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In recent years, soft robots gain increasing attention as a result of their
compliance when operating in unstructured environments, and their flexibility
that ensures safety when interacting with humans. However, challenges lie on
the difficulty to develop control algorithms due to various limitations induced
by their soft structure. In this paper, we introduce a novel technique that
aims to perform motion control of a modular bio-inspired soft-robotic arm,
with the main focus lying on facilitating the qualitative reproduction of well-
specified periodic trajectories. The introduced method combines the notion
behind two previously developed methodologies both based on the Movement
Primitive (MP) theory, by exploiting their capabilities while coping with their
main drawbacks. Concretely, the requested actuation is initially computed using
a Probabilistic MP (ProMP)-based method that considers the trajectory as a
combination of simple movements previously learned and stored as a MP library.
Subsequently, the key components of the resulting actuation are extracted and
filtered in the frequency domain. These are eventually used as input to a Central
Pattern Generator (CPG)-basedmodel that takes over the generation of rhythmic
patterns at the motor level. The proposed methodology is evaluated on a two-
module soft arm. Results show that the first algorithmic component (ProMP)
provides an immediate estimation of the requested actuation by avoiding time-
consuming training, while the latter (CPG) further simplifies the execution by
allowing its control through a low-dimensional parameterization. Altogether,
these results open new avenues for the rapid acquisition of periodic movements
in soft robots, and their compression into CPG parameters for long-term storage
and execution.

KEYWORDS

robot learning, motion control, probabilistic movement primitives, central pattern
generators, soft robots

1 Introduction

Bioinspired robotics research constantly explores solutions inspired by biology to
improve the materials, the behavior and the adaptivity of robots, trying to approach
the combined efficiency, flexibility and low computational cost of biological organisms
(Meyer et al., 2005; Pfeifer et al., 2007; Meyer and Guillot, 2008; Floreano et al., 2014;
Ijspeert, 2014; Renaudo et al., 2014). Among the explored solutions, soft robots constitute
a promising field of research to come up with compliant and flexible robots in unpredictable
environments, as well as for applications requiring safe physical interactions with humans
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(Kim et al., 2013). Nevertheless, it remains challenging to endow
these robots with efficient control algorithms for real-world
applications, due to the difficulty to model their behaviour. In
particular, we are interested here in healthcare applications where
replicating human gestures with a soft robot could enable safe
assistance at home to the disabled or non-autonomous elderly
people.

Well organized healthcare systems are increasing the
life expectancy of modern societies, according to World
Health Organization’s research on health and aging
(World Health Organization, 2015).There is a significant percentage
of population with special requirements for nursing attention.
Healthcare experts are supporting these people during the
performance of Activities of Daily Living (ADL) such as
showering and eating, inducing increased workload and demand
for skilled personnel. Personal care (showering or bathing) is
included among the first ADL, which incommodate an elderly’s
life (Millán-Calenti et al., 2010), representing the strongest
predictor of subsequent institutionalization (Fong et al., 2015).
The robotics community continuously undertake research to
develop solutions supporting everyday tasks in both in-house
and clinical environments (Driessen et al., 2001; Hirose et al.,
2012).

Specifically in the context of an assistive bathing robot, which
requires the execution of proper interactive tasks, the expertise of
clinical personnel should also be integrated into the behaviour of
the robotic system, in order to execute proper washing actions in
a human-friendly way, increasing the comfort of an elderly user.
Hence, learning of bathing motions from expert’s demonstration is
required, a process that might raise specific requirements for the
robot, in terms of execution time and motion complexity.

1.1 Introduction to soft robots

Such an interactive bathing application, which might involve
robotic interaction with the human, is way more demanding

in terms of safety than other assistive robotics tasks. Over
the last years, research effort has been focused on continuum
bio-inspired manipulators based on soft robotic technologies
(Laschi et al., 2016). The inherent or structural compliance of these
technologies gives them the ability to actively interact with the
environment with drastically reduced risks of injuries (e.g., in
medical applications), and provides flexibility in environments
where a target is unreachable by rigid arms. Many continuum
manipulators have already been presented with tendon (Renda and
Laschi, 2012) or pneumatic actuation (Grzesiak et al., 2011) or a
combination of those (Ansari et al., 2017). Part of this research
effort contributed to the recent developments of the I-SUPPORT
project (EU H2020 Grant Agreement no. 643666) (Zlatintsi et al.,
2020) (Figure 1), aiming at conceiving an innovative, modular
robotic system for the support of frail older adults to safely
and independently complete various physically and cognitively
demanding bathing tasks, such as properly washing their back and
their lower limbs.

Despite their natural compliance and biomorphic control
properties, all these systems present specific problems and
limitations that still prevent their widespread use in many
application domains. These challenges are mostly related to the
difficulty regarding the computation of a mathematical model that
simulates the system’s dynamics. Hence, the design of efficient
control schemes based on classical methods that can provide
accuracy and robustness in dynamic tasks, is not straightforward. As
a consequence, more sophisticated kinematic analysis is required,
due to the non-linearity of the mechanical and actuation structure,
as well as the high complexity introduced by the multiple degrees of
freedom.

1.2 Control strategies developed for soft
robots

To address these issues, analytic kinematic models based on
constant curvature assumption have been established (Webster

FIGURE 1
The soft robotic arm covered with nylon ensuring water resistance, while performing water pouring (part of the showering task) in a clinical
environment. The colored lines depict the mean value of the learned ProMPs in the task space, covering the desired subspace of the robot’s
workspace. A projection of the grid of primitives on the human back is also illustrated at the bottom left of the figure. Adapted from Oikonomou et al.
(2022), with permission from IEEE.
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and Jones, 2010), and powerful control strategies for continuum
manipulators are still being developed (George Thuruthel et al.,
2018). Recent model-based approaches like the one introduced in
Kapadia et al. (2010) are specifically developed to perform dynamic
motion control on continuum robots with certain properties,
such as extension, contraction, or omnidirectional bending. In
Falkenhahn et al. (2017), suitable models were developed with a
combination of feed-forward control and decoupled PD-controllers,
and applied to a pneumatically actuated manipulator. A different
approach based on open-loop predictive controllers was proposed
in George Thuruthel et al. (2017), using machine learning-derived
dynamic models directly from the actuation to the task space. The
work presented in Godage et al. (2016) was based on a different
set of techniques, in which novel spatial dynamics were applied to
variable lengthmulti-section continuumarmsunder the assumption
of circular arc deformation of continuum sections without torsion.
A relevant approach is presented in Braganza et al. (2007) where
the authors used a feed-forward neural network component to
compensate for dynamic uncertainties.

1.3 Related work

From the literature review in the previous section, we
could see that the control schemes proposed for soft robots
are highly dependent on the hardware set-up and actuation.
Thus, attempting a fair performance comparison, we focus on
dynamic control strategies applied onto the same soft robot. The
algorithmic elements vary from Reinforcement Learning (RL) to
motor control-based methods (e.g., Central Pattern Generators
(CPGs) and Probabilistic Movement Primitives (ProMPs)) or a
combination of them. But before that, some of the challenges of
transferring the ProMP framework from rigid to soft robots are
presented.

ProMPs on rigid robots: In some works where ProMPs have
been applied to rigid robots (Paraschos et al., 2013; Paraschos et al.,
2018; Gomez-Gonzalez et al., 2020), the generation of primitive
demonstrations has been done through kinesthetic teaching of the
robot by a user. At the same time, the static mapping between
the task and the joint space is given by a mathematical model
based on the known geometry of the rigid manipulator, e.g., the
analytical solution of the inverse kinematics. However, in the present
application, kinesthetic teaching is not feasible, and the mapping
between task and joint space is not provided due to the complex
mechanical structure of the soft robot. Hence, the generation of
demonstrations as well as the computation of inverse kinematics
should be redefined.

