
TYPE Original Research
PUBLISHED 03 January 2024
DOI 10.3389/frobt.2023.1255696

OPEN ACCESS

EDITED BY

Panagiotis Tsiotras,
Georgia Institute of Technology,
United States

REVIEWED BY

Robert Penicka,
Czech Technical University in Prague,
Czechia
Savvas Loizou,
Cyprus University of Technology, Cyprus

*CORRESPONDENCE

Panagiotis Rousseas,
prousseas@mail.ntua.gr

RECEIVED 09 July 2023
ACCEPTED 20 October 2023
PUBLISHED 03 January 2024

CITATION

Rousseas P, Bechlioulis C and
Kyriakopoulos K (2024), Reactive optimal
motion planning for a class of holonomic
planar agents using reinforcement
learning with provable guarantees.
Front. Robot. AI 10:1255696.
doi: 10.3389/frobt.2023.1255696

COPYRIGHT

© 2024 Rousseas, Bechlioulis and
Kyriakopoulos. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Reactive optimal motion
planning for a class of holonomic
planar agents using
reinforcement learning with
provable guarantees

Panagiotis Rousseas1*, Charalampos Bechlioulis2 and
Kostas Kyriakopoulos3

1Control Systems Laboratory, School of Mechanical Engineering, National Technical University of
Athens, Athens, Greece, 2Division of Systems and Control, Department of Electrical and Computer
Engineering, University of Patras, Patras, Greece, 3Center of AI & Robotics (CAIR), New York University,
Abu Dhabi, United Arab Emirates

In control theory, reactive methods have been widely celebrated owing to
their success in providing robust, provably convergent solutions to control
problems. Even though such methods have long been formulated for motion
planning, optimality has largely been left untreated through reactive means,
with the community focusing on discrete/graph-based solutions. Although the
latter exhibit certain advantages (completeness, complicated state-spaces), the
recent rise in Reinforcement Learning (RL), provides novel ways to address the
limitations of reactive methods. The goal of this paper is to treat the reactive
optimal motion planning problem through an RL framework. A policy iteration
RL scheme is formulated in a consistent manner with the control-theoretic
results, thus utilizing the advantages of each approach in a complementary
way; RL is employed to construct the optimal input without necessitating the
solution of a hard, non-linear partial differential equation. Conversely, safety,
convergence and policy improvement are guaranteed through control theoretic
arguments. The proposedmethod is validated in simulated syntheticworkspaces,
and compared against reactive methods as well as a PRM and an RRT⋆ approach.
The proposed method outperforms or closely matches the latter methods,
indicating the near global optimality of the former, while providing a solution
for planning from anywhere within the workspace to the goal position.

KEYWORDS

optimal motion planning, optimal control, reinforcement learning, nonlinear systems
and control, path planning

1 Introduction

Motion Planning (MP), is one of the most fundamental problems in robotics (Latombe,
1999). Almost any resultant problem (from industry-related tasks, to social and collaborative
ones) is irrelevant if a robot fails to autonomously perform safe and correct navigation.
While in the industrial context such problems have been largely addressed, owing to highly
restricted operating conditions and high task specificity, extending robotic capabilities for
tackling any highly unknown, high-variance, and adaptive real-world environment is an
active research field in modern robotics.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1255696
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1255696&domain=pdf&date_stamp=2023-12-20
mailto:prousseas@mail.ntua.gr
mailto:prousseas@mail.ntua.gr
https://doi.org/10.3389/frobt.2023.1255696
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

In order to tackle the above demanding problem, Data Driven
methods (DT) and Machine Learning (ML) approaches (and more
specifically Reinforcement Learning (RL)) (Brunton andKutz, 2021)
have been employed with remarkable results. Traditionally, robotics
problems are treated as ControlTheoretic (CT) problems, which are
tackled through formal control design based on the aforementioned
theoretical framework. RL methodologies treat such problems
through learning a control policy via variousmethods that in general
require exploration of a robot’s environment and the exploitation
of gathered knowledge (data). The learning aspect of ML methods
aims at addressing an integral feature of robotic platforms, namely,
the concept of “Embodied Intelligence” (Roy et al., 2021) (i.e., the
fact that embodied agents operate within and interact with realistic,
highly varying, and uncertain environments).

However, even though ML researchers have provided some
theoretical guarantees (Sutton and Barto, 1998), this rests in contrast
to the CT paradigm, where provable guarantees are a design
specification (e.g., see feedback linearization (Isidori, 1999) for
convergence and prescribed performance control (Bechlioulis and
Rovithakis, 2008) for output constraints). For example, in the
context of the motion planning problem, there exist a variety
of conventional algorithms that provide provable guarantees,
whereas ML approachesmostly aim at achieving a desired control
performance, without imposing the latter by design, hence, a
statistical analysis may be applied to asses the effectiveness of
the method. Considering the above, we propose a method that
aims at taking a step towards bridging the identified gap in the
context of the MP problem. In this case, the two perspectives,
namely, the control theoretic reactive (feedback) design and RL-
based optimization, are merged via a Policy Iteration (PI) approach.
The design of a provably safe and convergent controller follows
the CT philosophy, while at the same time, it is shown to provide
successively ameliorating policies through the application of a RL-
PI scheme. The proposed method concentrates around the off-line
computation of the optimal velocity input for a class of holonomic
agents, which is advantageous in cases where planning from many
initial robot positions is necessary. Such environments include
warehouses, where the workspace is a-priori known and robotic
tasks most likely include many navigation instances within a robot’s
workday, thus motivating our method’s scope.

1.1 Related work

The Path Planning problem, i.e., the definition of a geometric
path given geometric constraints, has been extensively approached
using Sampling-Based Methods (SBMs) (Karaman and Frazzoli,
2011) and/or discrete/graph-based approaches. These include, but
are not limited to, Probabilistic Road Maps (PRMs) (Kavraki et al.,
1996), Djikstra’s algorithm (Anastopoulos et al., 2009), Random
Rapidly exploring Trees (RRT) (LaValle et al., 2001) and its variant
RRT⋆ (Karaman and Frazzoli, 2011), A⋆ (Pearl, 1984) and D⋆ with
its variant, D⋆-lite (Koenig and Likhachev, 2002). Owing to the rise
in computing power, such methods have been widely celebrated,
with significant extensions to improve their performance, or
generalize their scope. RRT⋆ has more specifically seen significant
development, through smart re-planning (Wang et al., 2020b) and
extensions such as (Jaillet et al., 2008) for considering continuous

cost formulations, and even dynamic workspaces (Wang et al.,
2020a).

In contrast to discrete methods, continuous methods, like
Navigation Functions (NFs) (Rimon and Koditschek, 1992) and
Artificial Potential Fields (APFs), treat the problem through the
design of potential functions over the robot’s workspace, such that
they exhibit a single global minimum at the desired configuration.
However, suchmethods are hard to tune in order to nullify any local
minima that would inhibit convergence to the desired final position.
A notable class of APFs, namely, Artifical Harmonic Potential Fields
(AHPFs) (Loizou, 2011) have been employed in disk worlds, owing
to lack of local minima inside their domain. Their limitations have
also been treated through transformations of arbitrary workspaces
into disk ones (Vlantis et al., 2018a), and the formulation of
harmonic vector basis’ directly on the physical workspace (Kim
and Khosla, 1991; Rousseas et al., 2021; Rousseas et al., 2022). The
above methods are consistent with the reactive approach of CT,
through the formulation of a continuous velocity vector field over
the entire workspace of a robot, while providing convergence and
safety guarantees for the resulting velocity field.

More recently, ML methods have been employed for a wide
range of robotic planning problems, including MP. Long-Short-
Term-Memory Networks (LSTMNs) (Inoue et al., 2019), Support
Vector Machines (SVMs) (Weston and Watkins, 1999), Monte
Carlo Tree Search (MCTS) with Neural Networks (Paxton et al.,
2017), andConvolutionalNeuralNetworks (CNNs) (Lei et al., 2018)
belong to this class. Out of all the ML-related frameworks, the
most relevant to this work is RL, where Q-learning and policy
gradient have been employed (Zhou et al., 2022). More specifically,
applications involve RL with PRM (Francis et al., 2020), where noisy
sensors and complicated models are considered as well as Deep
Reinforcement Learning (DRL) for visual navigation (Devo et al.,
2020), where exploration and target-following tasks are considered.
Another impressive DRL result is presented in (Miki et al., 2022),
where a quadruped platform is demonstrated to tackle challenging,
real-world environments.

Finally, with regards to more modern treatments of MP,
several promising approaches have arisen, such as Non-linear
Model Predictive Control (Grandia et al., 2022) and locally reactive
controllers (Mattamala et al., 2022). Be that as it may (even though
in general MPC can be employed to solve kinematic problems,
albeit with large computational resources to avoid local minima),
the above impressive and sophisticated controllers differ from
our approach, as we treat the kinematic path planning problem.
Furthermore, the scope of our method is not limited in the
extraction of a single path; our method provides a velocity field
for the entirety of a robot’s physical workspace and can thus be
employed as a higher lever planning module in combination with
a low-level motion planner for robotic platforms. In that sense, the
proposed method is more similar to conventional planners, e.g.,
RRT⋆, in the context of path extraction in a physical workspace.
Within the same paradigm, Model Predictive Path Integral (MPPI)
control (Mohamed et al., 2020; Williams et al., 2017 exhibits certain
similarities to our approach and is demonstrated to work in complex
case-studies. However, since the depicted results in the above works
are limited to workspaces with numerous, but small and most
importantly convex obstacles, these approachesmight be susceptible
to local minima (especially in the partial observability case), as

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

long planning horizons (which might be necessary to escape local
minima) might be computationally infeasible. Regardless, these
methods also provide a single-path solution to MP, whereas the
goal of the proposed method is to provide a solution for the entire
workspace (w.r.t. a single goal position) in a one-shot manner, such
that it can be used for many arbitrary navigation instances (w.r.t. the
given final goal position).

Regarding the optimal MP problem, the aforementioned
methods A⋆, D⋆, and Djikstra’s Algorithm minimize the solution’s
path length with provable optimality in some cases, while RRT⋆

can be modified to encompass kinodynamic constraints and more
complex cost function forms. Furthermore, the latter is also
proven to provide asymptotic optimality (at the limit of infinite
run-time). In practice, satisfactory sub-optimal solutions can be
obtained, or if desired, post processing can improve existing paths
(Geraerts and Overmars, 2007). Concerning non-linear dynamics,
the authors (Li et al., 2016) propose a methodology that treats
such cases, which is especially relevant to the herein proposed
method. On the contrary, there has been limited work on optimal
reactive navigation, with some works including optimal NFs for
stochastic systems (Horowitz and Burdick, 2014), where either a
complete solution necessitates solving a hard Partial Differential
Equation (PDE), or semi-complete treatments implement parameter
tuning (Vadakkepat et al., 2000; Amiryan and Jamzad, 2015).
It is therefore clear that sampling/graph-based methods have
been explored extensively for the optimal MP problem, whereas
reactive/continuous methods leave a lot of issues unresolved.

1.2 Contributions

Given the preceding discussion, we propose a method that
merges the advantages of continuous methods with the RL-induced
optimality through a PI method for 2-dimensional, planar optimal
motion planning. The proposed framework additionally extends
optimality to a set of non-linear, first order dynamics. More
specifically, our contributions are.

1. A Policy Iteration algorithm that provides successively
improving Reactive Motion Planning Policies,

2. A projection controller, such that safety during navigation and
asymptotic convergence to the goal position are guaranteed, and

3. A workspace decomposition scheme that improves the
computational performance of the proposed method.

The “reactive optimal motion planning problem” concentrates
on the extraction of a reactive input vector field, defined over a
robot’s workspace, such that a Cost Function is minimized. The
novelty in the first two points lies in the fact that the proposed
method is reactive in the technical, control theoretic sense; that
is, the policy (velocity input) is explicitly dependent on the state
(position) of the robot (feedback). While this might also be the case
for many modern RL methods (where the term reactive is rarely
employed), our work is aligned with the control theoretic paradigm
of treating the evolution of Ordinary Differential Equations (ODEs)
(as in the flows of vector fields) over manifolds. This also
demonstrates themain difference between the proposed scheme and
MPC-based ones; the herein proposed offline optimization enables
extracting optimal trajectories fromanywherewithin theworkspace,

w.r.t. a given final position, without the need for re-running the
method.

Therefore, the proposed optimal control problem essentially
consists of a functional analysis problem, and requires the solution of
a hard, non-linear, PDE. The RL-scheme is employed appropriately
to construct the optimal input without necessitating the solution
of the aforementioned PDE. Instead, the cost function gradient is
successively approximated through gathered data, and at the same
time CT is employed to provide safety, convergence, and policy
improvement guarantees. As it will become apparent in the sequel,
full knowledge of the dynamics does not enable extracting the cost
function a priori, therefore successive approximation is necessary.
For more details, the reader is directed to (Abu-Khalaf M. and
Lewis F. 2005).

