Gjelaj et al., 2020). Therefore, exploratory analyses were performed
to investigate the relationship between participants’ evaluations of
the robot, participant age, and participants’ attitudes toward robots
in more detail.

To do so, a MANCOVA was performed with participants’
experience with technology and experience with robots while
the effects of participant age were controlled for. Participant age
statistically significantly determined participants’ experience with
technology, F (1,62) = 18.55, p < .001, ηp2 = .230, 1-β = .989, and
experience with robots, F (1,62) = 16.51, p < .001, ηp2 = .210,
1-β = .979. Pearson correlations showed the older participants, the
lesser experience with technology, r (62) = −.48, p < .001, and
experience with robots, r (62) = −.46, p < .001, they reported.

Confirming previous research (Damant and Knapp, 2015;
Goodman-Deane et al., 2020; Robinson et al., 2020), the results of
this first exploratory analysis showed that participant age was
linked to lower levels of experience with technology. What however
still remains unclear is whether the low levels of experience
with technology and robots or participant age per se led to
more negative attitudes toward robots. To address this question,
we performed a linear regression analysis with participant age,
experience with technology, and experience with robots step-wise
entered as predictors of participants’ negative attitudes toward
robots. The overall model was statistically significant, F (1,60)
= 17.67, p < .001, and accounted for about 22% of the variance,

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1257690
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Bernotat et al. 10.3389/frobt.2023.1257690

FIGURE 3
Graphical depiction of the linear regression model between participants’ negative attitudes toward robots as a dependent variable and their experience
with robots as a predictor as well as R2, R2

Adjusted, and the underlying regression equation.

R2 = .227,R2
Adjusted = .215.The only statistically significant predictor

of participants’ negative attitudes toward robots was participants’
experience with robots, β = −.477, 95%-CI [-0.40; −0.14], p < .001.
Participants’ experience with technology, β = −.273, p = .069, and
participant age, β = .141, p = .273, did not statistically significantly
predict participants’ negative attitudes toward robots and were thus
excluded from the overall model. As indicated by the negative β
weight which corresponds to the Pearson correlation, r (60) = −.48,
p < .001, participants reported less negative attitudes toward robots,
the more experience with robots they shared (see also Figure 3).
Regarding participants’ mean scores, participants’ negative attitudes
toward robots were relatively low, but with a quite large standard
deviation indicating large differences across participants, M = 2.94,
SD = 1.07, compared to their mean scores on positive attitudes
toward robots, M = 5.66, SD = 0.80.

Taken together, the results of these exploratory analyses indicate
that not participant age per se, but participants’ low levels of
experience with robots, resulted in more negative attitudes toward
robots.

4 User study 2 - materials and
methods

4.1 Participant sample

Addressing lay people and professionals of all ages and social
backgrounds in Italy and Germany, N = 139 completed the study.
Due to technical issues with the online survey platform and
problems displaying the video properly, however, n = 45 participants
had to be excluded from data analysis. From the remaining

n=94 participants,n=46 completedUser Study 2 in Italian language
while n = 48 completed the German language version of the study.
Demographics were as follows:

Age:M = 40.28, SD = 17.10, range: 13–77 years; gender: female:
n = 57, male: n = 22, prefer not to answer: n: 2, undisclosed: n = 13;
nationality: Italian: n = 36, German: n = 44, undisclosed: n = 14;
native language: Italian: n = 36, German: n = 42, others: n = 2 (i.e.,
Irish, Swedish), undisclosed: n = 14; professional status: students:
n = 24, professionals: n = 34 (i.e., architect, teacher, self-employed,
employee, researcher), others: n = 21 (i.e., retired, searching for a
job), undisclosed: n = 15.

Overall, participants reported moderate levels of experience
with technology in general, M = 4.76, SD = 1.68, but low levels
of experience with robots, M = 2.76, SD = 1.96. The majority
of participants reported to know robots mainly from media (e.g.,
movies, books): n = 54, followed from the work: n = 33 and
home context: n = 30, other studies: n = 26, and other contexts:
n = 20 (i.e., friends, automotive industry, autonomous driving,
space exploration, industry, factory work, trade shows, restaurants,
University).