Interactive Dynamic Movement Primitives for replicating human
demonstrations: A methodology that partially shares the same
objectives with the present work, but be developed and tested on
a rigid robot, was introduced in Dometios et al. (2018). There, the
authors proposed an interactive version of Dynamic Movement
Primitives accompanied by a vision-based controller with the aim of
reproducing demonstrated washing actions while also adapting the
motion of the robot’s end-effector on the moving user’s body parts.
However, this work focuses only on planning of periodic motions
in the task-space and does not take into account the motion control
aspect of the soft-robotic arm.

CPG-based approach for periodic movements: A relevant work
introduced in Oikonomou et al. (2020) presented a model-free
neurodynamic controller based on CPGs. The goal was the
generation and tracking of rhythmic motion patterns of desired
features, executed by the end-effector (EE) of a single-module
version of the soft-robotic arm described in Section 2. In the present
work, a zero-shot learning approach is implemented that provides
access for execution to almost any rhythmic motion, and avoids
the time-consuming training process required in Oikonomou et al.
(2020). In addition, we focus on a more robust implementation
that expands the workspace of the soft arm and the variability
of the feasible periodic movements. This is achieved by adding
an extra module on the robot which results in the increase of
the actuation space. An extended comparison between the two
approaches in the generation of rhythmic motions is given in
Section 5.4.

Model-Based RL for Closed-Loop Dynamic Control: In
Thuruthel et al. (2019) a closed-loop predictive controller was
implemented and evaluated on similar hardware. There, a model-
based policy learning algorithm was trained through trajectory
optimization and supervised learning. The focus of this approach
was to achieve trajectory tracking accuracy at each time step, a
requirement rarely set for soft robots. Such control schemes require
large amount of data, high computational resources and many
iterations for successfully reproducing a single trajectory, implying
time-consuming training phase until convergence is reached.
Moreover, the temporal scalability of this approach, meaning the
capability to execute trajectories with specific timing properties, is
not evident.

ProMP-based approach for movements of single direction: In
another work presented in Oikonomou et al. (2021), the proposed
controller used ProMPs to create a mapping at the primitive level
between task- and actuation-space. The proper combination of
ProMPs aimed for the reproduction of a trajectory defined by sparse
way-points with time-constraints. At the same time, the unknown
inverse kinematics of the robot are approximated by an RL-based
algorithm. Despite its online adaptability, this approach does not
exploit sufficiently the available information, but focuses only on the
points of high interest - the so-called conditioning points - which are
sparse. Hence, the trained model is rarely updated. Another flaw of
the methodology is that the requested trajectories are limited to be
similar with the derived primitive demonstrations, e.g., in terms of
trajectory direction/flow.

ProMP-based approach for arbitrary movements: To cope with
the drawback of the last approach, in Oikonomou et al. (2022)
the authors proposed a method for the qualitative reproduction
of human demonstrations. This work considers that a complex
trajectory could be derived from the proper composition and
asynchronous sequential and/or parallel activation of learned
parameterizable simple movements that constitute a knowledge
base. This approach exploited the mapping at the primitive-level
provided by the ProMP framework to transfer the composition’s
parameters unchanged into the actuation space for execution. This
simplification of the trajectory control task proved to be useful
for robots of complex unmodeled dynamics. Even though the
presented method already constituted a zero-shot approach for the
qualitative reproduction of any trajectory, it lacks the capability to
efficientlymodulate the features of complex rhythmicmotions; these
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can be tuned out of simple commands in the actuation space, as
seen in Oikonomou et al. (2020). Moreover, in Oikonomou et al.
(2022) the complexity of the output - that is, a linear asynchronous
combination of multiple ProMPs - results in increasing the required
computational effort, as well as in abrupt changes of velocity.
Eventually, the online transition to different rhythmic patterns is
not smooth. Amore detailed comparison betweenOikonomou et al.
(2022) and the proposed methodology is given in Section 5.3, where
the necessity of the present work to handle periodic trajectories is
highlighted through novel experiments.

1.4 Contribution

A soft robot like the one examined in the present work (see
Section 2) is not often assigned with the task of path following
with high-precision; the mechanical properties of its design are
mostly exploited in tasks where safety must be ensured through
compliance, such as those involving human-robot interaction or
manipulation of fragile materials. The task examined in this paper
does not differ from this class of applications. Hence our focus
lies on the qualitative reproduction of trajectories, rather than on
high-precision replication.

In this paper, we present an architecture that aims to
perform motion control on a two-module bio-inspired soft-
robotic arm. Particularly, it focuses on the qualitative reproduction
of rhythmic patterns that are characterized by specific features
defined by a user. The designed controller is built upon the
methodology introduced in Oikonomou et al. (2022) where the
requested trajectory is decomposed into simpler movements
by exploiting the enhanced parameterizability of ProMPs. The
extension proposed in the present work estimates the key features
of the required oscillation at the actuation level, through a
Fourier transformation applied onto the signals derived from the
previous step. Then, a CPG model is assigned with the task
to generate oscillatory motion of appropriate features on the
motors. The efficiency of the proposed methodology is evaluated
on a real soft-robotic arm. The experimental results highlight its
advantages over other methods (Section 1.3) when reproducing
rhythmic motion patterns using a complex robotic system with
unknown dynamics, in applications where high-precision is not
required.

The key novelties of this paper are summarized below.

• reproduction of rhythmic patterns of desired features with a soft
robot;
• a generic model-free method that can be applied to any robot;
• fast training on the real robot, avoiding any simulation;
• zero-shot learning - execution of unseen trajectories right at

first execution;
• easy modulation of periodic motion’s features (amplitude, etc.)

through a CPG model.

1.5 Paper structure

Although the proposedmethodology is model-free - notmodel-
based - and could be applied to any robot, the description of

the specific robotic device (Section 2) is necessary to take place
before the methodology, so that the latter (Sections 3 and 4)
is comprehensive to the reader. A detailed presentation of the
ProMP-based control architecture for non-periodic trajectories
is given in Section 3, and the corresponding extension for
periodic motions using CPGs in Section 4. Experimental evaluation
results are presented in Section 5, while concluding remarks
along with indicative future research directions are provided in
Section 6.

2 The soft-robotic arm

Bio-inspired robots are those that draw inspiration from
some biological systems (animals, plants, etc.) in many aspects,
such as in their design, behavior and operation (Floreano et al.,
2014). Lately, these robots have gained increasing attention due
to their capability to be adaptable, compliant and energetically
efficient. The soft-robotic arm used in our work follows bio-
inspired design principles building upon prior soft-bodied robot
design concepts (Manti et al., 2017), such as the octopus-like
robot presented in Laschi et al. (2012); particularly, its soft
structure that provides the advantage of natural compliance,
as well as its multi-modularity that allows the application of
bio-inspired control methods, such as the CPGs studied on
the salamander (Chevallier et al., 2008). Such modular designs
take also inspiration from biological structures (Trivedi et al.,
2008).

Specifically, the design and structure of the two-module soft
manipulator (Figure 2) is analytically described in Ansari et al.
(2017) and Manti et al. (2016). In a nutshell, our robotic module
has been adapted from the soft arm which was developed by the
Biorobotics Institute (Pisa, Italy) in the frame of the EU project I-
SUPPORT. Each module comprising the robot is made up of hybrid
actuation. At first, three radially symmetric tendons driven by three
servomotors (Hitec HS-422 Super Sport - Supermodified Servo by
01™ Mechatronics) change the configuration of the module after
modifying their cable’s length resulting in extension, contraction,
or omnidirectional bending. These are combined with pneumatic
chambers whose actuation is considered to be fixed in this work.
Therefore, the real robot actuation is based on six inputs at the
motor control level. Regarding position feedback, a 3D magnetic
tracker (3D Guidance trakSTAR Class 1 Type B by Ascension
Technology Corp.) was used, whose 6-DoF electromagnetic probe
is attached at the end of the manipulator, providing its position and
orientation.