1.3 Outline

The rest of themanuscript is organized as follows: In Section 2.1,
we formulate the problem in the language of control theory.
Subsequently in Section 2.2, we present the proposed method and
provide some formal analysis that motivates our approach. In
Section 2.3, we prove the asserted technical claims of the method
and continue with providing an overview of the scheme, along
with some practical details in Section 2.4. In Section 2.5, a scheme
for ameliorating the computational characteristics of the proposed
method is presented. Finally, we present rigorous simulation results
in Section 3, with the relevant figures included in a separate
section for readability, and conclude with a relevant discussion and
envisioned future prospects in Section 4.1.

2 Materials and methods

2.1 Optimal motion planning as an optimal
regulation (OR) problem

Consider a point robot1 operating within a fully known,
bounded (with external walls), and connected planar workspace
Q ⊂ ℝ2, with M inner distinct obstacles Oi ⊂ ℝ2, i = 1,…,M. The
free workspace is given by W =Q−⋃Mi=1Oi and its boundary is
given by ∂W . An example of the aforementioned defined quantities
is depicted in Figure 1. 2Consider also the desired, final position of
the robot denoted by pd ∈W − ∂W . The robot’s motion is dictated
by the following, first-order system of non-linear ODEs:

ṗ = f (p) + u, p (0) = p̄, (1)

where p ∈W − ∂W denotes the robot’s position, f(p):W ↦ℝ2

models non-linear first order dynamics, which may correspond to

1 A disk robot can also be considered by applying a workspace transformation
that inflates the workspace boundaries: ∂W I = T(∂W) where T(z) = z+Rn(z),
R ∈ ℝ+ denoting the robot’s radius and n denoting the inwards-pointing
vector that is normal to the boundary at the point z ∈ ∂W .

2 While in the following Results section we have provided examples of
polygonal workspaces, the proposed method can also be employed for
smooth boundaries.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 1
A workspace, whose outer boundary is depicted in a red line, and
three obstacles depicted with black lines. A frame of reference along
with an exemplary position (cyan disk), and the corresponding position
vector (blue arrow) are also depicted.

the robot’s non-linear dynamics or relevant interactions with its
environment and is considered to be fully known, u(t):ℝ+↦ℝ

2

denotes the velocity command applied to the robot and p̄ ∈W − ∂W
denotes the robot’s position at time t = 0 (initial position). In order
to formulate the optimal control problem, we make the following
assumptions.

1. f is a Lipschitz continuous function for all p ∈W ,
2. f vanishes at the desired position, i.e., pd is an equilibrium of

system (1).

Assumption 1 is common for addressing control problems and
roughly concerns the absence of singularities inside the workspace.
Assumption 2 is stronger and might not hold for real-world
applications, however it will be shown in the sequel that it can
be relaxed by applying a fixed translation to the input signal, i.e.,
u = u′ − f(pd), to render pd an equilibrium, where u′ denotes the new
input command.

Remark 1: Form (1) is motivated by agents that operate within
environments where, in addition to the velocity input, the external
environmental interactions aremodeled through a velocity field. For
instances such as of an underwater vehicle operating in the presence
of an external water flow (sea currents), the robot velocity depends
on both the input, and the position-dependent flow (i.e., on the
term f(p) in Eq. (1)) induced by the environment (Fossen, 1994).
Since our work is limited to first order dynamics, the adoptedmodel
could be used as an approximation of themotion of a robotic vehicle
in the presence of such an external fluid flow. Such an approach,
although approximate, would still prove beneficial to address energy
consumption, especially in slow-moving flows, if the underlying
optimal velocity field is employed as a high-level velocity command
to a low-level tracking controller. Tracking a straight line trajectory
(the optimal path if fluid flow is neglected) towards a goal position
would result in larger amounts of energy consumption compared
to a trajectory incorporating fluid flow expressed in the adopted

simplified velocity space. On the other hand, if one were to cancel
the drift term f(p) and deal with a single integrator model then the
solution would not be optimal (see (Freeman and Kokotovic 1996)),
as the drift term may be advantageous in guiding the robot to the
goal position (depending on the flow). Finally, the technical results
provided in the sequel can easily be extended to systems of the form
ṗ = f(p) + g(p)u, p ∈W − ∂W for cases where g(p):W ↦ℝ2×2 is a
full-rank (thus invertible) matrix.

The goal of this work is to design a reactive control input (i.e., a
vector field) u(p):W ↦ℝ2 such that the following infinite-horizon
cost function is minimized:

Vu (p̄) = ∫
∞

0
Q(pu (τ; p̄) ;pd) +R (u (τ))dτ, (2)

where pu (t; p̄) :ℝ+↦W denotes the trajectory that stems from
integrating (1) while applying the control input u, starting (at
time t = 0) from the initial position p(0) = p̄ ∈W − ∂W , and the
index u indicates that the cost corresponds to the input signal
u. Furthermore, we define the state-related cost term Q and the
input-related cost term R respectively.

Q(p;pd) = α‖p− pd‖
2, (3a)

R (u) = β‖u‖2, (3b)

where α,β are positive real-valued weighting constants and ‖ ⋅ ‖
denotes the Euclidean norm. The metric (2) along with (3)
essentially result in a cost function from optimal regulation
theory (Kalman, 1960). The state-related term Eq. 3a) can be
understood as minimizing the settling time of the system, i.e.,
the time until the robot reaches an area close to the goal,
since it penalizes the robot for staying away from the goal
position as time evolves. The input-related term Eq. 3b) is more
straightforward, as it penalizes the control input’s Euclidean norm,
which, when integrated, roughly translates to actuator energy
minimization.

The cost function V (p̄) :W − ∂W ↦ℝ+ can be interpreted as
describing the cost that is accumulated along a trajectory of system
(1) starting from the initial position p̄. For the above cost to be well-
defined (i.e., for the limit of the integral (2) to be converging to a
finite value), the trajectory should be asymptotically converging to
the goal position, with the latter consisting an equilibrium of (1).
This is true only if Assumption (2) holds, as in any other case, a non-
zero value for the state-related cost term would accumulate when
integrated for infinite time, resulting in an infinite cost function
value. Nevertheless in case f (pd) ≠ 0̃, we can redefine the cost-
related term as:

R′ (u) = β‖u+ f (pd)‖
2, (4)

Which renders the limit of the integral (1) well-defined for
asymptotically converging trajectories.

Finally, while the drift dynamics are assumed to be fully-known,
we underline that the OR problem is still non-trivial; that is, the
fact that neither the optimal cost function (2), nor the cost function
gradient are readily available, renders the extraction of the optimal
policy rather difficult, requiring the solution of a hard, non-linear
PDE. In the sequel we bypass this limitation through the proposed
RL-PI scheme.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

2.2 Proposed method

In this section, the proposed PI scheme will be presented. First
of all, we begin by defining the set of admissible policies which
serves as a basis for designing a framework for a reactive solution
with provable guarantees.

Definition 1: (Admissible Policy) A navigation policy u (p) :W ↦
A (W), whereA (W) denotes the set of admissible policies, is defined
as admissible with respect to the cost function (2) over the workspace
W , if:

1. u is continuous onW ,
2. f (pd) + u(pd) = ̃0,
3. u (p) stabilizes (1) onW ,
4. Vu (p) is finite ∀p ∈W and
5. the resulting trajectories of (1) under the control law u = u (p) are

safe, i.e., for any p̄ ∈ (W − ∂W) it holds that 3

Pu (p̄)⋂∂W = ∅,where:Pu (p̄) = ⋃
t∈[0,+∞)

pu (t; p̄) .

2.2.1 Initial policy
In RL, the training process begins through the implementation

of an initial, sub-optimal policy that serves as a starting point for
the optimization algorithm. It is standard practice that the initial
policy is acquired through its parametrization via an approximation
structure and the initialization of its parameter vector. As will
become apparent in the sequel, our policy is on the contrary
parameter-free. However, a vector field that can be employed as a
reactive4 and admissible initial policy is also required (see Def. 1).
As discussed in Section 1.1, there exist a plethora of methodologies
for providing provably correct reactive vector fields in the literature.
In Rousseas et al. (2022), we have provided a method for obtaining
such an initial policy, through an AHPF5:

v (p) = −exp(ϕT (p)w)∇ϕ (p)w, (5)

where w ≜ [w0,w1,…,wK]
T ∈ ℝK+1 are the respective weights of

the structure, ϕ(p) ≜ [ϕ0(p;pd),ϕ1(p;p1),…,ϕK(p;pK)]
T:ℝ2↦ℝK+1

is the regressor vector of harmonic terms ϕi(p;pi) = ln(‖p− pi‖)
and K+ 1 is the overall number of harmonic terms. This field,
when the weights of the structure are appropriately tuned, exhibits
a single stable equilibrium at the desired position pd ∈W − ∂W ,
while it furthermore points inwards at the boundary, thus providing
safe navigation to the goal position. Such a field will henceforth
be referred to as a Navigation Field. We direct the reader to
(Rousseas et al., 2022) for details over the aforementioned method6.

3 This definition ensures that under the control law u the robot does not
collide with the workspace boundary at any point along all trajectories (for
any initial position p̄).

4 Non-reactive methods are unsuitable due to cost function non-smoothness.

5 Note that in case where the drift term is zero, the velocity v(p) and the input
u(p) are identical.

6 Even though the method by Rousseas et al. (2022) is employed in the context
of unknown workspaces, the framework can be trivially extended to fully
known ones by considering the entire boundary as having been sensed by
the robot’s sensors.

Through this velocity field, the initial policy, which will henceforth
be denoted as:

u(0) (p) = u(i=0) (p) = − f (p) + v (p) , (6)

Renders system (1) almost Globally Asymptotically Stable
(GAS). The term “almost” relates to the topology of the workspace
and is discussed extensively in the following subsection.

2.2.2 Impossibility of strictly global navigation in
multiply connected workspaces

Prior to presenting the proposed scheme, it is necessary to
discuss some properties of continuous vector fields over multiply
connected manifolds (i.e., workspaces with internal obstacles). In
their seminal work, Koditschek and Rimon (1990) proved how in
multiply connected manifolds, no strictly globally attractive vector
field can be defined. This limitation stems from saddle-points of the
vector field, whose existence is guaranteed through the following
proposition.

Proposition 1: (Corollary 2.3 in (Koditschek and Rimon 1990)).
Let v be a smooth nondegenerate vector field on the free space,
W − ∂W , with M > 0 obstacles, which is transverse on ∂W . Suppose
that v has a unique attracting equilibrium point. Then each obstacle
introduces at least one saddle point of v.

We now employ the above proposition to show how limiting the
vector field to the form (5), as introduced in Rousseas et al. (2022),
presents the advantage of exhibiting as few saddle points as possible.

Proposition 2: Let W =Q−⋃Mi=1Oi denote a Jordan (the boundary
of W consists of disjointed Jordan curves) multiply connected
workspace (manifold) embedded in the Euclidean plane (W ⊂ ℝ2),
with M internal obstacles. A harmonic navigation field (5), defined
over W exhibits exactly M saddle points in int (W).

Proof. See Supplementary Appendix S1.
The above proposition essentially describes how AHPFs, owing

to theminimum-maximumprinciple and the subsequent lack of any
local maxima in the interior of a workspace7, induce only as many
saddle points as the number of obstacles.

The restrictions on the existence of continuous reactive
controllers in the presence of obstacles that are discussed in this
section have recently been formalized and generalized through
the notion of Topological Perplexity (TP) in Baryshnikov (2021).
The effect of TP and the above propositions on our method is
twofold: First of all, while Definition 1 can be employed in the
context of simply connectedmanifolds (workspaces with no internal
obstacles) and harmonic vector fields, this is not the case when
internal obstacles are present. The hyperbolic equilibria (saddles),
impart stable manifolds from which trajectories fail to reach the goal
position. Additionally, any saddle of the Navigation Field will result
in infinite cost for any point that starts exactly at the stable manifold
of the former. This is proven in Proposition 3. Nevertheless, the
aforementioned manifolds are of Lebesque measure one, therefore
the probability of starting exactly on them (and thus the probability

7 Note that nothing prohibits the vector field v exhibiting saddle points exactly
at the boundary ∂W , however since the position of the robot lies in the
interior of W this does not pose any practical or technical challenges.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

of the navigation failing) is zero. To formalize this notion, we adopt
the definition of a stable manifold, Wst(ps) of the saddle point
ps, s = 1,… ,M from (Hsu, 2013)8:

Wst
u (ps) = {p̄ ∈W :pu (t; p̄) isdefinedfor t ≥ 0

and lim
t↦∞
(pu (t; p̄)) = ps}

(7)

where pu (t; p̄) is the flow of (1) (i.e., trajectory) from the initial point
p(0) = p̄ ∈W up to time t > 0.