Only a minority of participants had known the RB-KAIROS +
robot before:n=18 reported to have known theRB-KAIROS+ robot
from previous studies (not known from other studies before: n = 62,
undisclosed: n = 14), while n = 12 had known the RB-KAIROS+
from media (not known from media before: n = 68, undisclosed:
n = 14). All participants showed indiscrete response patterns. That
is, none of the participants responded to the questions following
a specific pattern or showed extreme values which might have
indicated a lack of attention and motivation while completing the
questionnaire. Likewise, none of the participants indicated technical
issues when watching the video.
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4.2 Experimental design

In order to test the effects of robot working memory on
participants’ evaluations of the RB-KAIROS + robot (see Section 1),
a one factorial (robot working memory: WorkMATe vs GRU vs
no working memory) - between-subjects design was realized (see
AsPredicted #125198).

4.3 Experimental procedure

To reach an as large and heterogeneous sample as possible,
User Study 2 was conducted online using SurveyMonkey (San
Matteo, California, United States), and later, due to technical issues,
SoSciSurvey (SoSci Survey GmbH, Munich, Germany). The study
was advertised on social media platforms and by friends and family
in Italy and Germany. To assure a high comparability between the
results of User Study 1 andUser Study 2, the experimental procedure
was kept as similar as possible to User Study 1. First, participants
watched a short video sequence of about 2 min which showed the
RB-KAIROS + robot navigating between a workers’ area in which
two workers performed a pick-and-place task and an empty area
(see Figure 1). Unlike User Study 1, the robot was either shown
with GRU, WorkMATe, or no working memory configuration, an
adaptation needed to answer the underlying research question of
User Study 2 whether the implementation and training of robot
working memory would lead to more positive evaluations of the
robot (see also Section 1). After having watched the video sequence,
participants completed a questionnaire. In total, participants needed
about 15 min to complete the study.

4.4 Working memory configurations

The robot navigated between the workers’ area and the
empty area with either a GRU, WorkMATe, or no working
memory configuration implemented (see Section 1, see also
Landolfi et al. (2023) for more details on the implementation and
training processes). During robot navigation, the working memory
configurations, respectively the absence of robot working memory
were reflected as follows:

When equipped with either GRU or WorkMATe working
memory configurations, the robot adapted its behavior depending
on whether it navigated in the workers’ area or in the empty area
(spacial awareness) and depending on whether humans were around
or not (human awareness). As soon as the robot sensed to be in
the workers’ area in which humans could be around or as soon
as it perceived humans, it slowed down from 0.65 m/s to 0.32 m/s
and turned from holonomic to non-holonomic navigation. As the
RB-KAIROS + robot is supposed to be used in large industrial
halls, the robot could be aware of being in the empty area while
in fact no people were around. In such a case, the RB-KAIROS
+ robot would slow down to 0.32 m/s while remaining holonomic
driving. As in our studies, workers were around in their supposed
area all the time, this did however not happen so that the robot
commonly slowed down and turned to non-holonomical driving
in the workers’ area. These adaptations of robot navigation were
well in line with participants’ suggestions for robot adaptation (see

Section 3.3); they were thus supposed to increase positive user
experiences by making robot navigation safer and more predictable.
Enabling bio-inspired learning and behavior adaptation, the robot
was positively rewarded for showing correct behavior adaptations
and negatively rewarded for wrong behavior adaptations when
equipped with WorkMATe (see also Landolfi et al., 2023). When no
working memory configuration was implemented, no adaptations
in terms of speed and holonomicity were performed during robot
navigation.

4.5 Questionnaire measures

The same questionnaire was used as in User Study 1 (see
Section 2.4). The only adaptation of the questionnaire was that
participants’ ideas about robot memory and their suggestions for
improving robot movements were not enquired because these
aspects were of particular interest in User Study 1 to inspire future
developments of robot working memory.