Similar to other bio-inspired systems, the soft-robotic arm
of Figure 2 suffers from various limitations induced by its soft
structure’s properties, such as the infinite degrees of freedom. Here,
the most considered one is the difficulty to compute a mathematical
model that approximates the robot’s behavior, e.g., kinematics and
dynamics. Such a limitation does not allow the application of
methods originating from the classical control theory, while the
use of a simulation for the training of learning-based methods is
not straightforwardly feasible. In the next two sections, a detailed
description of a methodology that performs motion control without
requiring a mathematical model of the robot, nor a simulation, is
given.
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FIGURE 2
The two module ‘soft-robotic arm developed during the i-Support project, (A) installed in a clinical environment and (B) a replicated version in the lab.
Adapted from Oikonomou et al. (2021) with permission from IEEE.

FIGURE 3
The overall architecture of the proposed controller for the reproduction of non-periodic trajectories. Blocks with solid outlines denote the various
processes, while arrows indicate the flow of information between them. Specifically, green arrows and blocks correspond to the processes taking place
only once (e.g., training and formulation of MP library, batch training of model learning modules), black dashed arrows constantly feed the
learning-based blocks with actual measurements from the robot (e.g., EE’s position), and blocks with dashed outlines represent the MP libraries that are
trained only once and their content remains unchanged. A detailed description of the functionality of each block is presented in Section 3.

3 ProMP-based methodology for
non-periodic trajectories

The main idea behind the proposed methodology is that
a requested trajectory could be described as the composition
of primitives obtained by a learned MP library, and formed

properly in the task-space by exploiting the ProMP’s properties.
Subsequently, the composition parameters - computed for the task-
space during the former step - could be transferred unchanged to
the actuation-space and applied to the corresponding primitives. A
block diagram is illustrated in Figure 3, briefly describing the control
flow.
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FIGURE 4
(A) Example of primitive demonstrations (lines in pale colors) in task-space, running in parallel with x and y-axes in both directions (towards negative
and positive), covering the desired subspace of the robot’s workspace. Demonstrations of the same color are grouped according to proximity-based
criteria and are trained forming a probabilistic movement primitive (mean trajectory in thick line). For simplicity, only demonstrations and primitives of a
single direction (e.g., towards positive) are illustrated. (B) An illustrative example showing the outcome of some algorithmic components (Path
Segmentation and ProMP composition in task-space) in the task-space using the grid of primitives formed in (A) (black lines). The cyan solid line
indicates the demonstrated trajectory captured using a 3D magnetic tracker attached to the user’s hand, the cyan dashed lines connect it to the proper
primitives’ edge points, while the circles (o) denote the conditioning points [Red: CPT, Green: where distance between consecutive red exceeds a
threshold, Blue: artificial conditioning points lying on the WSub]. Focusing on the upper right conditioning point, the four closest primitives (one for
each direction) are forced to pass through it with a reference velocity. (C) For the conditioning point of (B), the desired velocity g⃗d should be computed
as a linear combination of the reference velocities of the corresponding primitives: g⃗x+, g⃗x−, g⃗y+ and g⃗y−. The contribution of each primitive in
approaching the desired velocity is computed using the simplex method.

For the rest of this section, the task-space is comprised
by the position of robot’s tip, while the actuation-space
consists of the angular position of the (six) motors; hence, the
actuation and the motor spaces coincide in the frames of this
work.

3.1 Generation of primitive demonstrations
and MP training

The extraction of demonstrations and consequently the
formation of the ProMP library derived after training, are crucial
for the proposed methodology’s performance. In the scenario of
washing the human back and its involving sub-processes such
as the water pouring task, the motion of the robot is limited to
the quasi-plane defined by the human back’s surface. At the same
time, the movement on the perpendicular direction is considered
to be negligible. Accordingly, a grid of primitives built across a
2D manifold in the robot’s workspace is required, providing the
capability to plan and reproduce trajectories as a result of primitives’
composition.

The process through which the demonstrations are generated
is quite similar to the one described in Oikonomou et al. (2021).
Concretely, a subspace WSub within the robot’s workspace is
initially defined as a region of interest where the demonstrations
should lie in. Subsequently, all motors are fed with actuation
that result in the EE’s movement from a starting point lying
on the border of WSub towards another one. Note that, at this
stage the actuation corresponding to the starting and the ending

point of each trajectory, is derived through experimentation in the
actuation-space of the robot, and no method for position control
is applied. In addition, randomness between demonstrations is
enhanced by forcing the motors to pass through some median
random points, lying between the two extremes, while smooth
transition between consecutive points is guaranteed with linear
interpolation. Therefore, a trajectory is derived as the coordinated
activation and motion of all motors simultaneously. Keep in mind
that, for each demonstration the sequence of motor positions (six
motors, thus six sequences) and the sequence of EE’s positions
in the task-space are captured along with the corresponding
timestamps.

In contrast to Oikonomou et al. (2021) where the MP library
is formed by demonstrations of a single direction, here the
aforementioned process is executed four times so that the
resulting MPs cover all directions of the subspace and lie without
loss of generality on the xy-plane of a local subspace frame -
SD = {x+,x−,y+,y−}, as shown in Figure 4A. The collected
trajectories are grouped into classes under a similarity criterion,
before proceeding to the MP training. In the present case, it is
assumed that all demonstrations generated by a distribution around
the same extreme - starting and ending - points in the actuation-
space, belong to the same group. Then, the task demonstrations of
the same group are trained into a probabilistic movement primitive,
following the process described in Paraschos et al. (2013). Similarly,
the corresponding demonstrations of the actuation-space are
classified into the same groups, and are also trained into probabilistic
movement primitives. Eventually, a grid of primitives is formed as
shown in Figure 1, Figure 4A.
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3.2 Human-hand demonstration

The goal of this work is to qualitatively reproduce a
demonstrated trajectory using a soft-robotic arm, and evaluate it
taking into consideration only the similarity on x and y-axes. The
demonstrated motions are captured using a 3D magnetic tracker
which is attached to the user’s hand - the hand is mainly moved on
the xy-plane, while the movement on the z-axis is negligible. The
sequence of hand velocities during the demonstrated motion are
calculated in post-processing.

Before using the demonstration as input to compute the
controller’s parameters, a set of pre-processing steps takes place in
order to ensure that the trajectory’s execution is feasible by the robot.
The first step is to scale it onto the xy-plane so that it lies within the
limits of the subspaceWSub defined in Section 3.1. Subsequently, for
each (x,y) pair, the corresponding z coordinate that sets a feasible
target in 3D-space for the robot should be estimated, using the
method described in Section 3.3. The last change in the trajectory
concerns its scaling with respect to the desired total duration of the
execution.

At this point, it should be noted that the robot’s motion must
start and finish at points lying on the border of subspace WSub. This
must hold due to the requirement that the proposed controller be
only able to reproduce motions that are similar to the primitives.
Hence, requesting zero velocity at a point located somewhere else
other than the WSub’s border is not feasible. As a consequence,
two additional points pCS and pCE should be determined where the
robot’s motion will start from and stop at, respectively - both should
be located on the limit ofWSub, ensuring zero velocity. Such a derived
path is depicted in Figure 4B.