Proposition 3: Given the harmonic navigation Field v in (5) the cost
function (2), evaluated on trajectories of the system ṗ = v(p), obtains
an infinite value for any starting points lying on the stable manifolds
of the saddle points of v9.

Proof.See Supplementary Appendix S1.

2.2.3 Addressing multiply connected workspaces
The singularity that the cost function admits, and which was

proven to exist in Proposition 3, yields technical and practical
challenges for the application of the proposed PI scheme, as the
approximation of functions with singularities is ill-posed. The
proposed method is still applicable for obstacle-free workspaces, as
the lack of internal equilibria is guaranteed through Proposition 2.
We therefore propose applying our method in multiply connected
workspaces through generating a transformed workspaceW′, from
the initial workspace W , where the obstacles are linked to the
outer boundary ∂Q of the initial workspace through the addition
of measure-two (of finite area) artificial-boundary regions, thus
rendering the workspace simply connected. We underline that the
simply-connected version of the workspace always exhibits a tree-
like topology, as by definition, any closed loop in the connectivity
graph implies the existence of obstacles. Hence, the construction of
the transformed workspace that is described in the sequel always
yields such a topology. The effects of the above process are.

1. A region of finite area is rendered inaccessible for the robot,
2. The topology and geometry of the artificial-boundary regions

directly influence optimality, i.e., a poor choice of such
regions can hinder the optimality of the final controller (upon
convergence).

However.

1. Such an initial subdivision of a multiply-connected workspace
to a simply-connected one is unavoidable (be it through one-
dimensional sets instead of two-dimensional ones) due to the
presence of saddles,

2. The newly simply connected workspace admits Admissible
policies, as per Definition 1,

3. The cost on the boundaries of the resulting harmonic navigation
field is finite,

4. The regions can be rendered arbitrarily small, as long as they
remain of measure-two.

8 The term “stable” relates to stability w.r.t. the equilibrium point, not the goal
position.

9 Note that, by construction, the vector field (5) has a sink at pd, therefore the
case where pd = pi, i ∈ Is needs not be considered.

FIGURE 2
The Original Workspace, containing a π-shaped obstacle (left) with its
Simply-Connected, Transformed Version (right). The obstacle is
connected to the boundary through a slim region. The free part of the
workspace is depicted in white, while the occupied part of the
workspace is depicted in black.

The aforementioned step is thus a well-motivated and necessary one
in order to formulate a PI scheme without sacrificing mathematical
exactness. Negating the need for such a transformation is
furthermore a promising future research direction that we intend
to pursue. An example of this process is presented for a simple
workspace in Figure 2. It can be shown that the herein depicted
choice for linking the obstacle to the outer boundary might not be
optimal for several choices of desired final robot positions (e.g., for
pd positioned “within” the convex region defined by the π-shaped
obstacle).

In order to obtain a transformed workspace such as the one
in Figure 2, we leverage Proposition 2, along with the method in
Rousseas et al. (2022). Briefly, we initially obtain an AHPF through
the method in Rousseas et al. (2022), for the multiply connected
workspace. According to Proposition 2, the vector field (5) admits
M saddles, each of which further consist of two (one-dimensional)
manifolds, a stable and an unstable one (Hsu, 2013). It can be
easily shown by contradiction that, for a safe AHPF with a sink
at the workspace’s interior, the unstable manifold of a saddle
connects the latter to the goal position, while the stable manifold
connects the saddle to the boundary10. Consecutively, the saddles,
along with their stable manifolds can be computed numerically,
which essentially provides a set of curves that link the obstacles
to themselves and/or the boundary. In order to turn the one-
dimensional manifolds into the two-dimensional ones that are
necessary for the method, simple algorithms can be implemented,
such as a bounding box one. The respective field, along with the
stable manifold and its bounding box, are depicted in Figure 3.

2.2.4 Policy iteration scheme
In this section, the proposed PI scheme is presented. In PI

methods, the robot executes a sub-optimal policy and computes
the related cost function (2), through a computationally expensive
process. Subsequently, the acquired information is employed in
order to ameliorate the policy w.r.t. to the cost function. This
process is repeated until the cost function converges. While

10 If we assume the opposite, then either the goal is not a global minimum of
the field, or the field is not safe at the boundary, leading to a contradiction.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 3
An AHPF for the multiply-connected obstacle, along with the saddle
(red disk), the stable manifold (red, continuous line) and its bounding
box (black) that is employed to render the workspace simply
connected.

the computational cost of PI methods is significant, owing to
the extensive cost data gathering, the convergence rate is fast
(Brunton and Kutz, 2021), as in practice only a small number of
training “epochs” (i.e., iterations) are needed. As the TP-related
issues were discussed in Subsections 2.2.2 and 2.2.3, henceforth
we treat the case where the initial policy exhibits no internal
critical points, and we employ the symbol W′ to denote the
transformed, simply-connected (i.e., obstacle-free) version of the
workspace where appropriate, as discussed in Subsection 2.2.3. In
the following subsections, we begin by extracting the optimal policy,
and subsequently providing a theory-inspired efficient solution to
the cost function data gathering step.

2.2.5 Optimal policy
To extract the optimal policy, note that for any GAS policy

u defined over W′ (even if it is not safe per se), the following
differential form of (2) can be formulated:

(∇pVu)
Tṗ = −r (p,u) ⇔ (∇pVu)

T (f (p) + u)

= −α‖p− pd‖
2 − β‖u‖2, (8)

where the term r is defined as:

r (p,u) = Q(p;pd) +R (u) . (9)

The above equation along with the terminal condition

Vu (pd) = 0, (10)

Define a Lyapunov-like PDE. In order to minimize (2) the
following Hamiltonian is constructed:

H(p,u;∇pV) = (∇pVu)
T (f (p) + u) + r (p,u) . (11)

Hence, the optimal cost function V⋆ satisfies the Hamilton-
Jacobi-Bellman (HJB) equation:

min
u
{H(p,u;∇pV⋆)} = 0, (12)

Which through applying the stationary condition on (11) results
in the optimal policy:

u⋆ = arg min
u
{H(p,u;∇pV⋆)} ⇒ u⋆ (p) = − 1

2β
∇pV⋆ (p) , (13)

where V⋆ denotes the optimal cost function. Additionally, in the
context of successive approximation11, as presented by Abu-Khalaf
and Lewis, 2005b), given aGAS policy u(i), where the index i denotes
the ith step of the successive process, the associated cost:

V(i) ≜ Vu(i) , (14)

Resulting from applying u(i) to (1) can be employed through the
feedback control law:

u(i+1) = − 1
2β
∇pV(i) (p) (15)

And can be shown to result in global asymptotic stability for
(1), and at the same time improving the cost in the entire state-
space. However, through this formulation safety is not guaranteed,
as throughout the preceding analysis the condition that the policy
is admissible, and more specifically condition 5 of Def. 1, was
never imposed. Indeed, while the extracted policy (13) is GAS
for systems (1) according to Beard et al., 1995) and Abu-Khalaf
and Lewis, 2005a), it is not necessarily safe. In order to obtain an
optimal safe policy, safety needs to be incorporated in the control
design.

2.2.6 Admissible and cost improving policy
With the goals of preserving global asymptotic stability and

control improvement as described inAbu-Khalaf and Lewis. (2005b)
for the PI scheme (15), as well as imbuing system (1) under the
feedback control law u(i+1) with safety, we propose the following
policy:

u(i+1) (p) =
{{{
{{{
{

− 1
2β
∇pV(

i) (p) , p ∉ Sa

− 1
2β
∇pV(i) (p) + u

(i)
C (p) , p ∈ Sa

, (16)

where the set Sa is defined as:

Sa = {p ∈W′ | d (p) ≤ a} , (17)

With a ∈ ℝ+ being a tuning parameter and where the distance
function d:W′↦ℝ+ is given by

d (p) = min
z∈∂W′
{‖p− z‖}, (18)

And which corresponds to the distance of any point p ∈W to
the workspace boundary.The set (17) defines an area of distance a ∈
ℝ+

12 around the workspace’s boundary. An example of the set Sa
is depicted in Figure 4 for an exemplary workspace. Outside the set
Sa the control law assumes the optimal value that results from the

11 Successive Approximation as employed by Abu-Khalaf M. and Lewis FL.
(2005) can be understood to be a PI scheme.

12 The use of the English letter a here is not to be mistaken for the Greek
letter α in (3a).

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 4
Two indicative workspaces (black) and the safety-check set Sa

depicted by the red-shaded area. The distance a is also depicted in
blue. Correct choice of a (left, no overlap), incorrect choice of a (right,
overlap).

stationary condition (13). Inside this area, a correction term is added
to the control law:

u(i)C =
ba (d (p))

2β
∇pV(

i) (p) − ba (d (p)) f (p)

− ba (d (p))
(∇pV(i))

T (f (p) + u(i))

2β‖ f (p) + u(i)‖2
(f (p) + u(i)) , (19)

where the third term is essentially the projection of the cost
function gradient on the robot’s dynamics under the previous
input, i.e., pr(ṗ(i)) (∇pV

(i)), with ṗ(i) = f(p) + u(i). The bump function
ba (x) :ℝ+↦ [0,1] is defined as

ba (x) =
{{
{{
{

exp(−(x
x− a
)
2
), x ≤ a

0, x > a
, (20)

which is a continuously differentiable (but not analytic) function that
varies from 1 to 0 over a distance a. In order for the function:

ba ◦ d (p) :W′↦ [0,1] (21)

In (19) to be properly-defined, the parameter a should be set
as small as possible, such that: i) there is no ambiguity over which
part of the boundary is considered in the distance function (18)—the
red regions of Figure 4 should not overlap—and ii) the goal position
does not lie within the area Sa.

The control law (16) along with (19) can be understood as
follows: away from the workspace boundary (outside the set Sa),
the control law assumes the value of the negated gradient of the cost
function that results from applying the previous policy. This is the
best implementable policy according to the information encoded
in the cost function of the previous policy (and it may therefore
be characterized as a greedy policy). As the robot approaches the
boundary, it enters Sa and the bump function smoothly introduces
the extra terms in (19).The first two terms smoothly nullify the drift
dynamics and the input applied outside Sa, respectively. The third
term smoothly projects the negated gradient of the cost functionV(i)

onto the previous dynamics f(p) + u(i). While the above projection
controller is similar to the barrier function formulation, it differs
critically in that the projection is employed w.r.t. the previous policy.
This (along with the initial admissible policy extraction) results in a
constructively safe controller, whereas in case of barrier functions,
a suitable barrier function that renders the trajectories of the system

safe needs to be discovered first. In the following section we prove
how the proposed controller (16) satisfies the asserted properties.

Remark 2: In order to treat the dynamics discussed in Remark 1with
the additional input multiplier g(p), the optimal input (13)—and its
equivalent in (16)—should be altered as follows:

u(i+1) = − 1
2β

gT (p)∇pV(i) (p) . (22)

Additionally, the correction term can be enhanced through pre-
multiplying with g−1(p)—as a reminder, this concerns the case where
g(p) is invertible. Conversely, the technical results in the sequel can be
easily extended, however the relevant proofs are omitted for clarity of
exposition and readability.

2.3 Technical results

In this section, the asserted technical claims are proven, namely,
safety, global asymptotic convergence, and control improvement.

2.3.1 Existence and safety
The feasibility of the correction term (19) necessitates the

existence of the projection at the ith iteration13, i.e.,:

(∇pV(i))
T (f (p) + u(i)) ≠ 0. (23)

To see this, note that through (8) the projection is equal to

(∇pV(i))
T (f (p) + u(i)) = −α‖p− pd‖

2 − β‖u(i)‖2, (24)

Which implies that indeed (23) holds, as the Right-Hand Side
(RHS) of (24) is strictly negative ∀p ∈W′ − {pd}. Since a is chosen
such that pd ∉ Sa (see the previous section), the last term in (19) is
a well-defined, smooth projection for any p ∈W′. To prove global
asymptotic stability, we first of all show that u(i+1) is bounded in
Lemma 1 and subsequently prove that the proposed policy is safe
in Lemma 2.

Lemma 1: (Boundedness of the input). Given an admissible policy
u(i), the policy u(i+1) is bounded ∀p ∈W′.