Analogous to User Study 1, indices of the measured constructs
were calculated based on internal consistencies (Cronbach’s alpha)
with high scores indicating high endorsement of the measured
construct (see Section 2.4). Due to a too low internal consistency
(α = .12), the situational motivation scale had to be excluded from
statistical analyses. For all other constructs, internal consistencies
were moderate to high: Robot appearance: α = .67 (after excluding
the item ‘Judging by the appearance of the robot, I had the
impression that it looked like any technical tool that I would not
have recognized as a robot.’), robot movements: α = .87, perceived
robot memory: α = .92, positive attitudes toward robots: α = .90,
negative attitudes toward robots: α = .87, social desirability: α =
.81.

5 User study 2 - results

5.1 Participants’ evaluations of the
RB-KAIROS + robot

To answer the research questionwhether participants judged the
robot’s appearance, movements, and perceived memory functions
differently depending of the robot’s working memory configuration
(GRU, WorkMATe, and no working memory, see Section 1), a
multivariate analysis of covariance (MANCOVA) was performed
similar to User Study 1 (see Section 3.1). Participants’ evaluations
of robot appearance, robot movements, and perceived memory
functions, the dependent measures, were investigated as a function
of robot working memory configuration (GRU, WorkMATe, and
no working memory). Analogous to User Study 1, participants’
positive and negative attitudes toward robots, social desirability,
experience with technology and with robots, and demographics
(i.e., sample language, participant age, gender, nationality, native
language, professional status) were considered as covariates in order
to control for their effects on participants’ evaluations of the robot.
For a valid interpretation of p-values, effect sizes (ηp2) and statistical
power (1-β) were reported complementary. Statistically significant
effects of the experimental condition (GRU, WorkMATe, and no
working memory) and the covariates were confirmed following the
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FIGURE 4
Mean scores (grey bars) and standard deviations (soft lines) of participants’ evaluations of robot appearance, robot memory, and perceived robot
memory per experimental condition and p-values indicating statistically significant differences between experimental conditions.

principle of parsimony (see Tabachnick and Fidell, 2007). Pearson
correlations between the dependentmeasures and the covariates that
had statistically significant effects on the dependent measures were
performed to investigate the role of the covariates in more detail.

The experimental condition statistically significantly affected
participants’ evaluations of perceived robot memory functions, F
(2,67) = 3.21, p = .047, ηp2 = .087, 1-β = .595, but not their
evaluations of robot appearance, F (2,67) = 0.10, p = .904, ηp2 = .003,
1-β = .065, and robot movements, F (2,67) = 1.23, p = .300, ηp2 =
.035, 1-β = .259.

Regarding the covariates, participants’ endorsement of positive
attitudes toward robots had statistically significant effects on
participants’ evaluations of robot memory functions, F (1,67)
= 14.07, p < .001, ηp2 = .174, 1-β = .959. The effects of the
remaining covariates on participants’ evaluations of the robot were
not statistically significant (ps > .05).

Following the principle of parsimony (see Tabachnick and Fidell,
2007), the same analysis was run again, but with all covariates
removed except for positive attitudes toward robots (see Tabachnick
and Fidell, 2007).

In the more parsimonious model, the statistically significant
effect of the experimental condition on participants’ evaluations of
perceived robot memory functions was confirmed, F (2,77) = 4.29,
p = .017, ηp2 = .100, 1-β = .732. Pairwise comparisons showed that
the difference between WorkMATe and no working memory was
statistically significant, MDifference = 0.85, SE = 0.30, p = .006, 95%-
CI [0.25; 1.45]. The same accounted for the difference between GRU
and no working memory, MDifference = 0.72, SE = 0.30, p = .020,
95%-CI [0.12; 1.32], while evaluations of perceived robot memory
functions between WorkMATe and GRU were not statistically
significant, MDifference = 0.14, SE = 0.26, p = .609, 95%-CI [-0.39;
0.66] (see Figure 4). That is, the implementation of WorkMATe and

GRUworkingmemory configurations both resulted inmore positive
perceptions of robot memory functions.