3.3 Model learning for inverse kinematics

In cases where the complexity of the robot’s structure prevents
the straightforward computation of, e.g., the inverse kinematics,
alternative solutions are recommended, like the ones reviewed in
Nguyen-Tuong and Peters (2011) and Sigaud et al. (2011) focusing
on model learning. Nevertheless, most of these methods lack the
ability to adjust on-the-fly their behavior, providing only offline
training. This is a serious drawback in the context of bio-inspired
systems since changes in robots’ dynamics constitute a usual
phenomenon during their operation. Since the existing methods
are judged inadequate to approximate the inverse kinematics,
alternative solutions have been sought. Two properties that the
implemented algorithm should be equipped with are: (a) the ability
to exploit the total available information when this is received as
data-stream, and (b) the ability to adjust online its parameters in
order to be compliant with potential changes in the robot’s dynamics
that may occur due to long-term use.

Focusing on data-drivenmethods, in Gijsberts andMetta (2013)
a novel approach is presented, called Incremental Sparse Spectrum
Gaussian Process Regression (I-SSGPR), lying within the general
category of model learning algorithms. The authors of this work
capitalised on the exhaustively studied Gaussian Process Regression
aiming at designing a method that cope with unstructured and
non-stationary environments where adaptability to changing
conditions is required. At the same time, low computational

complexity is achieved, while automated hyperparameter
optimization is provided. Another interesting feature of this
approach is the capability to perform both offline training using
an existing dataset, as well as online updates when new data are
available.

In the frames of this work, the I-SSGPR method provides
an approximation of the inverse kinematics of the robot.
Particularly, two separate modules based on I-SSGPR have
been implemented. The first one provides a feasible target
for the robot by computing the z coordinate when a {x,y}-
pair is received, as explained in Section 3.2. The second
module is used for the mapping of only the conditioning
points (derived from the path segmentation algorithm -
Section 3.4) from the task to the actuation-space. Hence, it receives
the desired position (x,y,z) of the robot’s tip, whose z component
has been computed by the former I-SSGPR module, and outputs
the (six) motors’ angular positions. Both modules are initially
trained offline using the dataset derived during the demonstration
generation process described in Section 3.1. Later on, online updates
are performed during trajectory execution by the robot, as depicted
in Figure 3.

3.4 Path segmentation

In Oikonomou et al. (2021), the conditioning points through
which the robot’s EE was requested to pass were hard coded.
In contrast, here they are extracted automatically through a path
segmentation process. This procedure is assigned with the task
to optimally divide the path into linear segments according to a
similarity criterion. The points defining the segments are then used
by the controller as conditioning points. Path segmentation is the
algorithmic component that follows the capturing of the motion
performed by the user’s hand, and its transformation into the robot’s
workspace. Before proceeding, it is noticeable that the transformed
paths lie within a 2D manifold, hence 2D path segmentation
algorithms are considered.

In Edelhoff et al. (2016), the authors present a variety of
algorithms for segmentation of paths lying on a plane with
application to animal movement patterns’ change detection, ranging
from time-to topology-based methods. Focusing on the second
category, the Change Point Test (CPT) method (Byrne et al., 2009)
suits well in our work, since it detects significant changes in
the observed movement direction (orientation). By applying this
algorithm to the path extracted by the human’s hand, a set SCP of
conditioning points is derived.

The conditioning points obtained by the aforementioned
procedure are not the only ones determined. The designed
implementation considers also the case where the distance h
between two consecutive points exceeds a predefined thresholdhmax.
In this condition, intermediates are added to set SCP, the number of
which is proportional to the fraction ⌊h/hmax⌋. Eventually, the two
corner points pCS and pCE defined in Section 3.2 are also added to
set SCP.

Apart from its position, each point in set SCP is accompanied by
its velocity, as this is determined by the capturedmotion of the user’s
hand. As for the trajectory’s corner points, an alternative velocity is
hard coded in place of the zero velocity that was captured; regarding
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the first trajectory’s point, its velocity’s direction is set equal to that
of the next trajectory’s point, while its magnitude is set equal to that
of the next point of SCP. We proceed similarly for the last trajectory’s
point. It is evident that zero velocity is also hard coded at the two
corner points pCS and pCE of SCP. An illustrative example of path
segmentation is depicted in Figure 4B.

3.5 ProMP composition in task-space and
skill transfer to actuation-space

As already stated, the main idea behind this work is that the
qualitative reproduction of a complex demonstrated trajectory could
be accomplished with the asynchronous activation and combination
of movement primitives drawn from a previously learned
library.

3.5.1 ProMP combination for each conditioning
point

Meeting the condition of passing through the sparsely defined
conditioning points is not the sole requirement; it is also
crucial to achieve the appropriate velocity at a specific time.
To cope with such a challenge, each conditioning point should
be handled independently from the others, and hence trigger
the activation of selected primitives with the required features -
conditioning and duration. The transition between the primitives of
consecutive points is realized with the replanning property, initially
introduced in Oikonomou et al. (2021) but further extended in
Oikonomou et al. (2022) (Section 3.5.2).

The procedure outlined below applies to each conditioning
point pi in SCP, with the exception of the two corner points pCS
and pCE. First, pi is assigned to a primitive in each direction
{x+,x−,y+,y−} based on its proximity to the closest point - this
results in a classification of pi into four primitives. As depicted in
Figure 4B, all primitives to which pi is assigned, are executed in the
task-space, passing through pi where the conditioning property is
applied. Conditioning is also applied to the corner points of the
mean trajectory for each primitive, while a reference duration dref
of primitives’ execution is selected.

The purpose here is to compute how much slower or faster with
respect to dref a primitive should be executed, so that the linear
combination of all velocities at point pi results in the desired one -
note that the duration is inversely proportional to the velocity. The
velocities gm withm = {x+,x−,y+,y−,d} depicted in Figure 4B could
be written as follows:

⃗gx+ = ax+x̂+ bx+ŷ

⃗gx− = ax−x̂+ bx−ŷ

⃗gy+ = ay+x̂+ by+ŷ

⃗gy− = ay−x̂+ by−ŷ

⃗gd = adx̂+ bdŷ

(1)

where am and bm are the projections’ coefficients of gm on axes
x and y respectively. The desired velocity gd is defined as the
linear combination of velocities gn with n = {x+,x−,y+,y−} as
follows:

⃗gd = lx+ ⃗gx+ + lx− ⃗gx− + ly+ ⃗gy+ + ly− ⃗gy− (2)

The goal here is to find the coefficients ln for which Eq. (2)
holds. It should be noted that, since each velocity is derived from
a primitive with a specific direction, negative coefficients ln are not
allowed. In this way, a system of linear equations is formulated that
requires non-negative solutions, constituting a linear programming
(LP) problem.

A common technique that treats such constrained systems
is the simplex method described in Dantzig (2016). Initially,
two new artificial variables are introduced, as the number of
equations derived by Eq. 2. Proceeding to the solution, L =
[lx+, lx−, ly+, ly−, l1, l2]T is requested thatminimizes the linear objective
function cTL with respect to L, where c = [0,0,0,0,1,1]T, subject to
AeqL = beq and L ≥ 0, where beq = [ad,bd]T and

Aeq = [

[

ax+ ax− ay+ ay− 1 0

bx+ bx− by+ by− 0 1
]

]
(3)

Based on simplex method, coefficients lx+, lx−, ly+ and ly− are
derived. They determine how much slower/faster the corresponding
primitive should be executed with respect to its reference velocity
gn at point pi so that the desired velocity is accomplished. As
a result, each primitive’s duration is computed by d(i)n = dref/ln.
Given the duration d(i)n , the last parameter that is deduced is
the starting time-instance t(i)n of each primitive in the global
time-frame.

Therefore, the composition of multiple ProMPs over
conditioning point i results in the following equation:

vi (t) = ai∑
j
ui,j (t− t

(i)
j ) (4)

where j denotes the direction {x+,x−,y+,y−} of the selected
primitive, ui,j(t) is the value of the corresponding primitive at time-
instance t, t(i)j refers to the starting time of primitive ui,j at the global
time-frame, and ai = 1/ni where ni denotes the number of active
primitives that contribute to conditioning point i. Even though four
primitives are used for approximating the position and velocity
at each conditioning point, simplex method might result in zero
velocity for some of them, that means no contribution. In Figure 5,
an example of ProMP composition at each conditioning point of a
demonstrated trajectory is depicted.