Proof. It suffices to prove that each term in the sum (16)
is bounded. Owing to admissibility of u(i), ∇pV(i) is bounded.
Therefore, owing to boundedness of ba(d) the only non-trivial term
is pr(ṗ(i)) (∇pV

(i)). Note that, from (8):

‖pr(ṗ(i)) (∇pV
(i))‖ = ‖

‖

−r(p,u(i))(f (p) + u(i))

2β‖ f (p) + u(i)‖2
‖

‖

=
r(p,u(i))‖ f (p) + u(i)‖

2β‖ f (p) + u(i)‖2

=
α‖p− pd‖

2 + β‖u(i)‖2

2β‖ f (p) + u(i)‖
,

Which, owing to the admissibility of u(i) is bounded ∀p ≠ pd,
owing to the denominator being non-zero (as this would imply a

13 If the projection were indeed equal to zero, then by the definition of the
correction term (19), the robot’s velocity would assume a zero-value, thus
leading to lack of convergence.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

local minimum inside the workspace). For p→ pd, note that the
denominator tends to 0. However, since the term ‖u(i)‖2 converges to
zero faster than ‖u(i)‖, the fraction is well-defined and also converges
to 0 for p→ pd, which concludes the proof.

Lemma 2: (Safety of the input). The control law (16) applied to
System (1) results in safe trajectories according to Definition 1 for any
initial point p̄ ∈W′, if the previous policy u(i) is also safe ∀p̄ ∈W′.

Proof. In order to prove safety, note that owing to the first-order
dynamics (1), the safety condition ofDefinition 1 is equivalent to the
velocity of the robot pointing inwards at the boundary, i.e.,

ṗT (z)n (z) > 0, z ∈ ∂W , (25)

where n(z) is the inwards-pointing vector that is normal to the
boundary at the point z ∈ ∂W′. Notice also that under the control
law (16) and the fact that for any z ∈ ∂W , ba(d(z)) = 1, Eq. 16, 19
and 20, yields:

ṗT (z)n (z) = −
(∇pV(i))

T (f (z) + u(i))

2β‖ f (z) + u(i)‖2
(f (z) + u(i))Tn (z) .

Hence, if the ith policy is safe, then (f(z) + u(i))Tn(z) > 0,
and since through (8) (∇pV(i))

T (f(z) + u(i)(z)) < 0, ∀z ∈ ∂W′, we
conclude that ṗT(z)n(z) > 0, which concludes the proof.

2.3.2 Main technical results
In this subsection, the main technical results are presented in

Theorem 1.Weprove how (16) results inGlobal Asymptotic Stability
of System (1) through common Lyapunov arguments. A sketch of
the proof begins by following the analysis by Abu-Khalaf and Lewis,
(2005b) which coincides with our case for any p ∉ Sa. Subsequently,
owing to the smoothness of the application of the correction term
(19), we demonstrate how the resulting extra term does not hinder
the Lyapunov argument.

Additionally, we explore the improvement of the cost function
given the sequence of admissible policies (16). Abu-Khalaf and
Lewis, (2005b) prove how a successive approximation scheme for
nonlinear systems results in policy improvement. However, the
workspace boundary in the context of motion planning alters the
technical results significantly. We begin by examining the case
for the single integrator, in which case the policies are provably
improved w.r.t. to the cost function. Subsequently, we show that
owing to the general formof the nonlinear term (1) the improvement
of the cost function in that case can not be guaranteed for the
entire workspace (although it is also not explicitly prohibited).
Finally, a brief discussion over the case with drift dynamics is
provided.

Theorem 1: (Global Asymptotic Stability and Control
Improvement). Given an admissible (see Definition 1) policy u(i)

that results in Global Asymptotic Stability of System (1) and the
associated cost function V(i) in (2), the policy (16) also results in
Global Asymptotic Stability of System (1), which also renders (16)
admissible. Furthermore, given the admissible policy u(i) ∈A(W′),
the policy (16) applied to System (1) with zero drift dynamics, i.e.,
f(p) = ̃0,∀p ∈W′, results in improvement of the cost function (2), i.e.,
V⋆ ≤ V(i+1) ≤ V(i).

Proof. See Supplementary Appendix S1.

In order to examine the case where f(p) ≠ ̃0, the term B″ (from
the proof of Theorem 1) becomes:

B″ = b (d)[(1− b (d))
‖∇pV‖2

4β2
+ b (d) − 1β fT∇pV

−(1− b (d)) r
2 (p,u)

4β2‖ f + u‖2
− fT (f + u)(1− b (d) r (p,u)

2β‖ f + u‖2
)]

Which yields:

B″ (‖ f‖) ≜ ̄c+ (̄a− b̄)‖ f‖− ‖ f‖2 +
̄d‖ f‖2 + 2 ̄db̄‖ f‖− ̄g
‖ f‖2 + 2b̄‖ f‖+ ̄e

,

where the parameters in the above equation are omitted for brevity.
Therefore, also noting that B″ consists of a rational function and

B″ (0) = ̄c−
̄g
̄e
=
b (d) (1− b (d))

4β2
(‖∇pV‖2 −

r2

‖u‖2
)

=
b (d) (1− b (d))

4β2
‖∇pV‖2 (1− cos (θ)) > 0,

we conclude that:

∃‖ f‖ ∈ ℝ ∣ ∀ f:‖ f‖ ≤ ‖ f‖⇒ B″ (‖ f‖) ≥ 0. (26)

For drift dynamics f(p) that obey (26), the successive application
of the proposed policy (16) results in decreasing the cost function.
Nonetheless, (26) is not constructive and we can not determine
control improvement a-priori. Nevertheless, lack of control
improvement over the whole workspace is the price for ensuring
safety and convergence. Furthermore, control improvement is
guaranteed for trajectories that do not cross Sa, as through the
preceding analysis it can be shown that B″ = 0 (note that all the
terms are multiplied by b(d), which is zero for the aforementioned
set of points). Additionally, note the dependence on the cost-related
weighting parameter β. As the latter increases (which translates
to demanding that the method reduces the applied input), the
control improvement aspect of the algorithm deteriorates, which
is intuitively expected if no bounds on the drift dynamics f(p)
are imposed. We conclude that the lack of guarantees of control
improvement is unavoidable in this case, as the safety correction
term is explicitly dependent on the dynamics. We nevertheless
demonstrate the ability of the proposed method to improve the cost
function even in the presence of such non-linearities in Section 3.

Remark 3: (Global Optimality). In the preceding discussion, it was
proven inTheorem 1 that the PI scheme provides a sequence of cost
functions of decreasing level sets in the case for the single integrator
dynamics, and under (26) for the non-linear case.However, this does
not imply that the cost function upon convergence is the globally
optimal one, as the sequence might converge to a different (higher)
value for some points. Wang and Saridis (1992) have proven that, in
a case where the input sequence is given by (15), the cost function
upon convergence is nearly globally optimal (in the asymptotic
sense)—see Theorem 5 in Wang and Saridis (1992). This holds
true for our method as well, for the points where u(i)C (t) = ̃0, ∀t ∈
[0,∞]. However, in the case of multiply connected workspaces, this
holds only for the transformed, simply-connected version of the
latter; thus the solution depends heavily on the transformation from
multiply to simply connected workspace. Therefore, strict global

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

optimality is not attained by our method due to both aspects. In
future works, we aim at addressing both aspects, i.e., providing the
provably (nearly) globally optimal safe policy formultiply connected
workspaces.

2.3.3 Cost function computation - Data gathering
The proposed policy (16)–(19) requires the gradient of the

cost function and full knowledge of the dynamics. While in RL
algorithms unknown dynamics are usually treated, this work
is limited to known dynamics, so as not to sacrifice provable
guarantees. Nevertheless, treating unknown dynamics is an
interesting andwell-motivated direction that we intend to explore in
the future. Additionally, in contrast to modern RL, where in many
cases a Q-function is needed to map the state and policy to the
cost, herein we only need to employ the gradient of the cost, as the
mapping between the cost function and the optimal policy (w.r.t. the
aforementioned instance of the cost function) is available through
theHJB Equation 13.Thus, the PI scheme introduced herein suffices
to improve upon the previous policies, as long as a representation
for the cost function (or its gradient) is available.

In order to compute the cost function, we employ existing
theoretical tools from PDE theory. We remind the reader that the
relevant PDE consists of Equation 8 with the terminal condition
(10), which is explicitly written in the semi-linear form:

∂Vu

∂x
(fx (x,y) + ux (x,y)) +

∂Vu

∂y
(fy (x,y) + uy (x,y))

= −r([x,y]T,u([x,y]T)) ,Vu (pd) = 0, (27)

where p = [x,y]T,u = [ux(x,y),uy(x,y)]:W′ − ∂W′↦ℝ2, f =
[fx(x,y), fy(x,y)]:W

′ − ∂W′↦ℝ2. In this subsection, we employ
the explicit definition of the related fields for clarity (in place of
the vector-matrix notation employed in the rest of the manuscript).
Such PDEs can be solved explicitly via the method of characteristics
(Nandakumaran and Datti, 2020). In summary, the 2-dimensional
PDE is transformed into a system of 3 ordinary differential
equations:

dx
fx (x,y) + ux (x,y)

=
dy

fy (x,y) + uy (x,y)
=
dVu

−r
. (28)

In order to acquire a solution, the first step is to solve for the
characteristic curve of the PDE by solving the first pair of ODEs,
namely,

dx
fx (x,y) + ux (x,y)

=
dy

fy (x,y) + uy (x,y)
, (29)

where a characteristic line of the form C = g(x,y) will be obtained.
However, note that in (28), the following:

dx
fx (x,y) + ux (x,y)

=
dy

fy (x,y) + uy (x,y)
= dt, (30)

Implies that the characteristic lines are the isochronous curves
resulting from implementing the trajectories of (1), which are of
the form g(x,y) = t, t ∈ [0,∞), an example of which is depicted in
Figure 5. Note also that (30) admits the solution:

xu (t) = x (0) +∫
t

0
(fx (x,y) + ux (x,y))dτ,

yu (t) = y (0) +∫
t

0
(fy (x,y) + uy (x,y))dτ,

(31)

FIGURE 5
The characteristic solution g(x,y) = t (red line). The boundary (black
line), the desired position (green disk). Trajectories are also depicted in
blue lines linking the boundary to the characteristic.

which is related to the preceding sections’ notation through the
trajectory pu (t; [x(0),y(0)]

T) = [xu(t),yu(t)]
T.

Finally, the solution of the remaining ODE for the cost function
can be obtained:

dVu

−r
= dt⇒ Vu (x (t) ,y (t))

= ∫
t

0
(−r([x (τ) ,y (τ)]T,u([x (τ) ,y (τ)]T)))dτ+C, (32)

where the constant C ∈ ℝ is given through the terminal condition:

lim
t→∞
[Vu (x (t) ,y (t))] = Vu (pd) = 0

⇒ C = ∫
∞

0
(r([x (τ) ,y (τ)]T,u([x (τ) ,y (τ)]T)))dτ, (33)

Hence (33) is equivalent to evaluating the cost function for any
point p̄ ∈W′ − ∂W′. This formulation results to some ambiguity
w.r.t. the starting time instant.This is implicitly defined in the initial
conditions for the two state Eq. 31. In the following lemma, we prove
how (33) is equivalent to (2), as the trajectories, starting from the
boundary of the workspace cover the entire workspace.

Lemma 3: (Full Coverage of the Workspace).The trajectories (31)
of System (1) cover the entire workspace if every initial condition
lying on the boundary of the workspace p̄ ∈ ∂W′ is considered and
for time t ∈ [0,∞), i.e., for any p ∈W′, there exists a unique tuple
{p̄, T̄} ∈ ∂W′ × (0,∞) such that

p =H (p̄, T̄) ≜ p̄+∫
T̄

0
(f + u)dτ, (34)

whereH(p̄, T̄) is a homeomorphism.
Proof. Let p ∈W′. Propagating the dynamics (1) backwards for

time T yields:

s = p+∫
T

0
(− f − u)dτ = p−∫

T

0
(f + u)dτ⇔

p = s+∫
T

0
(f + u)dτ,

(35)

Which shows that there exist some {p̄, T̄} = {s,T} ∈ ∂W′ ×
(0,∞). To complete the proof it suffices to show that {s,T} ∈

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

∂W′ × (0,∞) are unique for any p ∈W′. This however is trivial.
First of all, the solution of the system of ODEs (1) is unique
(Khalil, 2014), owing to the fact that the dynamics along with the
policy (16) are Lipschitz continuous ∀p ∈W′. Finally, since the
set W′ is forward invariant, owing to admissibility of the policies,
the complement ℝ2 −W′ is forward invariant for the backwards-
propagated dynamics (35), yielding a single intersection point of
the respective trajectory with ∂W′. Having established continuity
and invertibility, we have essentially also proven that H(p̄, T̄) is a
homeomorphism for t ∈ [0,∞) which concludes the proof.