The effects of the experimental condition of participants’
evaluations of robot appearance, F (2,77) = 0.29, p = .751,
ηp2 = .007, 1-β = .094, and robot movements, F (2,77) =
1.28, p = .283, ηp2 = .032, 1-β = .270, did not turn out
statistically significant. That is, the implementation of WorkMATe
and GRU working memory did not statistically significantly affect
participants’ evaluations of robot appearance and robot movements
(see also 4 for graphical depictions of participants’ evaluations of the
robot).

However, the statistically significant effect of positive attitudes
toward robots on participants’ evaluation of robot memory
functions was confirmed, F (1,77) = 34.71, p < .001, ηp2 = .311,
1-β = 1.00. Furthermore, the effects of positive attitudes toward
robots on participants’ evaluations of robot appearance, F (1,77) =
10.97, p= .001, ηp2 = .125, 1-β= .905, and robotmovements, F (1,77)
= 24.99, p < .001, ηp2 = .245, 1-β = .999. Effect sizes and statistical
power can be considered sufficiently high.

Pearson correlations showed the more positive attitudes toward
robots participants shared, the more positive their evaluations of
robot appearance, r (79) = .35, p = .001, robot movements, r (79)
= .48, p < .001, and perceived robot memory functions, r (79) = .53,
p< .001. Overall, participants shared rather positive attitudes toward
robots, M = 5.31, SD = 1.10, than negative attitudes toward robots
M = 3.64, SD = 1.40.

5.2 Exploratory analyses

In line with previous research (see Connolly et al., 2020;
Gjelaj et al., 2020), participants’ experience with robots determined
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FIGURE 5
Graphical depiction of the linear regression model between participants’ positive attitudes toward robots as a dependent variable and their experience
with robots as a predictor as well as R2, R2

Adjusted, and the underlying regression equation.

their attitudes toward robots in User Study 1 (see Section 3.4).
Therefore, we explored whether participants’ experience with
robots and experience with technology had also affected their
positive attitudes in User Study 2. To do so, a linear regression
was performed analogous to User Study 1. Participants’ experience
with robots and experience with technology were entered step-
wise as predictors of participants’ positive attitudes toward
robots. The overall model was statistically significant, F (1,78)
= 6.07, p = .016, and accounted about 6% of the variance,
R2 = .072, R2

Adjusted = .060. Participants’ experience with robots
was the only statistically significant predictor of participants’
positive attitudes toward robots, β = .269, p = .016, 95%-CI [0.03;
0.27]. Participants’ experience with technology was excluded from
the overall model because it was not a statistically significant
predictor of participants’ positive attitudes toward robots, β =
.099, p = .468. As indicated by the positive β weight which
corresponds to the Pearson correlation, participants’ positive
attitudes toward robots increased with higher levels of experience
with robots, r (78) = .27, p = .008. The relation between participants’
positive attitudes toward robots and their experience with robots
is displayed in Figure 5. Overall, participants’ experience with
robots was fairly low, M = 2.76, SD = 1.96, compared to their
levels of experience with technology, M = 4.76, SD = 1.68
(see also Section 4.1).

6 General discussion

In the presented research, we followed a user-centered
approach while implementing and training two working
memory architectures on an industrial RB-KAIROS + robot