Subsequently, the skill transfer process is performed and all
parameters derived for the composition of primitives in the task-
space, such as d(i)n , are transferred unchanged to the actuation space.
At the same time, the MP library - where the mapping at the
primitive level between the two spaces is stored (Section 3.1) -
provides the corresponding primitives in the actuation-space, while
the I-SSGPR module (Section 3.3) interprets all conditioning points
into motor commands.

3.5.2 Replanning at the ProMP level
The replanning process at the primitive level is introduced

in Oikonomou et al. (2021) in order to cope with the constant
changes of the conditioning points in the actuation space, occurring
when the learning-based controller is updated. Hence, the resulting
trajectory is always compliant with the new estimation, performing
necessary changes online rather than after the end of the
execution.
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FIGURE 5
A simple example of ProMP composition at each conditioning point aiming at passing through them with proper velocity. The black lines represent the
grid of mean primitives formed in Figure 4, the cyan line indicates the trajectory that the proposed methodology intends to approach and circles
denote the conditioning points (Section 3.4), while colored arrows show the direction of the corresponding trajectories - black arrows imply the
existence of primitives in both directions of x and y-axes. At each one of the following cases (A)–(D), four primitives (colored dashed lines) are
conditioned to pass through the conditioning point and the simplex method is applied; the output of simplex method is implied by the color intensity
of each selected primitive - high color intensity means high contribution in the linear combination of primitives, and vice versa. On the other hand, the
colored solid line indicates the trajectory derived after ProMP composition for the examined conditioning point, while line’s color fading denotes the
power at each point of trajectory, defined by transition coefficient bi (Section 3.5.2). (A) According to simplex method, only orange primitive is sufficient
to approach the velocity at the first conditioning point (upper-right), thus the orange primitive and the resulted trajectory coincide. The power of the
last one gradually decreases as approaching the next conditioning point. (B–C) For the second and third conditioning points two primitives - orange
and purple - are required. In both cases, the power of the resulted trajectory remains non-negligible only around the examined conditioning point. (D)
Similar to (A), only orange primitive is sufficient to satisfy the requirements for the last conditioning point.

In a similar manner, the replanning property is also exploited
in the frames of this work. Here, they handle the transition
between primitives of consecutive conditioning points by gradually
decreasing the power of the last primitives, while increasing the
power of the next ones. It should be clarified that replanning differs
from blending, in the sense that the primitives on which it is
applied are not necessarily executed in parallel under synchronous
activation, as it is assumed in Paraschos et al. (2013). Additionally,
in this application the intuition behind replanning is that it
ensures smooth transition between sequential primitives formed by
consecutive transition points, rather than blending them.

Proceeding from Eq. 4, the resulting trajectory v(t) is
determined as follows:

v (t) =
N

∑
i=1

bi (t)vi (t) =
N

∑
i=1

bi (t)[ai∑
j
ui,j (t− t

(i)
j )] (5)

where bi(t) denotes the transition function for conditioning point
i and N refers to the total number of conditioning points. An
example of a transition function b(t) along with the corresponding
replanned trajectory in a one dimensional motion is illustrated in
Figure 6. Figure 7 depicts the trajectory derived from Figure 5 after
replanning.

Eventually, given that all primitives are formed, the execution
takes place.They are activated independently and asynchronously as
determined by their starting time-instance t(i)n , while the replanning
property handles the transition between primitives of consecutive
conditioning points.
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FIGURE 6
(A) Y-axis denotes the weight [0,1] of the corresponding primitive, while stars (*) indicate way-points, and circles (o) the time-interval where transition
function bi(t) remains fixed. (B) The activation of Red-Green-Blue trajectories is indicated by the corresponding bi(t) in (A), while the Cyan is the
resulting trajectory generated through replanning. Here, the y-axis might denote either the trajectory in one axis of the task-space, or the angular
position of a motor in the actuation-space.

FIGURE 7
Continuing from Figure 5: Transition between trajectories of consecutive conditioning points through replanning in the xy-plane (task-space). Note
that, in this example the deviations from the real trajectory are purposefully exaggerated to illustrate the transition between conditioning points. The
deviation shown could be reduced either by increasing the number of conditioning points, or by conditioning on several consecutive points.
Nevertheless, as can be seen in Figure 8 in practice even with a small number of conditioning points we obtain small deviations. (A) The trajectories
derived for each conditioning point following the process described in Section 3.5.1 are here connected using functions that ensure smooth transitions
(red lines). Each trajectory is illustrated by a solid line, whose color fading denotes the value of the corresponding transition function; faint color implies
negligible contribution to the replanned motion. (B) Total resulted (red) vs demonstrated (light blue) trajectory.

3.6 Performance demonstration

The capabilities of each algorithmic component as well
as the performance of the methodology as an entity for the
reproduction of non-periodic trajectories were analytically
evaluated in Oikonomou et al. (2022) through an experimental
process conducted using the soft-robotic armdescribed in Section 2.
Here, a brief presentation of the research findings is provided to
illustrate the properties of the method, before proceeding to the
introduction of the extended version of the architecture to periodic
movements.

As shown in Figure 8, the proximity level between the
desired and the performed trajectories implies that the proposed
methodology has the capability to qualitatively reproduce

demonstrated hand’s motions, since it manages to handle the
movement not only close to the conditioning points but also
in the intermediate space. The spatial similarity is due to the
proper composition of primitives for approximating not only the
conditioning points but also the velocity that was recorded at each
of them.

Importantly, this method enables generalization to the
production of circular and diagonal trajectories (Figure 8) that are
different from the initially learned library of horizontal and vertical
MPs. Finally, it is interesting to note that this methodology provides
the capability to execute periodic trajectories while handling them
as if they were non-periodic. Nevertheless, its inefficiency over the
proposed extension is shown in Section 5.3, where the experimental
comparison of the two methods are presented.
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FIGURE 8
Experimental results illustrating the execution (solid black line) of four demonstrated trajectories (pale red line) by the soft-robotic arm. The desired
conditioning points are depicted with colored x symbols, while the executed points at the same timestep are depicted with the respective colored dots.
The red symbols (x and dot) indicate the first conditioning point of the trajectory. Adapted from Oikonomou et al. (2022), with permission from IEEE.

FIGURE 9
The overall proposed architecture for the reproduction of periodic trajectories as extension of Figure 3. The first block (blue) consists of all processes
taking place in case of non-periodic trajectories (Section 3), while the next two processes are required for transforming the ProMP-based actuation
into CPG-based. Black dashed arrow constantly feeds the learning-based blocks with actual measurements from the robot. A detailed description of
the functionality of each one of the new blocks is presented in Section 4.

4 Extension for periodic trajectories

The methodology described in Section 4 provides the soft robot
with the capability to perform arbitrary non-periodic trajectories in
a model-free zero-shot manner. The main novelty here consists of
using the same methodology as a pre-computational process in a
modified architecture in order to facilitate the execution of rhythmic
patterns. Such an extension is activated by adding two additional
processes at the end of the previous methodology (Figure 3), as
depicted in Figure 9.

4.1 Justification on the extension’s
necessity

Normally, a periodic phenomenon has neither discrete start nor
end points that determine its duration and thus its existence. On the
contrary, there are a quasi-start and a quasi-end points that coincide,
while all the others appear repeatedly after a specific duration, which
is eventually called period. The method described in the previous
section requires that the desired trajectory is defined within some
specific temporal limitations, e.g., a predetermined duration, so that
its computation is feasible. However, in cases where the targeting
motion is periodic and thus its start and end points are not explicitly

defined, the reproduction task should be handled differently. The
goal of the proposed extension of the control architecture is the
simplification of the trajectory execution under the presence of a
repeated pattern.