2.3.4 Reduction of dimensionality of cost
function computation

The above lemma, besides proving equivalence of (33) to (2),
for any position inside the workspace, additionally provides a way
to reduce the dimensionality of the cost function computation.
Normally, to obtain cost function values for any point inside the
workspace, the integration of (33) for every such point is necessary.
Even if the respective two-dimensional planar workspace was
sampled, the complexity would prove intractable as the workspace
size grows. However, Lemma 3 shows that it is sufficient to sample
over the one-dimensional Jordan curve that forms the boundary
of the workspace. This significantly reduces both the complexity
and the scaling of the cost function computation. Starting from a
discrete set of initial positions pk,1 ∈ ∂W

′, k = 1,…,K, and taking
Nk ∈ ℕ samples pk,n ∈W

′, n = 1,…,Nk over the kth trajectory,
N = ∑Kk=1Nk samples for the cost function can be acquired from
integrating (33) K-times. Note that (31) and 33 consist of a system
of ODEs.

d
dt
[[[[

[

x

y

vu

]]]]

]

=
[[[[

[

fx (x,y) + ux (x,y)

fy (x,y) + uy (x,y)

r([x,y]T,u([x,y]T))

]]]]

]

, (36)

With the initial conditions x(0),y(0),vu(0) = 0 whose solution
yields the cost function (2), evaluated over points that lie on the
computed trajectories of System (1):

Vu (x (t) ,y (t)) = limt→∞
(vu (t)) − vu (t) , (37)

where a dummy function vu was employed to compute the cost
function. Eq. 37 is essentially identical to (33), evaluated over the
trajectories of System (1). In summary, the data gathered over
the trajectories through the solution of (27) consist of tuples of
the robot’s position, along with the corresponding cost values, i.e.,
{xi,yi,Vi}, [xi,yi]

T ⊂W , Vi ∈ ℝ+, i ∈ {1,…,N}, where N = ∑Kk=1Nk
is the total number of samples over all the computed trajectories and
Nk ∈ ℕ is the number of points sampled over the kth trajectory.

Note that the above process yields the value of the cost function
of an admissible policy at a collection of collocation points.However,
this collection cannot be readily employed to extract a policy, as
the gradient of the cost function is explicitly required for providing
a control input. While numerical differentiation could provide a
discrete form of the latter, in the sequel we propose a method to
provide a continuous representation of the cost function gradient
through DNNs. This approach is similar in scope to (Abu-Khalaf
and Lewis, 2005a), where the optimal cost function is iteratively
approximated.

  • Given a Workspace W and a convergence

threshold E ∈ ℝ+

  if W is simply connected then

   W′←W
  else

   W′← connectobstaclestoboundary(W)
  end if

  • Take K ∈ ℕ samples over the boundary:

  pk ∈ ∂W′,k ∈ {1,⋯ ,K}
  • Starting from an initial policy u(0) ∈A(W′)
  Set i← 0

  Set converged← False

  while not(converged) do

   • Compute Cost: V(i) through running

trajectories (36) from the initial states

pk ∈ ∂W′,k ∈ {1,⋯ ,K}, gathering data tuples

{xj,yj,Vj},j ∈ {1,⋯ ,N},

   • Differentiate the cost numerically,

   • Approximate the Cost Function’s Normalized

Gradient with a feed-forward NN,

   • Update the next policy u(i+1) through (16),

   if i > 0 then

    if ‖∇pV(i+1) −∇pV(i)‖ ≤ E then

     converged← True

    end if

   end if

   •i← i+1

  end while

  • Upon convergence i = I the optimal policy is:

u⋆ ≈ u(I)

Algorithm 1. PI ALGORITHM.

2.4 The proposed PI scheme

In this section, the preceding elements are combined in a
complete framework in the form of an algorithm. We also provide
details regarding the implementation of ourmethod in the following
subsections.

2.4.1 Algorithm
Algorithm 1 provides an overview of the proposed PI

scheme. This relatively simple algorithm results in policies
that inherit the traits discussed in Section 2.3, and thus yields
almost optimal admissible policies. Briefly, Algorithm 1 starts
with obtaining the simply-connected workspace transformation,
in a case where obstacles are present. Then, a number of
samples are taken over the boundary, and trajectories are run
for the initial policy in order to gather cost data. The cost
data are then numerically differentiated and the cost function’s
normalized gradient is approximated through a DNN. The
policy is finally updated, and the whole scheme is repeated until
convergence. Some further details are discussed in the following
Subsections.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

2.4.2 Normalized gradient approximation
In order to implement (16) the gradient of the cost of the

previous policy is required. In Deep RL, usually the cost function
is approximated through a DNN from data gathered through
trajectories. Note that in Algorithm 1 such a data-gathering process
is included. Therefore, a DNN will also be employed in this case.
However, since, owing to the deterministic andmodel-based scheme
that is proposed, the relationship between the policy and the cost
is explicit through (12) and (13), the gradient of the cost function
can be employed directly. Still, as can be seen in Eq. 2, obtaining the
value for the cost function for a given point inside the workspace
requires integrating the trajectory of the robot from the latter unil
convergence. While this method can be employed for obtaining a
singular value, note that the control laws for the PI method in Eq. 16
require the cost function gradient explicitly, which is not available.
Therefore, in order to approximate the gradient, and having obtained
values for the surface of the cost function (2) at discrete points V̂k,n =
Vu(pk,n) we apply an additional step of numerical differentiation,
to obtain values for the gradient ∇V̂k,n. The approximation of
the gradient field itself, however, presents some challenges. The
field admits small values close to the goal position, contrasted to
larger values farther away, which results in a poor approximation
of the field close to the goal position. This is detrimental for the
convergence of the robot to the goal. Hence, we employ the following
process: Note that (8) can be written as:

(∇pV(i))
T (f (p) + u(i)) = −r(p,u(i)) ⇒

‖∇pV(i)‖ ̂eT∇pV(i) (f (p) + u
(i)) = −r(p,u(i)) ,

(38)

where ̂e∇pV(i) denotes the unitary vector along the direction of∇pV
(i).

Consequently, if the unitary vector is known, the norm of the
gradient can be obtained through:

‖∇pV(i)‖ =
α‖p− pd‖

2 + β‖u(i)‖2

|(f (p) + u(i))T ̂e∇pV(i)|
. (39)

Therefore, we can normalize the gradient and approximate the
direction of the field. The field is normalized as follows:

̃e∇pV(i) ≈
∇pV(i)

ϵ+ ‖∇pV(i)‖
, (40)

where ϵ is a small, positive constant. If the exact normalization was
employed instead of (40), i.e., ̂e∇pV(i) =

∇pV
(i)

‖∇pV(i)‖
, then the field would

admit singularities inside the workspace. This is owing to the fact
that the direction of any field is formally not a two-dimensional
unitary vector mapping ̂e(p):ℝ2↦ℝ2, but rather maps to a one-
dimensional value over the unitary circle ̂e(p):ℝ2↦ S1. We will
however not go into further detail concerning this matter14, as the
proposed normalization suffices to alleviate any singularities besides
for pd, which is however point-like.

14 In a few words, we formally approximate two 2-dimensional discontinuous
manifolds embedded in ℝ3, whereas in reality we should be approximating a
continuous, two-dimensional manifold embedded in W′ ×S1, the ambient
space of which is homeomorphic to the solid torus D ×S1. Be that as it
may, such a technical detail is considered outside the scope of this work,
and will thus be left untreated at this stage.

In summary, two DNNs are employed15, one for each
component of the normalized gradient. Subsequently, the norm of
the gradient can be computed through (39). The effect of the
normalization is to alleviate approximation issues over the
workspace, as the training data exhibit significantly less variation,
as well as negate the need for a heuristic for weighting the error
vector during the training process. In practice, this step produced
significantly better and more consistent results than approximating
the gradient of the cost or the cost itself, requiring minimal
tuning (namely, the DNN layer characteristics) over a variety of
workspaces.

2.4.3 Parallel integration scheme
Another significant implementation detail is the parallelizable

computation of the trajectories of system (36). Note that each
trajectory stemming from an initial point at the boundary
can be computed independently. We therefore employ the
GPU capabilities of modern machines in order to perform
the relevant computation in parallel through a custom
parallelized integration scheme, which significantly improves the
performance of our method, as it will be presented in the results’
section.

2.5 An atlas for alleviating computation in
large workspaces

While the proposed method provides several desirable traits
owing to the technical results of Section 2.3, it results in expensive
computations. In this section, we propose a scheme for alleviating
the computational load and the scaling properties of the method,
especially when considering large workspaces. This is heavily
inspired by Vlantis et al. (2018a) where an atlas of harmonic maps
is employed to improve the computational characteristics of the
proposed method.

Consider an atlas L = {Pk|k ∈NP} obtained by subdividing the
workspace into NP subsets Pk ⊂W′, i.e., W′ = ⋃k∈NP

Pk with NP =
{1,2,…,NP}, where the intersection of two such subsets is at most a
one-dimensional Jordan curve, i.e., Ck,j = Pk ∩ Pj = ∂Pk ∩ ∂Pj,k, j,∈
NP, which indicates that the regions intersect at their boundaries
in the interior of the workspace. Through proper selection of such
subsets, consider a rooted tree structure T = (V ,E) such that V =
{Pk|k ∈NP} and (k, j) ∈ E if fPkis theparentofPj. Furthermore, the
root of T consists of the subset of L that contains the desired
position, i.e.,: Proot ≜ P1 = {P ∈ L|pd ∈ P}. To prove its existence and
further clarify the structure of T as well as the parent-children
matrix E , consider the following construction. Given an initial
admissible policy u(0), consider NC = NP − 1 contours16 of the

15 While a single, two-output DNN can also be employed, in practice we
found that it resulted in poorer approximation of the normalized gradient.

16 The choice of a subdivision according to contours of the cost function
is not unique, as topologically homeomorphic 2-dimensional curves can
also be considered. The complement set of each subdivision however (i.e.,
P′k ≜W

′ −Pk) should be forward time invariant. Put simply, this means that
any trajectory should not re-enter the set Pk once it leaves the latter, as
this would give rise to ambiguity w.r.t. the computation of the total cost,
as it will become apparent in the sequel.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 6
The workspace (left) with its boundary depicted in black lines, and the
curves that partition the workspace depicted in red. The
corresponding tree is depicted on the right.

induced cost function V(0):

C′k = {p ∈W
′|V(0) (p) = ck > 0, k ∈NC}, (41)

where NC = {2,…,NC} and which partition W′ into NP subsets.
Note that each subset will have one or more curves C′k as part of its
boundary. We denote by Pk the subset for which the cost function
V(0) admits the smallest value at the curve C′k, k ∈NC (with the
exception of the region P1 which has already been defined). Such
an example is depicted in Figure 6. Now consider trajectories of
(1) under the policy u(0) starting at a point on the boundary p̄ ∈
∂W′. Note that V(0) is a valid Lyapunov function for (1), while
trajectories pu(0)(t; p̄) cover the entireworkspace (if we consider every
p̄ ∈ ∂W′, according to Lemma 3). If we denote with k̄ the index of
the region containing p̄, i.e., k̄ = {k ∈NP|p̄ ∈ Pk}, then by following
any such trajectory, a sequence Sp̄ = {ck̄(p̄),cs1(p̄),…,csn(p̄)} can be
constructed, which corresponds to the values of the contours C′k,k ∈
NC that the respective trajectory crosses.This sequence is decreasing
(owing toV(0) decreasing along a trajectory as a Lyapunov function),
and gives rise to the tree structure between the subsets Pk. Each
branch is formed by considering the set of contours {C′

k̄
,C′s1,…,C

′
sn}

that any trajectory crosses, on its way to reaching node P1 which
contains the goal position.Therefore, the node Pj admits a parent Pk
iff C′k ⊂ ∂Pj

17. In simply connected spaces this is indeed a tree, as any
cycle would imply that the sequence Sp̄ is not decreasing, leading to
a contradiction.

We employ the above tree-decomposition in order to ameliorate
the computational performance of the proposed PI scheme, in the
following way. Let ∂Wk = ∂W′ ∩ ∂Pk denote the boundary of the kth
region that is also part of the boundary of the workspace. Then for
any trajectory starting from the point p̄ ∈ ∂Wj, j ∈NC the cost can
be split along the trajectory, at its intersection points with the curves

17 The parent/child relationship is independent of which trajectory starting in
any subset Pk is considered, as all trajectories can be shown to exit Pk by
crossing the curve C′k, according to Lyapunov arguments.