(Robotnik Valencia, Spain, 2023): One of these architectures was
based on GRU (Cho et al., 2014), a commonly used state-of-the-
art architecture, the other was based on WorkMATe (Kruijne et al.,
2021), a biologically-inspired alternative. Emphasizing the humans’
perspective on HRI, we considered potential users’ ideas and
perceptions of robot navigation already before initiating the
implementation and training processes as recommended by
previous research (e.g., Mahmood et al., 2000; Ben Allouch et al.,
2009; Schiffhauer et al., 2016; Bernotat and Eyssel, 2017a;
Diehl et al., 2017; Azamfirei et al., 2023b; Psarommatis et al., 2023b;
Lacroix et al., 2023). This approach was innovative because, so
far, only little attention has been paid to the humans’ perspective
when robot working memory was implemented and trained. More
precisely, we conducted two online user studies in which we
tested large and heterogeneous samples of Italian, German, and
in User Study 1 also English-speaking participants of all ages and
professional backgrounds. To identify potential biases, the effects of
participants’ attitudes, prior experience with robots and technology,
social desirability, and demographics on participants’ evaluations
of the robot were controlled for (see Bernotat and Eyssel, 2017a;
Bernotat et al., 2017; Meyer zu Borgsen et al., 2017; Bernotat et al.,
2021). Moreover, in order to assess participants’ overall judgments
of the robot as well as their individual ideas and preferences
for robot navigation, quantitative measures and qualitative open
response formats were used complementary. In User Study 1, we
primarily investigated participants’ evaluations of the RB-KAIROS
+ robot in terms of appearance, movements, and perceived memory
functions when the robot was presented with no robot working
memory implemented. To enable potential future adaptations
of robot behavior that might lead to positive user experiences,
we furthermore assessed participants’ ideas of robot memory
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and asked what aspects of the robot’s movements participants
found positive and what aspects they would change. GRU and
WorkMATe architectures were then implemented and trained
accordingly. User Study 2 was conducted after the implementation
and training processes. The major aim of User Study 2 was to
evaluate participants’ perceptions of robot appearance, movements,
and perceived memory functions comparing WorkMATe and GRU
against the initial state of no workingmemory in a between-subjects
study.

In User Study 1, mean evaluations of the robot’s appearance,
movements, and perceived memory functions ranged around scale
midpoint indicating neither particularly positive, nor negative
evaluations. Participants’ age had statistically significantly affected
their evaluations of the robot’s memory and movements: The older
participants were, the less positively they judged the robot’s memory
and the robot’s movements. Moreover, participants negative
attitudes toward robots resulted in less positive evaluations of the
robot’s appearance. Exploratory analyses revealed a statistically
significant relationship between participants’ age and their
experience with technology and robots. The older participants,
the lower levels of experience with technology and robots they
shared which is well in line with previous research (Damant
and Knapp, 2015; Goodman-Deane et al., 2020; Robinson et al.,
2020). However, results of a linear regression analysis showed
that not participant age per se, but participants’ experience
with robots was decisive for their negative attitudes toward
robots. Independent of participant age, less negative attitudes
toward robots were predicted by higher levels of experience with
robots.

The evaluation of a robot’s movements and memory requires
a certain understanding of a robot’s functionality. As lower levels
of experience with robots were linked to increased age, it seems
plausible that participant age had affected participants’ evaluations
of the robot’s movements and memory functions in User Study
1. This might be confirmed by the fact that particularly elderly
participants reported they had felt uncertain how to judge a robot
because they felt too in-experienced with robots. However, the
effect of participants’ experience with robots on their negative
attitudes toward robots that was found in User Study 1 suggests that
perceived low experience with robots might have evoked feelings
of uncertainty how to evaluate a robot independent of participant
age. In interpersonal contact situations, uncertainty was found to
lead to negative emotions and a perceived lack of control (Grieve
and Hogg, 1999; Stewart et al., 2019). A relationship between a
perceived lack of experience and a perceived lack of control in HRI
seems plausible given that the negative attitudes toward robots scale
included items that are closely related to the fear of robots taking
control, e.g., “I fear that in the future society will be dominated by
robots.”

Complementary to quantitative evaluations of the RB-KAIROS
+ robot, participants in User Study 1 provided fruitful insights about
their general ideas of robot memory and made concrete suggestions
for the improvement of robot movements. Clustering words that
participants had used to describe robot memory by frequencies,
robot memory was found to comprise six core aspects: memory
and recall, learning and adaptation, hard- and software components,
data collection and information storage, potential advantages and
potential risks of robot memory. Regarding the potential advantages