4.2 Methodology extension

The second important novelty of this work consists in
compressing a learned periodic movement into the parameters of
a CPG. CPGs are neural circuits found in animals’ nervous system
that are capable of producing rhythmic coordinated patterns of
high-dimensional output signals out of simple low-dimensional
input signals (Ijspeert, 2008). Their interesting properties led to the
design of neurobiological mathematical models that approximate
their functionality. InOikonomou et al. (2020) the authors exploited
CPGs’ capabilities to modulate the features of the produced
rhythmic output (e.g., frequency) by using simple control signals,
aiming at the reproduction of periodic movements of desired
features. Likewise, the present work focuses on utilizing the property
of the CPG to generate complex signals out of simple commands, as
well as the ability of a soft robot to produce complex motions due to
its dexterity. As already stated, the main strength of the proposed
approach lies in its ability to avoid the time-consuming training
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process required in Oikonomou et al. (2020), while providing a
zero-shot learning approach. The actuation which is finally received
by the motors of the robot is similar to the one computed in
Oikonomou et al. (2020).

Before proceeding to the presentation of the two additional
processes, note that in this work the desired trajectory is
a parameterizable ellipse lying on the xy-plane. Such a two
dimensional periodic motion can be decomposed into two single-
frequency oscillations - one on each axis, determined by an offset,
an amplitude and a phase bias. While the elliptical shape of the
target trajectory has been chosen for simplicity, the proposed
methodology might be similarly applied to any trajectory that
constitutes a linear composition of multiple oscillations in each
dimension.

In addition, here, a less sophisticated implementation of
path segmentation takes place which is permitted due to the
periodicity of the desired trajectory. The latter is divided into
n-segments within a period of motion, which implies that
a conditioning point is hard-coded every 2π/n radians. This
modification has minor effects on the outcome compared to the
CPT approach. Nevertheless, various numbers of conditioning
points within a period are tested and evaluated as shown in
Section 5.

The contribution of the new blocks adding the capability
of reproducing periodic trajectories (Figure 9) is described
below.

4.2.1 Computation of CPG-parameters
This module follows the ProMP-based part of the methodology,

and its goal is to detect the intrinsic periodicity of the actuation
signals along with their features, and subsequently to decompose
it into discrete single-frequency oscillations. Here, the first step
is the isolation of the oscillatory part from the resulting signal
which contains also the actuation performing the transition from
the border of the primitive’s grid to the edge of the requested
trajectory (see Section 3.2 and Figure 4B). The periodic signal
can be easily obtained since the timestamps of the conditioning
points are already known. Subsequently, the simplest way to
compute a periodic signal’s components is by applying Fast Fourier
Transformation (FFT) (Cooley and Tukey, 1965). Through this
process the original actuation is filtered since only the dominant
frequency is kept, and eventually the computed features - offset,
amplitude and phase bias - for each motor are promoted to the
next block, where a CPG-based reconstruction of the actuation takes
place.

4.2.2 CPG-based actuation
In this approach, the motors of the soft-robotic arm can

be seen as a system of six coupled oscillators (one for each
motor) that produce appropriate rhythmic signals, resulting in the
generation of periodic movements by the robot’s tip. In contrast
to Oikonomou et al. (2020) where the offset of the signal was
not included in the control parameters, here each oscillator is
parameterizable in terms of frequency, amplitude, offset, as well
as phase difference with respect to the signal of a motor that
is predefined as reference. The redefinition of control parameters
allows the change of the center aroundwhich themotion takes place.
The implemented CPG model is mathematically formulated by the

following system of equations (Crespi et al., 2008):

̇ϕi = ωi +∑
j
(wijrj sin(ϕj −ϕi −φij))

̈ri = αr(
αr
4
(Ri − ri) − ̇ri)

̈xi = αx(
αx
4
(Xi − xi) − ̇xi)

θi = xi + ri cosϕi

(6)

where the state variables ϕi, ri and xi represent the phase,
the amplitude and the offset of the ith oscillator, respectively;
these are computed iteratively using a numerical method that
allows us to approximate solutions to differential equations.
Besides, the parameters ωi, Ri, Xi and φij provide control over
the frequency, amplitude, offset as well as the phase biases
between oscillators i and j, respectively; they are determined
by the decomposition of the actuation signals performed in
the previous step through the FFT algorithm. The phase biases
φij along with the weights wij define the coupling between the
oscillators i and j. Eventually, αr and αx are positive constants,
while thetai is the rhythmic output signal extracted from
oscillator i.

5 Experimental evaluation

Although multiple algorithms are utilized in the overall control
architecture, the evaluation is limited to the contribution of the
proposed extension. The evaluation taking place in this section
focuses mostly on highlighting the advantages and the efficiency
of our implementation over the previously developed methods
introduced in Oikonomou et al. (2020); Oikonomou et al. (2022).
Towards this direction, a set of experiments is conducted on the real
soft arm, and a qualitative comparison between them is attempted,
in order to further exhibit its usefulness in the present application.

From now on, to provide a clear distinction through the rest
of the manuscript between the various methods, the approach
introduced in Oikonomou et al. (2020) is referred to as CPG-based,
the one in Oikonomou et al. (2022) as ProMP-based, while the
extension proposed in this paper is denoted by the abbreviation
MP-D2P (Movement Primitive - from Discrete To Periodic).

5.1 Learning the ProMP library and the
I-SSGPR modules

Initially, directed demonstrations are generated by the robot
while a magnetic tracker attached on the robot’s tip was capturing
not only the generated paths in the task-space, but also the sequence
of actions. Then, the demonstrations recorded in both task and
actuation spaces are grouped into classes and trained to form
the MP library following the process described in Section 3.1.
Additionally, the data collected during the aforementioned
process - the robot tip’s positions along with the corresponding
actuations - are exploited to form the dataset Dpod, which is
used to offline train the two I-SSGPR modules as described in
Section 3.3.

In the frames of the present work, ten trigonometric basis
functions are used to construct each I-SSGPR module. Right after

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1256763
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Oikonomou et al. 10.3389/frobt.2023.1256763

the end of the offline training session, their performance is assessed
based on how well they approximate the training dataset Dpod.
Starting from the module that computes the z-coordinate for a
{x,y}-pair ensuring a feasible target inside the robot’s workspace,
the computed error is [3.5 ± 1.4] (mm). Moreover, the module
that approximates the inverse kinematics, by receiving the {x,y}-
pair along with the previously computed coordinate on the z-axis
as input and outputs the corresponding actuation, results in [535
± 316] (ticks) error measured for each motor. Taking into account
that 32,768 ticks are equivalent to one full periodic rotation of
the motor shaft, then the aforementioned error is translated to
[2.5 ± 1.5] (mm) error in cable length. This corresponds to 5{%}
of the robot’s operational workspace, because the range of change
for each cable is more than 50 mm. This error is low considering
the stochasticity induced by the mechanical structure of the soft
robot.

From now on, the learned models (ProMP library and I-
SSGPR modules) are used as knowledge base by the planner
in order to perform some desired tasks. On the one hand, the
content of the ProMP library for both the actuation and the task-
space is fixed. Meanwhile, the I-SSGPR modules are constantly
updated as new data are obtained in the course of the robot’s
execution.

The experiments conducted on the real robot aim mainly at
assessing both qualitatively and quantitatively the performance of
the proposed extension, and subsequently at demonstrating its
enhanced capabilities.