C′k:

V(i) (p̄) = ∑
k∈Sp̄

V̂(i)k (p̄) +∫
∞

Tcsn(p̄)

r (τ; p̄)dτ (42)

where V̂(i)k (p̄) denotes the cost that is accumulated over the k− th
region Pk that corresponds to the initial point p̄:

V̂(i)k (p̄) = ∫
Tk+1(p̄)

Tk(p̄)
r (τ; p̄)dτ, k ∈ Sp̄ (43)

And Tk(p̄) denotes the time where the trajectory starting from
p̄ intersects the curve C′k. Therefore, to compute a cost along a
trajectory, each segment V̂(i)k (p̄) can be computed independently
in parallel. Having computed each term V̂(i)k (p̄), k ∈ Sp̄ that
corresponds to the region Pk, the following process is implemented.
Starting from the root node, the tree is traversed and at each
level of the tree, the appropriate values of the cost function
V̂(i)j (C

′
j) (computed over the child-node region Pj at the common

boundary C′j ⊂ ∂Pj) are added to the corresponding trajectories
of the parent-node Pk. Although this post-processing step is
necessarily performed serially, as the information for the cost
function propagates along the tree structure, it is numerically cheap.

This further parallelization of the computation of trajectories
significantly speeds up the process in large workspaces and it can
readily be incorporated with the technical results of Section 2.3.4 to
provide a more efficient training scheme, as will become apparent in
the results’ section.

3 Results

In this section, we demonstrate the validity of the proposed
scheme and our technical results, as well as the applicability of our
method. We present various workspaces, from the example of a
π-shaped obstacle as an initial demonstration (transformed into a
simply-connected version as discussed in Section 2.2.3), along with
more complex maze workspaces. A case for non-linear dynamics is
also presented. Furthermore, comparative studies are provided. All
resultswere implementedwithMATLAB, version 2021b, running on
a PC with an Intel-i7 quad-core processor, with an NVIDIA Geforce
GTX-1060 GPU. For all of the presented results (excluding the case
of Figure 7) the weighting parameters α,β were set equal to 1. The
distance parameter was chosen as a = 0.1 for the π-shaped obstacle
workspace and as a = 0.3 for the maze workspaces. Finally, the
employed DNN consists of 3 layers, with sizes (3,5,2) respectively
for all studies.The networks were trained on the cost data using the
Mean-Squared Error (MSE) metric for 1,000 epochs.

3.1 Proposed method results

3.1.1 Single integrator dynamics
First of all, we demonstrate the validity of our method through

a simple example of a square workspace with an internal, π-
shaped obstacle. The initial and simply-connected versions of the
workspace are depicted in Figure 2. The comparative cost functions
for the initial and final policies are depicted in Figure 8, along
with the initial and final (normalized) vector fields, and exemplary

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 7
Exemplary Trajectories for a parameter sweep of the input-related cost weight β over the state-related cost weight α, for the case of the non-linear drift
dynamics depicted in Figure 11.

FIGURE 8
Results for the π-shaped workspace, for the case of zero non-linear dynamics. The initial and final cost functions are presented in logarithmic scale
(first and third subfigures), along with the respective (normalized) vector fields in blue arrows (second and fourth subfigures). Some exemplary
trajectories are also depicted in red lines, with the goal position depicted with a green disk.

trajectories. The improvement of the cost is significant, with the
trajectories exhibiting almost optimal path length. We further
demonstrate our approach in a more complex environment, the
results of which are depicted in Figure 9.The efficacy of the proposed
method in decreasing the cost is again demonstrable. We also
present “snapshots” of the velocity field for a simpleworkspacewhere
the effectiveness of the method is apparent in Figure 10. Notably,
even after the first iteration of the algorithm, the field already exhibits
close to optimal behaviour, which demonstrates the fast convergence
of PI methods.

3.1.2 Nonlinear drift dynamics
In this subsection, we present a case where the drift dynamics

are non-zero. We consider the case of rotational dynamics with the
distance-to-the-goal norm:

f (p) = ‖p− pd‖[sin (θ) ,cos (θ)]
T, θ = ∠p. (44)

The normalized dynamics, along with the initial cost function,
the final velocity field, and its respective cost are depicted in

Figure 11.The initial velocity field is not depicted in this case, as per
Eq. 6, it is identical with the one in Figure 8. We note that the costs
for the linear and non-linear cases are different, owing to the drift
term f(p). Concerning the final policy of Figure 8 (linear case) the
cost of points on the left side behind the π obstacle is higher than
those on the right side, owing to them being farther away from the
goal position. On the contrary, in Figure 11 (non-linear case), the
drift term on the left side points towards a direction that “helps” the
robot expend less energy, whereas in the right side, the robot has
to “overcome” the flow of the drift term to safely navigate towards
the goal. This results in the farthest away region behind the obstacle
admitting lower cost values. Additionally, in Figure 7, we investigate
how trajectories are altered for various ratios β/α. It is clear that,
as the ratio increases, the input-related cost term dominates (2)
and thus the algorithm “prioritizes” conserving input energy over
converging quickly to the goal. Therefore, the trajectories converge
to the goal position slower, while also being “carried along” by the
drift dynamics, which results in the spiralling trajectories depicted
in Figure 7.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 9
Initial and Final Costs for a maze workspace, in logarithmic scale (left subfigure column). The initial and final normalized vector fields are depicted (blue
arrows) (right subfigure column), along with some trajectories (red) and the goal position (green disk).

FIGURE 10
The resulting Vector Fields at different steps of the PI scheme. The normalized velocity field is depicted in blue and the workspace boundary is depicted
in black.

3.1.3 Workspace decomposition
In this subsection, we present the application of the workspace

decomposition schemeof Section 2.5.Wedemonstrate the similarity
of the cost functions, along with the employed decomposition
and the efficacy of the parallelized scheme in decreasing the
computational time of each iteration in Figure 12. The 10% error
between the original method and the decomposition scheme
(although minimal) can be attributed to the accumulation of the
cost function gradient approximation error over the boundaries
of the workspace subdivisions. This hypothesis is in accordance
with Figure 12, where the error is observed over the remotest

subdivision w.r.t. the goal position, where the accumulation of the
aforementioned error is expected to have the most impact.

3.2 Comparative results

3.2.1 Comparison with continuous methods
In order to evaluate the performance of our method, approaches

with similar scope and results should be employed. Since the
proposed method concentrates on the formal solution of the high-
level reactive optimal MP problem (in the form of a velocity vector

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 11
Results for the π-shaped workspace, for the case of a rotational vector field for non-linear drift dynamics (left-most plot). The initial and final cost
functions are presented in logarithmic scale (second and third subfigures), along with the final (normalized) velocity field in blue arrows (fourth
subfigure). Some exemplary trajectories are also depicted in red lines, with the goal position depicted with a green disk.

FIGURE 12
Final Cost Function Comparison with (first subfigure) and w/o (second subfigure) the Decomposition Scheme 2.5. The final cost functions exhibit
essentially the same form with a +10% increase at the maximal value. The computational gain is demonstrated in the right-most figure, where the
original method’s execution times are depicted in black, while the decomposition scheme’s times are depicted in red. The employed decomposition is
also depicted through the shaded regions in the top right corner.

field), a comparison against the plethora of existing platform-
specific DRL approaches would not provide any meaningful
comparisons. Therefore, we initially compare the cost function
(2) produced by our method against two previous harmonic-
based approaches. The results for the reactive, AHPF methods
are presented in Figure 13. In the left-most figure, the method by
Rousseas et al. (2020) was implemented, where the weights of an
AHPF assume a state-feedback form. In the central figure, we present
a custom method where a constrained-optimization RL strategy
is employed to extract the optimal constant AHPF weights. Our
method’s cost function is presented again for completeness. It is clear
that, although themethod by Rousseas et al. (2020) provides descent
results, significantly better than the constant weights case, the herein
proposed method exhibits a significant overall improvement.

3.2.2 Comparison with sampling-based methods
Subsequently, we employ the length of the produced trajectories,

as a metric to compare against two approaches, an RRT⋆ and a PRM
one. RRT⋆ serves as a baseline to evaluate the optimality of our
method, as it produces asymptotically optimal results, while PRMs
also provide a fair comparison. Nonetheless, note that, even though
path length is a valid metric for these methods, the cost function (2)
can not be directly evaluated, as they only produce feasible paths and

not inputs. In previous works (Rousseas et al., 2020; Rousseas et al.,
2021; Rousseas et al., 2022), we have employed RRT⋆ planners that
include input-space sampling. However, due to sampling over a 4D
space, the RRT⋆ results presented therein do not consist of fair
evaluations against the current method. Nevertheless, we are able to
asses the performance of our method even more strictly, as the on-
trajectory optimal velocity norm can be computed analytically for
any trajectory. More specifically, consider the HJB equation (for the
single integrator case):

(∇pV)
T (vev) = −α‖p− pd‖

2 − βv2, (45)

where ev ∈ ℝ2 denotes a fixed, position-based direction of the
velocity field whereas v ∈ ℝ+ denotes its norm. The optimal control
input norm is given by v⋆ = − 1

2β
(∇pV⋆)

Tev. Finally, combining the
above two equations yields

v⋆ = √
α
β
‖p− pd‖. (46)

Therefore, this norm can be applied over the RRT⋆/PRM-obtained
trajectories to evaluate the global optimality of our method. Note
however, that due to the nature of SBMs, the above globally optimal
solution produces discontinuous velocity vectors along non-smooth
paths, as the latter consist of quasi-linear segments.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 13
Comparative Final Cost functions between three reactive methods, namely (Rousseas et al., 2020) in logarithmic scale, where the AHPF weights are
non-constant functions of the position (first subfigure), a custom, in-house RL scheme which computes the optimal (constant) AHPF weights (second
subfigure), and the proposed method respectively (third subfigure). Our method outperforms both previous ones. While it is not self-evident due to the
depicted range, the proposed method assumes a maximal value of ≈16, whereas the method in Rousseas et al. (2020) assumes a maximal value of ≈20,
with similar relative cost-value distributions over the workspace.

TABLE 1 Comparative results, RRT⋆ vs. ProposedMethod.

π-shaped workspace

p̄ Cost Path Length [m]

Ours RRT⋆ Ours RRT⋆

Min Mean Max Min Mean Max

[2,2]T 13.5 13 14.3 16.4 4.09 4.05 4.31 4.78

[3,2]T 9.8 9.3 10.4 11.4 3.49 3.39 3.67 3.96

[0.5,0.5]T 16 16.2 16.7 17.8 4.1 4.15 4.25 4.46

[0.5,4.2]T 6.8 6.9 7.1 7.4 2.6 2.65 2.71 2.79

[4.2,0.5]T 10.4 10.8 11.1 11.8 3.27 3.33 3.42 3.56

[4.2,4.2]T 1.7 2.1 2.2 2.5 1.44 1.46 1.5 1.62

The bold values denote the minimum value among the corresponding values.

We therefore present some exemplary trajectories for the
workspace with the π-shaped obstacle (against RRT⋆), as well as
for one of the previously presented complex workspace of Figure 9
(for both sampling-based methods). The results are summed up in
Tables 1 and 2. In both cases, 50 trials were carried out to achieve
statistical significance for the SBMs. Notably, we conclude that our
method exhibits mostly reduced or identical path lengths to the
SBM’s ones. Taking into account that, first of all, in our method
the field’s norm and direction were concurrently optimized, along
with the fact that our method produces a continuous field over
the whole workspace (in contrast to the RRT⋆’s single, non-smooth
trajectories), our method can be considered successful in providing
globally optimal solutions in the herein presented examples w.r.t.
path length.

Concerning the cost function (2), in Tables 1 and 2 we present
comparative cost function values for the π-obstacle and complex

maze workspaces. Our method produces mostly reduced cost
function values compared to the best results from the SBMs, with
few exceptions where the cost is nevertheless closely matched.
Most importantly, comparing with the median or mean values
of these methods, our method is consistently superior. Notably,
as the initial position is placed farther from the goal position,
our method produces significantly better results, as demonstrated
in Table 2. Since our method produces similar or improved path
lengths, compared to two SBMs, while also outperforming the
latter when the analytically computed optimal velocity norm was
applied, we conclude that our method produces close to the
globally optimal navigation vector field in the herein presented
results. We furthermore note that upon convergence, the velocity
norm produced by our method is indeed the optimal one described
in (46), as scaling the field appropriately did not alter the
results.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

TABLE 2 Comparative results, PRMs and RRT⋆ vs. ProposedMethod.