of robot memory, participants described that robot memory might
facilitate communication between humans and robots and that it
might help to overcome human weaknesses. Robot memory was
furthermore seen as a chance to enable communication between
robots. A potential risk associated with robot memory was that
data could get lost. More importantly, confirming the assumption
that a perceived loss of control over HRI was one of participants’
concerns, a feared riskwas that robotmemory could be controlled or
manipulated by an external party (see Table 1). However, in line with
participants’ overall rather positive attitudes toward robots, more
advantages of robot memory were described than potential risks.
In line with participants’ moderate evaluations of robot movements
on the explicit measures, positive aspects about robot movements
and suggestions for improvement were balanced. About a third
of the participants noticed the robot’s holonomic driving. Some
participants appreciated the holonomic driving as being interesting,
innovative, and as making robot navigation more efficient. Other
participants criticized the holonomic driving as being confusing
and making robot navigation unpredictable. Feelings of confusion
and a lack of predictability were strengthened because the RB-
KAIROS + robot did not provide any cues to indicate its moving
direction and intention. Participants thus suggested to implement
holonomic driving and adaptations of the robot’s velocity dependent
of human presence. Participants desired to have clear indicators
of robot moving direction and intention. They felt this would
make robot navigation safer, more predictable, and thus more
comfortable.

User Study 2 followed after working memory architectures
based on GRU and WorkMATe were implemented. In line with
participants’ suggestions for the improvement of robot navigation
in User Study 1, robot working memory enabled adaptations of
holonomic driving and velocity dependent of human presence (see
Section 4.4). Analogous to User Study 1, participants’ evaluations
of robot appearance, movements, and perceived memory functions
were assessed. Exceeding User Study 1, however, the robot was
evaluated in a between-subjects study when it was shown with
WorkMATe, GRU, or no working memory implementation. Similar
to User Study 1, participants’ overall evaluations of the robot were
moderate. Evaluations of robot appearance and robot movements
did not statistically significantly differ between GRU, WorkMATe,
and the no working memory condition. However, there was a
statistically significant effect of the experimental condition on
participants’ evaluations of robot working memory. Adaptations of
robot navigation based on WorkMATe and GRU working memory
led to more positive perceptions of robot memory functions than
no working memory implementation. This finding complements
results of our technological evaluation of the robot workingmemory
implementations: We found a clear advantage of WorkMATe and
GRU over no robot working memory in terms of safety and
energy consumption during robot navigation (see Landolfi et al.,
2023). Taken together, the results of User Study 2 suggest that
participants well noticed improvements in robot navigation due to
robot working memory. This accounted for GRU, the current state-
of-the-art, and for WorkMATe, the biologically inspired alternative
alike. Moreover, in User Study 2, participants’ evaluations of robot
appearance, movements, and perceived memory functions were
driven by their positive attitudes toward robots. Positive views
of robots resulted in more positive evaluations of the robot on
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all three measures. Exploratory analyses showed that participants’
experience with robots was a predictor of their positive attitudes
toward robots. This confirms findings of User Study 1 that
participants’ experience with robots is decisive for positive views of
robots.

Remarkably, in both user studies, participants shared fairly low
levels of experience with robots, but a good command of technology
use. Most participants reported to know robots mainly from media
(see also Bernotat et al. (2017); Bernotat et al. (2021) for confirming
findings) in which robots are represented as threatening on the one
hand and as useful on the other hand. Despite some resentments
against robots, participants shared fairly positive attitudes toward
robots reflecting views of robots as useful innovations. This, in turn,
suggests an overall readiness to accept robots if participants know
how to use them in a beneficial way. This would be in line with
research by Robinson and colleagues (Robinson et al., 2020) who
found that participants’ willingness to use a robot, their self-efficacy
in HRI, and the robot’s likeability were increased after a training
on how to use a social robot and an interaction with it. Amongst
the robot’s likeability, participants’ self-efficacy, that is, their belief in
their ability to use and control robot use (see also Bandura, 1977;
Schwarzer and Jerusalem, 1995; Pütten and Bock, 2018), crucially
determined their willingness to interact with the robot in the
future.