5.2 Varying number of conditioning points

Initially, an evaluation is attempted on how the number
of conditioning points affects the planning of the primitives’
blending and the computation of the requested actuation.
The results obtained from the first experimental session are
depicted in Figure 10 and Figure 11. There, all trajectories are
illustrated for three different numbers of conditioning points per
period: {4,8,12}.

In Figure 10, each plot contains the desired path along with
the conditioning points, the planned one computed as a blending
of primitives as well as the executed one using the ProMP-based
method. It can be easily noticed that the more conditioning points
are defined on the desired trajectory, the higher the segmentation
resolution, and the better the accomplished approximation. Another
outcome that is extracted from the 2D plots in the same figure
is that the planned trajectory (black line) is relatively close to the
executed one (green line) for all three cases. This implies that
the mapping at a primitive level provided by the MP library is
sufficient for allowing the planning in the task and the subsequent
transfer to the actuation-space. In addition, the mean error at a
conditioning-point level, in terms of both position and velocity, is
also small after five executions, as seen in Table 1.The table indicates
the capability of I-SSGPR modules to approximate adequately
the inverse kinematics. At the same time, the corresponding
standard deviation included in the same table is non-zero due
to the stochasticity induced by the soft properties of the robot.
Nevertheless, standard deviation is still relatively small, which
reveals the good repeatability of the gestures executed by the
robot.

Figure 11 enables to visually compare the results of the ProMP-
based method and MP-D2P proposed in this paper. In the figure,
each plot illustrates the desired path along with the conditioning
points, the executed one using the ProMP-based method and the
one resulted fromMP-D2P. Before proceeding to amore quantitative
comparison, the assessment of the new method takes place in
terms of how well it approximates the desired periodic trajectory.
However, in this case the evaluation of the performance based on
the error measured at the conditioning points is not appropriate;
actually, focusing on the accuracy at some sparse points might
be sometimes misleading for extracting a safe outcome regarding
the efficiency of a method. For example, in the first scenario in
Figure 10 where 4 conditioning points are used, even though the
computed error at each one is small, the executed trajectory differs
largely from the desired one. Therefore, the evaluation here is
based on the parameters - offset, amplitude and phase bias - of
the dominant frequency’s component for the two motions - the

FIGURE 10
Execution of the same trajectory for three different numbers of conditioning points per period using the ProMP-based approach; from left to right:
{4,8,12} conditioning points. Each figure depicts the targeted trajectory (red line), the planned motion computed as a blending of primitives through
replanning (black line), as well as the execution of the planned actuation by the soft-robotic arm for five periods (green line). The desired conditioning
points are depicted with colored x symbols, while the executed points at the same timestep are depicted with the respective colored dots. The cyan
symbols (x and dot) at the border of the primitives’ grid indicate the first conditioning point of the trajectory.
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FIGURE 11
Continuing from Fig. 10, here is the execution as this is computed and performed by MP-D2P (blue line). Similarly, the number of conditioning points
per period are, from left to right: {4,8,12} conditioning points. The desired trajectory (red line) as well as the executed one by the ProMP-based
approach (green line) are also included for comparison purposes.

TABLE 1 Mean error measurements for five (5) consecutive executions of the periodic trajectories by the soft-robotic arm, depicted in Figure 10. The position
error ep (cm), the velocity direction error ev̂xy (deg) and the ratio of the actual velocity to the desired one e|v⃗|xy (dim/less) are all measured in each conditioning
point CP## at the corresponding time-step. The last column computes the average of standard deviations for all conditioning points.

#CP Error type CPS CP01 CP02 CP03 CP04 CP05 CP06 CP07 CP08 CP09 CP10 CP11 CP12 CPE std

4

ep (cm) 2.8 2.3 2.6 1.7 1.3 - - - - - - - - 2.7 <±0.1

ev̂xy(deg) - 6.5 1.7 24.8 10.8 - - - - - - - - - ±1.1

e|v⃗|xy - 1.24 1.15 0.99 1.19 - - - - - - - - - ±0.03

8

ep (cm) 2.3 2.9 2.6 2.9 2.5 1.9 0.6 1.5 2.9 - - - - 3.0 <±0.1

ev̂xy(deg) - 11.0 17.7 2.3 5.3 22.4 2.5 13.2 16.4 - - - - - ±1.2

e|v⃗|xy - 1.29 1.29 1.35 1.50 1.04 1.22 1.18 1.15 - - - - - ±0.02

12

ep (cm) 2.3 2.9 2.4 2.7 3.2 3.0 2.3 2.2 1.2 0.8 1.1 2.1 2.6 3.0 <±0.1

ev̂xy(deg) - 3.2 8.8 3.7 4.5 7.6 1.6 5.5 6.3 4.9 5.5 1.4 3.1 - ±0.9

e|v⃗|xy - 1.16 1.21 1.26 1.15 1.41 1.06 1.18 1.23 1.36 1.22 1.16 1.18 - ±0.03

desired and the executed one. In Table 2 the resulting parameters are
presented after decomposing each trajectory into two oscillations,
one on the x-axis and one on the y-axis. The relatively small
errors shown there along with the visual similarity depicted in
Figure 11 demonstrate the capability of the proposed method
to qualitatively reproduce the specific periodic motion of this
example.

The two following sections, present a more focused and detailed
comparison of the new approach with respect to the previously
developed methods.

5.3 Comparison: ProMP-based approach
vs MP-D2P

Although the ProMP-based methodology (Oikonomou et al.,
2022) is able to qualitatively reproduce any trajectory, the proposed
extension ismore beneficial regarding the approximation of periodic
trajectories, as indicated from the experiments. Some of the
advantages that set it more preferable over the ProMP-based
approach are listed below.

(a) The ProMP-based method is highly dependent on the number
of conditioning points defined prior to execution. Specifically,
it is noticed that when using four points (left plot in Figure 10)
the resulting trajectory largely differs from the desired one,
even though the error at these points is relatively small.
This is not the case for the new approach where the zero
and the most dominant frequency of the actuation are only
kept through filtering, deriving a closer reproduction of
the desired periodic motion (Figure 11). However, even
in this case more conditioning points result in better
approximation.

(b) A restrictive property of the ProMP-based method is that the
motion must always start from and finish to somewhere at the
border of the grid of primitives where zero velocity can be
accomplished. In contrast, the translation of the actuation into
CPG format allows the start and end of the trajectory to take
place wherever within the operational robot’s workspace.

(c) Another flaw of the ProMP-based approach is that some
features, such as the number of periods requested to be
executed, have to be predetermined by the user during the
definition of the desired periodic motion. In contrast, the
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TABLE 2 Assuming that each periodic trajectory lying on the xy-plane consists of two oscillations - one in each axis - only five parameters are required for fully
defining it; setting the x-axis as reference, PhaseBiasXX is omitted.This table presents the features that characterize each desired and the corresponding executed
motion. ID 1 is assigned to the trajectories illustrated in Figure 11, while IDs 2 and 3 correspond to the first two trajectories depicted in Figure 12. The second
column denotes whether the features represent the desired trajectory, or the number of conditioning points defined for the executed by the proposedmethod.

traj. ID type OffsetX (m) AmplitudeX (m) OffsetY (m) AmplitudeY (m) PhaseBiasYX (rad)

1

desired 0.508 0.080 −0.315 0.080 1.571

4 CPs 0.511 0.111 −0.305 0.107 1.607

8 CPs 0.510 0.100 −0.306 0.097 1.608

12 CPs 0.511 0.098 −0.304 0.094 1.596

2
desired 0.508 0.100 −0.365 0.054 1.571

12 CPs 0.508 0.122 −0.357 0.066 1.436

3
desired 0.508 0.088 −0.326 0.090 2.151

12 CPs 0.511 0.108 −0.313 0.104 2.124

FIGURE 12
MP-D2P: (A)–(B) Execution of two periodic trajectories with elliptical shape (in blue), and illustration of the corresponding desired ones (in red). (C)
Online transition between three periodic trajectories during execution.