Complex workspace

p̄ Cost Path Length [m]

Ours RRT⋆ PRMs Ours RRT⋆ PRMs

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

[10,7]T 56.1 56.18 57.67 59.77 58.72 63.65 71.63 8.7 8.69 8.84 9.13 8.91 9.57 10.48

[1,7]T 66 73.67 74.20 75.38 73.77 77.15 85.54 8.49 8.71 8.77 8.89 8.73 9.05 9.67

[1,4]T 67 73.24 74.91 77.73 74.4 78.67 87.35 8.78 9.06 9.18 9.34 9.09 9.6 10.39

[1,1]T 91.25 97.82 99.77 104.16 99.62 105.21 115.84 11.3 11.39 11.52 11.67 11.51 12.04 12.93

[4.5,3]T 10.1 10.3 10.6 11.6 11.59 12.97 19.59 3.12 3.40 3.44 3.555 3.41 3.78 4.57

[10,4]T 13.01 12.17 12.81 13.66 13.1 15.58 18.77 4.38 4.18 4.27 4.46 4.3 4.9 5.93

[11,1]T 13.2 13.3 13.4 14 11.87 13.39 18.05 3.64 3.65 3.7 3.82 3.5 3.96 5.27

[4.5,1]T 86 92.18 94.65 98.48 94.31 101.7 108.57 11.67 11.90 12.10 12.34 12.32 12.86 13.4

The bold values denote the minimum value among the corresponding values.

TABLE 3 Comparative cost values between the proposedmethod and SST⋆.

p1 p2 p3 p4 p5 p6

SST⋆ min 53.7 60.7 46.5 63 33.6 31.3

mean 78.85 97.7 51.1 76.3 45.3 45

median 84.9 104.2 50.6 77.6 45.8 47.1

max 99.3 126.3 56.3 83.5 50.5 51.5

proposed method 21.6 33.7 23.2 9.5 2.7 24.5

FIGURE 14
The robot’s workspace in the Gazebo simulation environment, along
with the YouBot holonomic robot model.

Finally, we compare the proposed method for the case of
nonlinear dynamics depicted in Figure 11. In Table 3, the cost
function values are shown for 10 trials of the SST⋆ method (Li et al.,
2016) for the six initial points of Figure 11.Nonparametric statistical
values—minimum, median, maximum values—as well as the mean

values are depicted. Our method outperforms the latter by a large
margin. This is most likely due to the method being able to plan
most effectively for dynamics that are not position-dependent
(such as unicycle models, Dubins car, etc.) in contrast to the
challenging case of position-dependent dynamics, where the SBM
is not able to plan a highly optimal tree, producing highly jagged
paths. This effect demonstrates the advantages of reactive global
planning, where the approach is able to extract a close-to-optimal
cost function. Finally, the proposed method is continuous and thus
guarantees the applicability of the approach, whereas the SST⋆

method performs numerical integration for computing the cost-to-
go as well as ensuring safety, which might introduce instabilities or
safety violations in practice, in some cases.

3.3 Gazebo simulation results

In order to demonstrate the applicability of the proposed
scheme, the herein proposed method was employed in a realistic,
high-fidelity simulation environment, through the Gazebo (Koenig
and Howard, 2004) simulation environment. A simple maze
environment was constructed, and the Kuka YouBot (Bischoff et al.,
2011) holonomic robot was chosen as the mobile platform, owing
to its omni-directional wheels18. The workspace’s boundary was
augmented during the optimization process so as to account for the
robot’s dimensions.The robot is equipped with the Robot Operating
System (ROS) (Quigley et al., 2009), and the proposed controller
was implemented inMATLAB. Communication betweenMATLAB
and ROS was established through the ROS Toolbox. Since the

18 The proposed scheme can also be applied for non-holonomic platforms,
owing to the reactive velocity field, through employing a low-level tracking
controller.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

FIGURE 15
Accumulated on-trajectory cost (left figure) along with the workspace (black line) and four trajectories (right figure). The normalized velocity field is
also depicted through blue arrows. The final goal position is placed at [14,9]T.

method is off-line and in the context of known-workspaces, the
robot’s odometry, with no additional localization, was employed.
Even through the position estimate is not highly accurate, owing
to the reactive nature of the proposed scheme, planning proved
to be robust enough to always prove successful in this challenging
condition. It is evident that a more accurate position estimate (such
as with SLAM) would only improve our method’s performance in
realistic conditions.

The synthetic workspace, along with the YouBot model, are
depicted in Figure 14. The resulting trajectories for four starting
configurations, along with the evolution of the on-trajectory cost
function (2), are depicted in Figure 15, along with the normalized
velocity vector field, for a single final desired position. The cost
function parameters were set as α = 1.0 and β = 40, in order for the
robot to move at a “realistic” speed towards the goal (we remind
the reader that these parameters are chosen according to design
specifications). As can be evidenced by the convergence of the cost
function in Figure 15, the robot converged to the final position at
approximately 25[s] max. A video of the simulation is available
through the hyperlink: https://vimeo.com/794492675.

4 Discussion

It has been demonstrated, through the aforementioned results,
that the proposed method successfully tackles the reactive optimal
MP problem.The trajectories demonstrate close to globally optimal
behaviour, with advantageous path length and velocity profile.
Notably, while the metric (2) does not optimize for the path length
directly, we have shown how our method produces nearly optimal
path lengths. Notice that the faster way to converge to the desired
position with minimal energy expenditure is indeed to follow the
minimum-length path while furthermore applying the minimum
possible velocity (which depends on the ratio β

α
).

With regards to execution times, our method took 6.5 min s and
209 min s for the workspaces of Figures 8, 9 respectively, without
the workspace decomposition scheme of Section 2.5. For Figure 12,
where the workspace decomposition scheme was employed, the
algorithm took 33 min s to converge. In comparison, for the

exemplary trajectories for 50 trials of the RRT⋆ method, the
execution times were 7 min s (1.5 s per trajectory) and 70.4 min s
(10.6 s per trajectory) for Figures 8, 9 respectively.The total time for
all trajectories was calculated in order to provide a fair comparison
due to the following reasons: 1) the 50 trials resulted in the non-
parametric statistical results of Tables 1 and 2, therefore, running
fewer trajectories would not necessarily yield the minimum values
depicted therein, 2) as our method produces results for any initial
position, several RRT⋆ trajectories are employed to cover the whole
workspace (even thoughwewould like to point out that 8 trajectories
are still not sufficient for full workspace coverage). Obtaining
additional trajectories through the RRT⋆ method would require re-
running the latter. Our approach, owing to the reactive formulation,
provides a reactive solution for any starting configuration. A
different way to view the above comparison rests on treating the
total 400 starting-ending SBMpositions as being spread out over the
entire workspace, thus resulting in quasi-similar global navigation
as in the case of continuous methods. If spread out uniformly over
a rectangle of dimensions 11 × 7 [m]2 (which covers an area of
approximately 77[m]2), the 400 trajectories yield a distribution of
approximately 5.2 initial positions per [m]2. Hence, the initial points
would be distributed with a resolution of 2.2 points per meter
for each dimension, which is a reasonable coverage for practical
applications. Nevertheless, this would emphatically not yield results
as satisfactory as those depicted in Table 2, as the above analysis
implies one single trajectory per initial point. Nevertheless, SBMs
still prove faster in cases where only a single trajectory is required.

While the method proposed in this work exhibits some
very promising results, several limitations persist. The main one
relates to the curse of dimensionality that plagues PI-related
methods, where exhaustive sampling is needed. Indeed, as the
number of dimensions grows, the complexity of both the data-
gathering and the cost function approximation steps would
scale exponentially. Future research efforts will concentrate on
ameliorating this aspect of the algorithm, with possible extensions
including approximate guaranteed solutions (Jiang et al., 2016)
and/or Off-Policy formulations.

Additionally, we intend to extend our work tomore complicated
state-spaces such as considering orientations and higher-order

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://vimeo.com/794492675
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

dynamics. Finally, the computational aspect of our work can be
ameliorated.

4.1 Future work

We intend to expand the scope of the results in two main ways.
First of all, we aim to provide a solution that optimizes the field
for any final desired position, in contrast to the present method,
where a solution is obtained for a single goal position. Another
important aspect is treating unknown robot dynamics with provable
guarantees. We further posit that this framework can be easily
extended to consider saturated inputs, which would significantly
enhance the applicability of the method, as the current formulation
necessitates large inputs. Additionally, the framework could be
extended for second-order mechanical systems, which would cover
a variety of robotic platforms. Finally, the most important future
direction that we intend to pursue is to address the existence of
obstacles.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

PR: Conceptualization, Formal Analysis, Funding acquisition,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft. CB: Conceptualization, Funding acquisition,
Supervision, Writing–review and editing. KK: Funding acquisition,
Project administration, Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The research

work was supported by the Hellenic Foundation for Research and
Innovation (HFRI) under the fourth Call for HFRI PhD Fellowships
(Fellowship Number: 9110).

Acknowledgments

We would like to thank the undergraduate student Marios
Malliaropoulos of the School of Mechanical Engineering NTUA
and the PhD candidate Christos Vlachos, of the Department of
Electrical and Computer Engineering of the University of Patras, for
providing the comparative reactive policy results of Figure 13 and
Section 3.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The handling editor PT declared a past co-authorship with the
author KK.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2023.
1255696/full#supplementary-material

References

Abu-Khalaf, M., and Lewis, F. (2005a). Nearly optimal control laws for nonlinear
systems with saturating actuators using a neural network hjb approach. Automatica 41,
779–791. doi:10.1016/j.automatica.2004.11.034

Abu-Khalaf, M., and Lewis, F. L. (2005b). Nearly optimal control laws for nonlinear
systems with saturating actuators using a neural network hjb approach. Automatica 41
(5), 779–791. doi:10.1016/j.automatica.2004.11.034

Amiryan, J., and Jamzad, M. (2015). “Adaptive motion planning with artificial
potential fields using a prior path,” in 3rd RSI International Conference on Robotics
and Mechatronics. pp. 731–736. doi:10.1109/ICRoM.2015.7367873

Anastopoulos, N., Nikas, K., Goumas, G., and Koziris, N. (2009). “Early experiences
on accelerating dijkstra’s algorithm using transactional memory,” in Proceedings of the
2009 IEEE International Parallel and Distributed Processing Symposium.

Baryshnikov, Y. M. (2021). Topological perplexity of feedback stabilization.

Beard, R., Saridis, G., and Wen, J. (1995). “An iterative solution to the finite-time
linear quadratic optimal feedback control problem,” in Proceedings of 1995 American
Control Conference - ACC’95, 3921–3922. doi:10.1109/ACC.1995.533878

Bechlioulis, C. P., and Rovithakis, G. A. (2008). Robust adaptive control of feedback
linearizable mimo nonlinear systems with prescribed performance. IEEE Trans.
Automatic Control 53 (9), 2090–2099. doi:10.1109/TAC.2008.929402

Bischoff, R., Huggenberger, U., and Prassler, E. (2011). “Kuka youbot - a
mobile manipulator for research and education,” in 2011 IEEE International
Conference on Robotics and Automation, 1–4. doi:10.1109/ICRA.2011.
5980575

Bozkurt, D., Ali, D., and Şengül, T. (2020). Interior structural bifurcation of 2D
symmetric incompressible flows. Discrete Continuous Dyn. Syst. - B 25, 2775–2791.
doi:10.3934/dcdsb.2020032

Brunton, S. L., and Kutz, J. N. (2021). Data-driven science and engineering:
machine learning, dynamical systems, and control. Cambridge University Press. doi:10.
1017/9781108380690

Devo, A., Mezzetti, G., Costante, G., Fravolini, M. L., and Valigi, P. (2020). Towards
generalization in target-driven visual navigation by using deep reinforcement
learning. IEEE Trans. Robotics 36 (5), 1546–1561. doi:10.1109/TRO.2020.
2994002

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.1255696/full#supplementary-material
https://doi.org/10.1016/j.automatica.2004.11.034
https://doi.org/10.1016/j.automatica.2004.11.034
https://doi.org/10.1109/ICRoM.2015.7367873
https://doi.org/10.1109/ACC.1995.533878
https://doi.org/10.1109/TAC.2008.929402
https://doi.org/10.1109/ICRA.2011.5980575
https://doi.org/10.1109/ICRA.2011.5980575
https://doi.org/10.3934/dcdsb.2020032
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1109/TRO.2020.2994002
https://doi.org/10.1109/TRO.2020.2994002
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rousseas et al. 10.3389/frobt.2023.1255696

Fossen, T. (1994). Guidance and control of ocean vehicles. John Wiley and Sons Ltd.

Francis, A., Faust, A., Chiang, H. T. L., Hsu, J., Kew, J. C., Fiser, M., et al. (2020).
Long-range indoor navigation with prm-rl. (arXiv Preprint).