6.1 Limitations and implications for future
research

With increased robot release more lay people will interact with
robots in several contexts reaching from work to private areas.
Robots, in turn, become increasingly autonomous social agents and
co-workers instead of being mere tools. Therefore, as our results
of User Study 1 and User Study 2 clearly indicate, the effects of
participants’ experience with robots on their attitudes and emotions
toward robots should be taken into sharper focus of future HRI
research and development. Our results further suggest that a more
detailed view of participants’ experience with robots as a multi-
dimensional construct is needed. Therefore, Neyer and colleagues’
scale of technology commitment (see Neyer et al., 2012) consisting
of perceived control over technology, perceived competence in
its use, and acceptance of technology could be applied to HRI.
Likewise, Rosenthal-von-der-Pütten and Bock’s self-efficacy in HRI
scale (Pütten and Bock, 2018) might be suitable in future HRI
research. This way, the assumption that was derived from our
findings could be tested that uncertainty how to use a robot might
be linked to a perceived lack of control in HRI which, in turn, is
supposed to determine participants’ attitudes toward robots. This
could help to encounter the cause for possible resentments against
robots and thus to enhance acceptance and comfort of HRI in
shared environments. To really grasp the dynamics that underlie
an efficient and comfortable HRI in various settings, however, we
recommend a more detailed consideration of various groups of
potential users (see also Azamfirei et al., 2023b; Psarommatis et al.,
2023b). To illustrate, in our research, we opted for heterogeneous
samples to avoid possible biases and to reflect a general view on
HRI with an industrial robot that is equipped with human-aware
robot navigation. However, in line with previous research (see

Damant and Knapp, 2015; Goodman-Deane et al., 2020), the effect
of participant age on participants’ overall evaluations of the robot in
User Study 1 suggests that a more detailed consideration of different
age groups might be worthwhile in future HRI research. Likewise,
workers who are already used to be surrounded by robots in their
working environment might highlight another perspective of HRI
than our participants who were fairly inexperienced in using robots.
In addition, User Study 1 and User Study 2 were conducted online
which allowed us to reach large samples across countries. A further
reason to opt for online studies was the fact that User Study 1 and
User Study 2 were done before and right after the implementation
and training processes of robot working memory. Therefore, online
studies were considered safer for participants in this early stage of
development. As a downside of online studies, however, experiences
based on a video of the RB-KAIROS+ robotmight not convey a fully
realistic experience of HRI. Considering the presented user studies
as a part of an iterative research process, we will tie up with the
present findings and extent them by overcoming some limitations of
the present research. To do so, we will validate the present findings
by conducting further interactive user studies taking place in a safe
lab environment with lay participants and in an industrial setting
with workers who are already experienced in using the RB-KAIROS
+ robot.

6.2 Contributions of the present research
and conclusions

Our research approach to involve potential users into
the implementation and training processes of robot working
memory on an industrial RB-KAIROS + robot right from the
beginning was clearly a novelty. It provided fruitful insights
about participants’ ideas of robot memory. Likewise, participants’
precise suggestions for a safe, efficient, and comfortable human-
aware robot navigation in the context of User Study 1 provide
practical implications for developers of memory-based robot
navigation. They are thus valuable for future research and
development in HRI in industrial settings and beyond. The
complementary use of quantitative measures and qualitative
open-response formats and the consideration of participants’
attitudes toward robots, experiences, and demographics enabled
a more holistic view on potential users and helped to better
understand the psychological processes that might underlie HRI.
We therefore strongly recommend to use quantitative and qualitative
measures complementary and to consider participants’ attitudes,
experiences, and demographics. In this regard, our measures of
robot appearance, robot movements, and perceived robot memory
that we provided in three languages, exhibited good reliabilities
in both user studies which confirms their suitability for future
HRI research. As such, besides practical implications for further
research and development of human-aware robot navigation,
our research provided new insights about participants’ concerns
and preferences in HRI. At the same time, our findings raised
new research questions and provided suitable approaches and
measures to address them. This being provided, we encourage to
involve potential users more strongly into future HRI research and
development.
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