FIGURE 13
First derivative of computed actuation for the same periodic trajectory using the ProMP-based approach (in red) and the MP-D2P method (in blue), for
varying number of conditioning points, from left to right: {4,8,12}.

translation and the execution of the actuation by the CPG
module allows the performance to be continuous until it is
(manually) modified or stopped. Similarly, the use of the
CPG module also ensures smooth transition to periodic
trajectories of different features during the course of execution.
Figure 12C illustrates in different colors the transition from
one periodic trajectory to another when a proper signal is
received by the motors’ controller. Both requests for online
adaptation or change of the executed trajectory described

here could be achieved by the ProMP-based module through
the replanning process. However it constitutes a complicated
procedure since it requires the definition of the transition
points.

(d) Last but not least, the velocities computed by the ProMP-
based approach and planned to be executed by the robot’s
motors, require abrupt changes in their magnitude as shown in
Figure 13 and hence big accelerations. It is also noticed that the
accelerations are increased proportionally to the density and
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thus the number of conditioning points. On the contrary, here
the actuation is previously filtered and eventually reconstructed
using only a finite number of frequency components, nomatter
how many conditioning points are used for the approximation.
Hence, the corresponding velocities have been smoothed before
they are applied to the motors.

5.4 Comparison: CPG-based approach vs
MP-D2P

Generally, the rhythmic patterns constitute complex non-linear
motions. However, the controller based on CPGs facilitates its
generation due to the low dimensional and easily parameterizable
input signals, as explained in Ijspeert (2008). Moreover, their
combination with discrete MPs and concretely the exploitation of a
ProMP framework such as the one developed in Oikonomou et al.
(2022), solves many limitations presented in Oikonomou et al.
(2020), the most important of which are summarized
below.

(a) The use of a simulation for speeding up the training process is
almost impossible, due to the absence of a reliablemathematical
model that adequately approximates the specific robot’s
behavior. As a result, performing the whole learning procedure
directly on the soft arm is the only way forward. However, this
process is time-consuming, and requires exhaustive exploration
of many iterations through trial-and-error for the learning-
based model to converge, especially in cases of learning
with no prior knowledge - from scratch. The estimation
of the actuation provided by the ProMP approach, before
the conversion into CPG format, accelerates significantly the
computation.

(b) One of the main drawbacks of the previous implementation is
that the offset of the actuation is not included in the model’s
state-action space - contrary to the amplitude and the phase
bias. As a consequence, the learned trajectories are limited
around a fixed center. As shown in the experiments and
illustrated in Figure 12, the extendedmethodology provides the
capability of executing motions around all centers lying within
the robot’s workspace.

6 Discussion

The goal of this work was the design of a control architecture as
an extension of a previously developed method (Oikonomou et al.,
2022), that is capable of qualitatively reproducing periodic
trajectories of desired features applied on a modular robotic arm
with soft properties. MP-D2P is based on the idea that a periodic
motion in the task-space could be more efficiently controlled
by rhythmic patterns employed in the actuation, such as those
generated by a CPG (Ijspeert, 2008). The derived results proved
that the conversion of the learned actuation with ProMPs into a
CPG format provides a good approximation of the desired motion,
considering the constraints in terms of accuracy induced by the

robot’s mechanical structure. Its comparison with the previously
developed methods shows that the MP-D2P exploits the advantages
of each one of them; briefly, it requires less training than the CPG-
based approach and directly provides a qualitative estimation of
the actuation by exploiting a MP library used as knowledge base.
In addition, it eventually computes a low-dimensional control
parameterization for generating the desired rhythmic pattern.

In this work, the training process - and thus the execution and
the evaluation - is focused on a subspace of the workspace in order
to facilitate the analysis of the methodology. The chosen subspace
is quasi-planar, hence the definition of the grid of primitives and
their directions (see Section 3.1) is more straightforward in terms
of implementation, while it facilitates visualization and analysis.
Either way, the chosen subspace already coversmost of the reachable
workspace of the soft-robotic arm. To further extend it we would
need to go 3D. While this is for future work (see last paragraph
of this section), we have good reasons to think that this can be
extended in a straightforward way to cover 3D trajectories. This
requires the training of new primitives, e.g., in parallel to the z-axis.
A potential issue in case the workspace is extended on a plane that
is perpendicular to the ground, concerns the capability of the soft-
robotic arm to bear large torques that might be produced by the
gravitational force. However, in principle the controller should be
able to manage to withstand the forces, since the trained primitives
would result from trajectories that would have been generated under
gravity.

The term “zero-shot” does not imply the absence of knowledge,
but the fact that any unseen trajectory can be generated using a fixed
library of known simple trajectories. In such a case, a relatively good
approximation is achieved right from the first execution, without
requiring more than one trials until the controller’s parameters
converge. In this work, the library of primitive trajectories consists
of quasi-straight lines, while the executed ones include turns. The
research findings presented in Sections 3.6 and 5 exhibit the zero-
shot learning property of the controller. In similar approaches like
in Ijspeert et al. (2002), the execution of the desired trajectory using
the proposed controller is preceded by the demonstration of the
motion (to the robot) by a human through kinesthetic teaching.
There, a sequence of actions is captured by the encoder integrated
in each joint of the robot. However, such an approach is not
feasible in the present application due to the soft properties of
the robot’s mechanical structure. At the same time, kinesthetic
teaching in most cases requires the knowledge of a model
that computes the robot’s dynamics, in order to compensate
gravity’s effect. Nevertheless, the proposed controller extracts the
requested actuation in a model-free manner avoiding the design
of complex models that may not approximate well the soft robot’s
behaviour.

Moreover, the introduced control strategy may be applied
to any robot without requiring the knowledge of a model that
approximates the robot’s behaviour, since it constitutes a model-
free method. This adds to our previous work by further showing
the benefit in terms of adaptivity, flexibility, and low computational
cost (compared to model-based methods) of bio-inspired model-
free reinforcement learning robot architectures (Khamassi et al.,
2006; 2011; Renaudo et al., 2014; Khamassi et al., 2018). Compared
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to this previous work, which mostly used discrete actions, or
combined discrete actionswith continuousmovement parameters in
a parameterized action space (Khamassi et al., 2017; Khamassi et al.,
2018), the method proposed here enables to learn continuous,
complex, and even periodic, trajectories of the robot’s arm, which
further extends possible applications.

The proposed solution may offer new possibilities for the
integration of soft robots into systems that serve for medical
purposes, such as the water pouring task considered in this work
which is part of the more general showering application. For
example, in a relevant context, a batch of periodic movements
selected specifically for each patient, could be demonstrated
and recorded by an expert (e.g., nursery staff) and stored in
a “personal” library of the individual. Subsequently, according
to the washing scenario the appropriate motion would be
autonomously reproduced by the robot in zero-shot manner.
Such an advancement would enable automation while ensuring
safety, and in the specific application might be beneficial for
the clinical personnel whose workload could be dramatically
reduced, as well as for the patients. In the latter case, such
an autonomous system would provide comfort and a sense of
independence to the users who may feel exposed in terms of
privacy when other humans (e.g., therapists) intervene on their
behalf.

In future work, we plan to improve the execution of the periodic
motion in terms of accuracy. This will be achieve by refining
the learning-based model of robot’s inverse kinematics, and by
providing online correction to errors through the exploration of
better actions and convergence during execution. Moreover, the
extension to a 3D grid of primitives is part of the future work.
Eventually, further investigations that could enhance the value of
the proposed methods are those that concern the reproduction
of trajectories consisting of combined translational and periodic
parts. These components could be extracted automatically by
decomposition of the human hand’s motion, so that the two
main methodologies - ProMP-based and MP-D2P - perform
simultaneously.
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