Freeman, R. A., andKokotovic, P. V. (1996). Inverse optimality in robust stabilization.
SIAM J. Control Optim. 34 (4), 1365–1391. doi:10.1137/S0363012993258732

Geraerts, R., and Overmars, M. H. (2007). Creating high-quality paths for motion
planning. Int. J. Robotics Res. 26 (8), 845–863. doi:10.1177/0278364907079280

Grandia, R., Jenelten, F., Yang, S., Farshidian, F., and Hutter, M. (2022). Perceptive
locomotion through nonlinearmodel predictive control. doi:10.48550/ARXIV.2208.08373

Horowitz, M. B., and Burdick, J. W. (2014). “Optimal navigation functions for
nonlinear stochastic systems,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 224–231. doi:10.1109/IROS.2014.6942565

Hsu, S. B. (2013). Ordinary differential equations with applications. Sze-Bi Hsu.
9789814452922.

Inoue, M., Yamashita, T., and Nishida, T. (2019). “Robot path planning by lstm
network under changing environment,” in Advances in computer communication and
computational sciences (Springer), 317–329.

Isidori, A. (1999). Nonlinear control systems II. London: Springer.

Jaillet, L., Cortes, J., and Simeon, T. (2008). “Transition-based rrt for path planning
in continuous cost spaces,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2145–2150. doi:10.1109/IROS.2008.4650993

Jiang, F. J., Chou, G., Chen, M., and Tomlin, C. J. (2016). Using neural networks to
compute approximate and guaranteed feasible Hamilton-Jacobi-bellman pde solutions.
(arXiv Preprint).

Kalman, R. E. (1960). Contributions to the theory of optimal control. Bolétın Soc.
Mat. 5, 102–119.

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. Int. J. Robotics Res. 30 (7), 846–894. doi:10.1177/0278364911406761

Kavraki, L., Svestka, P., Latombe, J. C., and Overmars, M. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.
Robotics Automation 12 (4), 566–580. doi:10.1109/70.508439

Khalil, H. K. (2014). Nonlinear control. Pearson Education Limited. 1292060506.

Kim, J., and Khosla, P. (1991). “Real-time obstacle avoidance using harmonic
potential functions,” in IEEE International Conference on Robotics and Automation.
IEEE Computer Society, 790–796. doi:10.1109/ROBOT.1991.131683

Koditschek, D. E., and Rimon, E. (1990). Robot navigation functions on manifolds
with boundary. Adv. Appl. Math. 11 (4), 412–442. doi:10.1016/0196-8858(90)90017-S

Koenig, N., and Howard, A. (2004). “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) IEEE Cat. No.04CH37566), 3, 2149–2154.
doi:10.1109/IROS.2004.1389727

Koenig, S., and Likhachev, M. (2002). “D*lite,” in Proceedings of the National
Conference on Artificial Intelligence, 476–483.

Latombe, J. C. (1999). Motion planning: a journey of robots, molecules, digital
actors, and other artifacts. Int. J. Robotics Res. 18 (11), 1119–1128. doi:10.
1177/02783649922067753

LaValle, S. M., James, J., and Kuffner, J. (2001). Randomized kinodynamic planning.
Int. J. Robotics Res. 20 (5), 378–400. doi:10.1177/02783640122067453

Lei, X., Zhang, Z., and Dong, P. (2018). Dynamic path planning of unknown
environment based on deep reinforcement learning. J. Robotics 1, 1–10. doi:10.
1155/2018/5781591

Li, Y., Littlefield, Z., and Bekris, K. (2016). Asymptotically optimal sampling-
based kinodynamic planning. Int. J. Robotics Res. 35 (5), 528–564. doi:10.
1177/0278364915614386

Loizou, S. (2011). Closed form navigation functions based on harmonic potentials,
6361–6366. 978-1-61284-800-6. doi:10.1109/CDC.2011.6161438

Loizou, S. G., and Rimon, E. D. (2021). Correct-by-Construction navigation functions
with application to sensor based robot navigation. arXiv 2103. doi:10.48550/arXiv.2103.
04445

Mattamala, M., Chebrolu, N., and Fallon, M. (2022). An efficient locally reactive
controller for safe navigation in visual teach and repeat missions. IEEE Robotics
Automation Lett. 7 (2), 2353–2360. doi:10.1109/LRA.2022.3143196

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2022).
Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robotics
7 (62), eabk2822. doi:10.1126/scirobotics.abk2822

Mohamed, I. S., Allibert, G., and Martinet, P. (2020). “Model predictive path
integral control framework for partially observable navigation: a quadrotor
case study,” in 2020 16th International Conference on Control, Automation,
Robotics and Vision (ICARCV), 196–203. doi:10.1109/ICARCV50220.2020.
9305363

Nandakumaran, A. K., andDatti, P. S. (2020). First-order partial differential equations:
method of characteristics. CambridgeUniversity Press, 48–86. chapter 3. Cambridge IISc
Series. doi:10.1017/9781108839808.004

Paxton, C., Raman, V., Hager, G. D., and Kobilarov, M. (2017). “Combining neural
networks and tree search for task and motion planning in challenging environments,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems, 6059–6066.
doi:10.1109/IROS.2017.8206505

Pearl, J. (1984). “Heuristics - intelligent search strategies for computer problem
solving,” in Addison-wesley series in artificial intelligence.

Quigley, M., Gerkey, B., Conley, k, Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros: an
open-source robot operating system,” in ICRA workshop on open source software, 5,
Japan: Kobe.

Rimon, E., and Koditschek, D. (1992). Exact robot navigation using artificial
potential functions. IEEE Trans. Robotics Automation 8 (5), 501–518. doi:10.1109/70.
163777

Rousseas, P., Bechlioulis, C., and Kyriakopoulos, K. (2024). Harmonic-based
optimal motion planning in constrained workspaces using reinforcement
learning. IEEE Robotics Automation Lett. 6 (2), 2005–2011. doi:10.1109/LRA.2021.
3060711

Rousseas, P., Bechlioulis, C. P., and Kyriakopoulos, K. J. (2020). “Optimal robot
motion planning in constrained workspaces using reinforcement learning,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
6917–6922. doi:10.1109/IROS45743.2020.9341148

Rousseas, P., Bechlioulis, C. P., andKyriakopoulos, K. J. (2022). Trajectory planning in
unknown 2dworkspaces: a smooth, reactive, harmonics-based approach. IEEE Robotics
Automation Lett. 7 (2), 1992–1999. doi:10.1109/LRA.2022.3143308

Roy, N., Posner, I., Barfoot, T., Beaudoin, P., Bengio, Y., Bohg, J., et al. (2021). From
machine learning to robotics: challenges and opportunities for embodied intelligence.

Sertac, K., and Emilio, F. (2011). Sampling-based algorithms for optimal motion
planning. Int. J. Robotics Res. 30, 846–894. doi:10.1177/0278364911406761

Sutton, R., and Barto, A. (1998). Reinforcement learning: an introduction. MIT Press.

Vadakkepat, P., Tan, K. C., and Ming-Liang, W. (2000). “Evolutionary artificial
potential fields and their application in real time robot path planning,” in Proceedings of
the 2000 Congress on Evolutionary Computation (CEC00), 256–263. doi:10.1109/CEC.
2000.870304

Vlantis, P., Vrohidis, C., Bechlioulis, C. P., and Kyriakopoulos, K. J. (2018a). “Robot
navigation in complex workspaces using harmonic maps,” in IEEE International
Conference on Robotics and Automation (ICRA), 1726–1731. doi:10.1109/ICRA.2018.
8460695

Vlantis, P., Vrohidis, C., Bechlioulis, C. P., and Kyriakopoulos, K. J. (2018b). “Robot
navigation in complex workspaces using harmonic maps,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 1726–1731. doi:10.1109/ICRA.2018.
8460695

Waelbroeck, L. (1967). Some theorems about bounded structures. J. Funct. Analysis
1, 392–408. doi:10.1016/0022-1236(67)90009-2

Wang, F. Y., and Saridis, G. (1992). “Suboptimal control for nonlinear stochastic
systems,” in [1992] Proceedings of the 31st IEEE Conference on Decision and Control,
1856–1861. doi:10.1109/CDC.1992.3711092

Wang, J.,Meng,M.Q.H., andKhatib,O. (2020a). Eb-rrt: optimalmotion planning for
mobile robots. IEEE Trans. Automation Sci. Eng. 17 (4), 2063–2073. doi:10.1109/TASE.
2020.2987397

Wang, Z., Li, Y., Zhang, H., Liu, C., and Chen, Q. (2020b). Sampling-
based optimal motion planning with smart exploration and exploitation.
IEEE/ASME Trans. Mechatronics 25 (5), 2376–2386. doi:10.1109/TMECH.2020.
2973327

Weston, J., and Watkins, C. (1999). Support vector machines for multi-class pattern
recognition, 219–224.

Williams, G., Aldrich, A., and Theodorou, E. A. (2017). Model predictive path
integral control: from theory to parallel computation. J. Guid. Control, Dyn. 40 (2),
344–357. doi:10.2514/1.G001921

Zhou, C., Huang, B., and Fränti, P. (2022). A review of motion planning algorithms
for intelligent robots. J. IntelligentManuf. 33, 387–424. doi:10.1007/s10845-021-01867-z

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2023.1255696
https://doi.org/10.1137/S0363012993258732
https://doi.org/10.1177/0278364907079280
https://doi.org/10.48550/ARXIV.2208.08373
https://doi.org/10.1109/IROS.2014.6942565
https://doi.org/10.1109/IROS.2008.4650993
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/ROBOT.1991.131683
https://doi.org/10.1016/0196-8858(90)90017-S
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1177/02783649922067753
https://doi.org/10.1177/02783649922067753
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1155/2018/5781591
https://doi.org/10.1155/2018/5781591
https://doi.org/10.1177/0278364915614386
https://doi.org/10.1177/0278364915614386
https://doi.org/10.1109/CDC.2011.6161438
https://doi.org/10.48550/arXiv.2103.04445
https://doi.org/10.48550/arXiv.2103.04445
https://doi.org/10.1109/LRA.2022.3143196
https://doi.org/10.1126/scirobotics.abk2822
https://doi.org/10.1109/ICARCV50220.2020.9305363
https://doi.org/10.1109/ICARCV50220.2020.9305363
https://doi.org/10.1017/9781108839808.004
https://doi.org/10.1109/IROS.2017.8206505
https://doi.org/10.1109/70.163777
https://doi.org/10.1109/70.163777
https://doi.org/10.1109/LRA.2021.3060711
https://doi.org/10.1109/LRA.2021.3060711
https://doi.org/10.1109/IROS45743.2020.9341148
https://doi.org/10.1109/LRA.2022.3143308
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/CEC.2000.870304
https://doi.org/10.1109/CEC.2000.870304
https://doi.org/10.1109/ICRA.2018.8460695
https://doi.org/10.1109/ICRA.2018.8460695
https://doi.org/10.1109/ICRA.2018.8460695
https://doi.org/10.1109/ICRA.2018.8460695
https://doi.org/10.1016/0022-1236(67)90009-2
https://doi.org/10.1109/CDC.1992.371109
https://doi.org/10.1109/TASE.2020.2987397
https://doi.org/10.1109/TASE.2020.2987397
https://doi.org/10.1109/TMECH.2020.2973327
https://doi.org/10.1109/TMECH.2020.2973327
https://doi.org/10.2514/1.G001921
https://doi.org/10.1007/s10845-021-01867-z
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Related work
	1.2 Contributions
	1.3 Outline

	2 Materials and methods
	2.1 Optimal motion planning as an optimal regulation (OR) problem
	2.2 Proposed method
	2.2.1 Initial policy
	2.2.2 Impossibility of strictly global navigation in multiply connected workspaces
	2.2.3 Addressing multiply connected workspaces
	2.2.4 Policy iteration scheme
	2.2.5 Optimal policy
	2.2.6 Admissible and cost improving policy

	2.3 Technical results
	2.3.1 Existence and safety
	2.3.2 Main technical results
	2.3.3 Cost function computation - Data gathering
	2.3.4 Reduction of dimensionality of cost function computation

	2.4 The proposed PI scheme
	2.4.1 Algorithm
	2.4.2 Normalized gradient approximation
	2.4.3 Parallel integration scheme

	2.5 An atlas for alleviating computation in large workspaces

	3 Results
	3.1 Proposed method results
	3.1.1 Single integrator dynamics
	3.1.2 Nonlinear drift dynamics
	3.1.3 Workspace decomposition

	3.2 Comparative results
	3.2.1 Comparison with continuous methods
	3.2.2 Comparison with sampling-based methods

	3.3 Gazebo simulation results

	4 Discussion
	4.1 Future work

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

